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Copula function’s concentration set and its
concentrated partition
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The research on the local correlation structure of copula
function is an attractive topic. This paper investigates bi-
variate copula function’s local correlation structure by defin-
ing its concentration set. The concentration set of a copula
function is defined in [0, 1]2 with restrained Lebesgue mea-
sure such that the samples of the copula fall in the set with
the largest probability. The method for finding the concen-
tration set is provided and the properties of the concen-
tration set are discussed. Based on the concentration set, a
concentrated partition of [0, 1]2 for the copula function is in-
troduced, and one measure for quantifying copula function’s
local correlation is defined by applying our concentrated par-
tition. An empirical study is provided to support our idea
of proposing the concentration set.
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1. INTRODUCTION

Copula function is a multi-dimensional distribution func-
tion with uniform [0, 1] margins. For a d-dimensional distri-
bution function H(x1, . . . , xd) with marginal distributions
Fi, i = 1, . . . , d, Sklar’s Theorem (Joe, 1997; Nelsen, 2006)
states that there exists a copula function C such that

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

for x1, . . . , xd ∈ (−∞,∞), and if the marginal distributions
Fi, i = 1, . . . , d are continuous, the copula function C is
unique. Sklar’s Theorem shows that the dependence struc-
ture in the distribution H can be fully captured by the cop-
ula function C. For detailed introduction about copula func-
tion, we refer to McNeil, Frey and Embrechts (2005) and
Nelsen (2006). Now copula functions have been widely ap-
plied in finance and insurance, e.g., see Cherubini, Luciano
and Vecchiato (2004).

∗Corresponding author.
†Partially supported by the Key Program of National Natural Science
Foundation of China (Grants No. 11131002) and the National Natural
Science Foundation of China (Grants No. 11271033).

Due to the complexity of some copula functions, the ap-
proximation of copula function by some specific copula fam-
ilies with desired properties is an interesting topic. The ap-
proximation methods include shuffle of min approximation
(Mikusiński, Sherwood and Taylor, 1992; Durante, Sarkoci
and Sempi, 2009), checkmin approximation (Mikusiński and
Taylor, 2010), checkerboard approximation (Li, Mikusiński
and Taylor, 1998; Durrleman, Nikeghbali, and Roncalli,
2000), Bernstein approximation (Scancetta and Satchell,
2004) and patched bivariate Fréchet approximation (Zheng,
Yang and Huang, 2011). In the above references, parti-
tion methods are applied to divide the probability space
into some subspaces and then approximate the conditional
copula on each subspace. More precisely, let C(u, v) be a
copula function and (U1, U2) be its sample. Given a posi-
tive integer m ≥ 2, the first step of these approximation
methods is to divide the unit square [0, 1]2 into subsets
{Ii,j = ( i

m , i+1
m ] × ( j

m , j+1
m ], 0 ≤ i, j ≤ m − 1}, then the

conditional distributions on the division Ai,j = {(U1, U2) ∈
Ii,j}, 0 ≤ i, j ≤ m − 1 of the probability space are consid-
ered. However, this partition process does not consider the
probability differences among the subsets. Note that for one
copula function, its sample has a larger probability to fall
in some subset of [0, 1]2 than other subsets, thus it will be
meaningful to discuss how to divide [0, 1]2 into some subsets
through considering the corresponding probabilities.

Inspired by the partition methods of copula approxima-
tion, in this paper we will discuss the local correlation struc-
ture of a copula function by defining its concentration set.
More precisely, for any copula function C, it is known that
there exists a measure μC on [0, 1]2 such that

μC(A) =

∫∫
A

dC(u1, u2)

for any measurable set A ⊆ [0, 1]2. The quantity μC(A)
measures the probability that (U1, U2) falls in the set A,
where (U1, U2) is a sample of copula function C. Given level
a ∈ [0, 1], we consider two sets A,B ∈ {D ⊆ [0, 1]2|μ(D) ≤
a} with μC(A) < μC(B), where μ is the Lebesgue measure.
Thus the probability that (U1, U2) falls in the set B is larger
than that of the set A. Taking the above ideas together,
we define the concentration set B∗(a) of level a ∈ [0, 1] by
solving the following optimization problem:

(1.1) B∗(a) = arg max
B⊆[0,1]2, μ(B)≤a

μC(B).
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In other words, the concentration set B∗(a) is a set in the
family {B ⊆ [0, 1]2|μ(B) ≤ a} with the largest probabil-
ity max{P ((U1, U2) ∈ B)|B ⊆ [0, 1]2, μ(B) ≤ a}. Actually,
the concentration set is meaningful when we estimate or
approximate a copula function. From the estimation view-
point, by the definition of the concentration set we can ex-
pect that there are more samples in the concentration set,
then the estimation for the subset would be relatively bet-
ter due to a relatively larger sample size. From the ap-
proximation viewpoint, when we approximate the copula
function by some specific copula functions, the approxima-
tion result would be more affected by the approximation
error on the concentration set, due to its large probabil-
ity. Therefore, the concentration set can help us get more
insights about the local correlation structure of a copula
function.

In order to show the importance of the concentration
set, we will consider the conditional rank correlation mea-
sures on the concentration set, and the numerical results
will provide detailed information about the local correla-
tion structure of the copula function. On the other hand,
we will propose a new partition method for copula func-
tions, named concentrated partition, which divides [0, 1]2

into some concentration sets with different levels. The ad-
vantage of this partition method is that the probabilities
of the subsets are ordered purposely. Based on our concen-
trated partition, we will define a measure named concentra-
tion measure for quantifying the concentration degree of a
copula function. The concentration measure is an infinite-
dimensional vector with zero and one as the minimum and
maximum of each component. If the support of the copula
has zero Lebesgue measure, the components in the concen-
tration measure are all equal to one. And for the indepen-
dent copula, the components in the concentration measure
are all equal to zero. Thus the concentration measure can
efficiently describe the concentration degree of copula func-
tions.

This paper is organized as follows. In Section 2 we will
discuss how to determine the concentration set. In Sec-
tion 3 we will introduce a partition method by applying
concentration sets, and a concentration measure based on
the partition method will be defined. In Section 4, an em-
pirical analysis on China Government Bond will be given
to support our methodology. Conclusions are given in Sec-
tion 5.

2. CONCENTRATION SET AND ITS
PROPERTIES

To begin with the optimization problem (1.1), we notice
that for any set B ⊆ [0, 1]2 satisfying μ(B) ≤ a, it holds
that

μC(B ∪B′) ≥ μC(B)

for any measurable B′ ⊆ [0, 1]2\B with μ(B′) = a − μ(B).
Then μ(B ∪ B′) = a and μC(B ∪ B′) ≥ μC(B). It implies

that we can find one solution to (1.1) in the family {B ⊆
[0, 1]2|μ(B) = a}. Thus in the rest of this article, we will
discuss the following optimization problem

(2.1) B∗(a) = arg max
B⊆[0,1]2, μ(B)=a

μC(B).

The solution to the optimization problem (2.1) may not be
unique. For example, let us consider the independent copula
C(u1, u2) = u1u2. For any B ⊆ [0, 1]2, we have μC(B) =
μ(B). Thus for the independent copula, the solution to (2.1)
is any subset B ⊆ [0, 1]2 with μ(B) = a.

Since the solution may not be unique, we will focus on the
solution family {B∗(a), a ∈ [0, 1]} satisfying B∗(a) ⊆ B∗(b)
for any 0 ≤ a ≤ b ≤ 1, and we call this kind of solution
family an enlargement family.

In the following discussion, we start to solve problem (2.1)
by assuming that the density of the copula function exists,
then we extend the results to the general case.

2.1 Concentration set when copula’s density
exists

Suppose that the density function of the copula C(u1, u2)
exists, denoted as c(u1, u2). The objective function in the
optimization problem (2.1) can be expressed as

B∗(a) = arg max
B⊆[0,1]2, μ(B)=a

∫∫
B

c(u1, u2)du1du2.

We begin to solve the optimization problem (2.1) via
finding the concentration set defined by the copula density.
Let

B(s) =
{
(u1, u2) ∈ [0, 1]2| c(u1, u2) > s

}
,

D(s) =
{
(u1, u2) ∈ [0, 1]2| c(u1, u2) = s

}
.

Given a ∈ [0, 1], we define s∗(a) = sup{s |μ(B(s)) > a}.
For simplicity, sometimes we write s∗(a) as s∗. It is easy to
verify that

μ(B(s∗(a))) + μ(D(s∗(a))) ≥ a ≥ μ(B(s∗(a))).

Based on the above notations, we have the following results.

Theorem 2.1. Let As∗(a)(a) ⊆ D(s∗(a)) be a set satisfying
μ(As∗(a)(a)) = a− μ(B(s∗(a))). Then the set B∗(a) defined
by

B∗(a) = B(s∗(a)) ∪As∗(a)(a)

is one solution to the optimization problem (2.1).

Proof. Firstly we notice that for any (u1, u2) ∈ B∗(a),
c(u1, u2) ≥ s∗(a); and for any (u1, u2) ∈ [0, 1]2\B∗(a),
c(u1, u2) ≤ s∗(a). Then for any A ⊆ [0, 1]2 with μ(A) = a,
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it holds that

μC(B
∗(a))− μC(A)

=

∫∫
B∗(a)

c(u1, u2)du1du2 −
∫∫

A

c(u1, u2)du1du2

=

∫∫
B∗(a)\A

c(u1, u2)du1du2 −
∫∫

A\B∗(a)
c(u1, u2)du1du2

≥ s∗(a) · (μ(B∗(a)\A)− μ(A\B∗(a)))

= s∗(a) · (μ(B∗(a))− μ(A)) = 0.

Thus B∗(a) is one solution to (2.1), and we have μ(B∗(a)) =
μ(As∗(a)(a))+μ(B(s∗(a))) = a, so the proof is complete.

From the above theorem we can see that if μ(B(s∗(a))) =
a, then the set B∗(a) = B(s∗(a)) solves (2.1). On the other
hand, if μ(B(s∗(a))) < a, we know that μ(D(s∗(a))) ≥ a−
μ(B(s∗(a))) in this case, so we can choose an adjustment
subset As∗(a)(a) ⊆ D(s∗(a)) to guarantee that the Lebesgue
measure of the union B(s∗(a))∪As∗(a)(a) equals a. Actually,
the adjustment subset is not unique. For consistency, we
need to establish rules for choosing the adjustment set.

As we mentioned before, we hope that the solution family
{B∗(a), a ∈ [0, 1]} is an enlargement family. For this pur-
pose, the adjustment sets As∗(a)(a) can be chosen by some
specific rules. Some rules are given in the following remark.

Remark 2.1. The adjustment sets As∗(a)(a), a ∈ [0, 1] can
be chosen according to one of the following rules:

(1) As∗(a)(a) ⊆ D(s∗(a)) ∩ {(u1, u2) ∈ [0, 1]2|u1 ≤ x, x ∈
[0, 1]};

(2) As∗(a)(a) ⊆ D(s∗(a)) ∩ {(u1, u2) ∈ [0, 1]2|u2 ≤ x, x ∈
[0, 1]};

(3) As∗(a)(a) ⊆ D(s∗(a)) ∩ {(u1, u2) ∈ [0, 1]2|u1 + u2 ≤
2x, x ∈ [0, 1]}.

It is easy to verify that each of the rules guarantees that
the concentration set family {B∗(a), a ∈ [0, 1]} defined in
Theorem 2.1 is an enlargement family.

In the next we give an example for using the above rules.

Example 2.1. For the independent copula C(u1, u2) =
u1u2, when we use the adjustment rule (1) in Remark 2.1,
the solution to problem (2.1) is B∗(a) = [0, a] × [0, 1]. For
rule (3), the solution is B∗(a) = {(u1, u2) ∈ [0, 1]2|u1+u2 ≤√
2a} for 0 ≤ a < 1/2 and B∗(a) = {(u1, u2) ∈ [0, 1]2|u1 +

u2 ≤ 2−
√
2− 2a} for 1/2 ≤ a ≤ 1.

Remark 2.2. Let B∗(a) be the concentration set de-
fined in Theorem 2.1 with some level a ∈ [0, 1]. Denote
b = μC(B

∗(a)). If the density function c(u1, u2) satisfies
c(u1, u2) > 0 for all (u1, u2) ∈ [0, 1]2, then B∗(a) is a solu-
tion of the dual problem

N∗(b) = arg min
B⊆[0,1]2, μC(B)=b

μ(B).

Because if there is a subset N ⊆ [0, 1]2 satisfying μC(N) = b
and μ(N) < a, then for any A ⊆ [0, 1]2 \N with μ(A) = a−

μ(N), the subset B = N∪A satisfies μ(B) = a and μC(B) >
μC(N) = b, which is contradictory to the definition of B∗(a)
for solving the optimization problem (2.1).

2.2 Concentration set in the general case

In this subsection we will solve the optimization problem
(2.1) for the general case.

By Lebesgue’s decomposition theorem, the measure μC

can be decomposed uniquely as

(2.2) μC = ανc + (1− α)νd,

where α ∈ [0, 1], νc and νd are probability measures on [0, 1]2

satisfying that νc is absolutely continuous to the Lebesgue
measure μ, and νd contains the discrete part and the singular
part of μC . Referring to Halmos (1970, p. 134), there exists
some B0 ⊆ [0, 1]2 satisfying

(2.3) μ(B0) = 0 and νd(B0) = 1.

Notice that B0 may not be unique, but the difference be-
tween different versions of B0 must have zero Lebesgue mea-
sure, and the choice of B0 has no effect on the following
results.

In fact, νc and νd are probability measures on [0, 1]2,
not necessarily generated by copula functions. Specifically,
if α = 1, the probability measure νc = μC and it turns back
to the case of Theorem 2.1. In the case α ∈ [0, 1), we can
define B̃∗(a) according to the methodology in Theorem 2.1
with respect to the density function c̃(u1, u2) = dνc/dμ. Al-
though c̃(u1, u2) is not necessarily a copula density, it is easy
to check that the result of Theorem 2.1 also holds for general
bivariate density functions, i.e., B̃∗(a) is one solution to the
following optimization problem

B̃∗(a) = arg max
B⊆[0,1]2, μ(B)≤a

∫∫
B

c̃(u1, u2)du1du2.

Combining with the definition of B0 in (2.3), we know that

(2.4) B∗(a) = B̃∗(a) ∪B0

is one solution to the optimization problem (2.1). Moreover,
the family {B∗(a), a ∈ [0, 1]} defined above is an enlarge-
ment family as long as {B̃∗(a), a ∈ [0, 1]} is an enlargement
family.

2.3 The correlation measures in the
concentration set

In this section, we consider conditional rank correlation
measures in the concentration set.

For measuring the correlation between random variables,
Kendall’s tau and Spearman’s rho (Kruskal, 1958) are the
most commonly used rank correlation measures. Consid-
ering a random vector (X,Y ) and its independent copy
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(X1, Y1), Kendall’s tau is defined as

τ(X,Y ) =P ((X −X1)(Y − Y1) > 0)

− P ((X −X1)(Y − Y1) < 0).

On the other hand, Spearman’s rho is the linear correlation
of the probability-transformed random variables, i.e.,

ρ(X,Y ) = corr(FX(X), FY (Y )).

Actually, let C be the copula function of continuous random
vector (X,Y ), then we have

τC = τ(X,Y ) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1,

ρC = ρ(X,Y ) = 12

∫ 1

0

∫ 1

0

(C(u1, u2)− u1u2) du1du2.

As for the local and regional dependence measure, Hol-
land and Wang (1987a,b) considered the dependence on
the region of nonzero density function; Bjerve and Doksum
(1993) defined a local correlation measure based on con-
ditional mean and variance; Drouet-Mari and Kotz (2001)
restricted Kendall’s tau and Spearman’s rho to an open
neighborhood of a certain point in [0, 1]2; Kolev, Anjos
and Mendes (2006) generalized Spearman’s rho to a con-
ditional version. In this section, we will consider the condi-
tional Kendall’s tau and Spearman’s rho in the concentra-
tion set.

For a copula function C, its concentration set B∗(a) with
level a ∈ (0, 1] has been defined above. Next we denote
τ∗C(a) and ρ∗C(a) as the conditional Kendall’s tau and Spear-
man’s rho of U1, U2 on {(U1, U2) ∈ B∗(a)} respectively,
where (U1, U2) is a sample of copula C. In other words,
let the conditional copula of random vector (U1, U2) un-
der {(U1, U2) ∈ B∗(a)} be denoted as CB∗(a), therefore we
have

τ∗C(a) = 4

∫ 1

0

∫ 1

0

CB∗(a)(u1, u2)dCB∗(a)(u1, u2)− 1,

ρ∗C(a) = 12

∫ 1

0

∫ 1

0

(
CB∗(a)(u1, u2)− u1u2

)
du1du2.

From this definition, we know that the conditional rank
correlations on the concentration set equal the traditional
global rank correlations when a = 1, i.e., τ∗C(1) = τC
and ρ∗C(1) = ρC . As a generalization of the traditional
rank correlations, τ∗C(a), ρ

∗
C(a), a ∈ (0, 1] measure the local

correlation of a copula function through functional view-
point.

As an example, we consider Gaussian copula, student T-
copula, Clayton copula and Gumbel copula. The conditional
rank correlations on the concentration sets are shown in Fig-
ure 1. All of the four copulas have the same Kendall’s tau,
chosen as 0.3 in the example. Figure 1(a) shows that τ∗C(a) of
each copula is larger than 0.3 when a < 1, which means the

Figure 1. The curves τ∗C(a) and ρ∗C(a), a ∈ (0, 1] of four
different copulas. Kendall’s tau of each copula equals 0.3.
The correlation parameter of the Gaussian copula is 0.4540.
The correlation parameter and the freedom of the student
T-copula are 0.4540 and 3. The parameters of the Clayton
and the Gumbel copula are 0.8571 and 1.4286 respectively.

concentration set is more likely to be around the diagonal
line u1 = u2 in these copulas. The curve of τ∗C(a) displays
bimodal in the case of Clayton copula, while in other cases
the curves are unimodal. An interesting fact is that the con-
ditional Kendall’s tau performs no obvious difference among
the four copulas when a > 0.4, but the performance is quite
different when a < 0.4, which means the four copulas have
very different features in the high density area.

By checking the performance of the conditional rank cor-
relation, we can obtain detailed information of the copula
function itself. For example, for a small a the curve of con-
ditional Kendall’s tau of the student T-copula is above that
of the Gaussian copula, which implies that the student T-
copula has a larger conditional correlation in high density
area.

Figure 1(b) shows the conditional Spearman’s rho mea-
sure on the concentration set. The performance of ρ∗C(a) is
similar to conditional Kendall’s tau except for being larger.
One fact worthy of mention is that the conditional Spear-
man’s rho of student T-copula is close to 1 when a ≈ 0.22,
which means that the concentration set of level 0.22 is al-
most in the diagonal area.

3. CONCENTRATED PARTITION AND
CONCENTRATION MEASURE

As mentioned in the introduction section, the regular
partition method is applied in the approximation of cop-
ula functions. The partition process did not distinguish the
probability of each subset. In this section, we will give one
partition method by applying concentration sets with dif-
ferent levels, named concentrated partition, in which the
probability of every subset is considered during the parti-
tion process. Following the concentrated partition, a new
measure named concentration measure is proposed for mea-
suring the concentration degree of copula functions.
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3.1 Concentrated partition

For the copula function C and fixed m ≥ 2, we will use
concentration sets of copula C to divide the space [0, 1]2 into
some subsets.

Given a = (a1, . . . , am) with ai > 0 and
∑m

i=1 ai = 1, for
the copula function C we firstly find its concentration set
B∗

1(a) ⊆ [0, 1]2 with level a1. Then we consider the subspace
[0, 1]2/B∗

1(a) and find another concentration subset B∗
2(a) in

the space [0, 1]2/B∗
1(a) such that μ(B∗

2(a)) = a2. Sequently,
we can obtain the sequence B∗

n(a), n = 3, . . . ,m.
The above methodology can be summarized as the

following optimization problem: finding disjoint subsets
{B∗

1(a), . . . , B
∗
m(a)} of [0, 1]2 such that

(3.1)
B∗

i (a) = argmaxμC(B)

s.t. B ⊆ [0, 1]2
∖
∪i−1
j=1 B

∗
j (a), μ(B) = ai,

where we use the notation ∪0
j=1B

∗
j (a) = ∅.

Notice that B∗
m(a) = [0, 1]2\ ∪m−1

j=1 B∗
j (a). The above

partition divides the space [0, 1]2 into m disjoint subsets
B∗

1(a), B
∗
2(a), . . . , B

∗
m(a) by using the concentration sets.

Thus we call B∗
1(a), B

∗
2(a), . . . , B

∗
m(a) the copula C’s con-

centrated m-partition of [0, 1]2 with level a = (a1, . . . , am).
And Ai = {(U1, U2) ∈ B∗

i (a)}, i = 1, . . . ,m is called the
copula C’s concentrated m-partition of probability space
with level a = (a1, . . . , am). In the special case ai =
1/m, i = 1, . . . ,m, we have μ(B∗

1(a)) = μ(B∗
2(a)) = · · · =

μ(B∗
m(a)) = 1/m.

Next we will use the essential infimum and supremum of
functions in our proof. The essential infimum of function f
is defined as

essinf f = sup{b |μ{x | f(x) ≤ b} = 0},

and the essential supremum of function f is defined as

esssup f = inf{b |μ{x | f(x) ≥ b} = 0}.

Theorem 3.1. Assume that the family {B∗(a), a ∈ [0, 1]}
is an enlargement family solving the optimization problem
(2.1). Then

B∗
1(a) =B∗(a1),

B∗
i (a) =B∗(a1 + · · ·+ ai) \B∗(a1 + · · ·+ ai−1), 2 ≤ i ≤ m

is one solution to the optimization problem (3.1). Moreover,
let Ai = {(U1, U2) ∈ B∗

i (a)}, i = 1, . . . ,m, then

P (A1)/a1 ≥ P (A2)/a2 ≥ · · · ≥ P (Am)/am.

Proof. Since the concentration sets {B∗(a), a ∈ [0, 1]} is an
enlargement family, so the subsets B∗

i (a), i = 2, . . . ,m are
well defined. By checking the definition of concentration set
B∗(a1+ · · ·+ai), i = 1, . . . ,m, it is obvious that B∗

i (a), i =
1, . . . ,m defined above solve the optimization problem (3.1).

To prove P (Ai)/ai is a decreasing series, we firstly con-
sider the case that the copula density c(u1, u2) exists. For
i = 1, . . . ,m− 1,

P (Ai)/ai ≥ essinf(u1,u2)∈B∗
i (a)

c(u1, u2)

≥ esssup(u1,u2)∈B∗
i+1(a)

c(u1, u2)

≥ P (Ai+1)/ai+1.

For the general case, using the similar argument and (2.4)
we can obtain the conclusion.

Remark 3.1. Theorem 3.1 shows that the unit square [0, 1]2

can be divided into m subsets by using concentration sets.
Note that Ai = {(U1, U2) ∈ B∗

i (a)}, i = 1, . . . ,m are an
ordered partition of the probability space in the case a1 =
· · · = am = 1/m, in the sense that

(3.2) P (A1) ≥ P (A2) ≥ · · · ≥ P (Am)

Hence the above ordered partition leads to an ordered copula
decomposition as following

(3.3)
C(u1, u2) =

∑n
i=1 P (Ai) · P (U1 ≤ u1, U2 ≤ u2|Ai)

=
∑n

i=1 P (Ai) · Ci(Fi(u1), Gi(u2)),

where for each i the function Ci is the conditional copula
function on Ai, and Fi, Gi are the conditional marginal dis-
tributions on Ai.

The next corollary expresses the concentrated partition
by using copula density functions.

Corollary 3.1. (a) Suppose that the density c of the copula
function C exists, and μ(D(s)) = 0 for all s ≥ 0. Then there
exists s1 > s2 > · · · > sm−1 > 0 such that

B∗
1(a) =

{
(u1, u2) ∈ [0, 1]2|c(u1, u2) > s1

}
,

B∗
i (a) =

{
(u1, u2) ∈ [0, 1]2|c(u1, u2) ∈ (si, si−1]

}
, 1 < i < m

B∗
m(a) =

{
(u1, u2) ∈ [0, 1]2|c(u1, u2) ≤ sm−1

}
is copula C’s concentrated m-partition of [0, 1]2 with level
a = (a1, . . . , am).

(b) Suppose that for the copula function C the decompo-
sition (2.2) holds. Let B̃∗

1(a), . . . , B̃
∗
m(a) be the correspond-

ing optimization solution in Theorem 3.1 with respect to the
density function c̃(u1, u2) = dνc/dμ, then

B∗
1(a) = B̃∗

1(a) ∪B0,

B∗
i (a) = B̃∗

i (a) \B0, i = 2, . . . ,m

is copula C’s concentrated m-partition of [0, 1]2 with level
a = (a1, . . . , am), where B0 is defined in (2.3).

Proof. We only give the proof of the first part. The proof of
the second part is simple and omitted.

If μ(D(s)) = 0 for any s, μ(B(s)) is a continuous de-
creasing function of s with μ(B(0)) = 1 and μ(B(∞)) = 0.
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Therefore for any a ∈ [0, 1], we have μ(B(s∗(a))) = a, in
which s∗(a) = sup{s |μ(B(s)) > a}. Combining with the
results in Theorem 3.1, we obtain the above expressions of
B∗

i (a).

3.2 Examples

In this subsection, we discuss our concentrated partition
by focusing on Clayton copula, Gaussian copula and Fréchet
copula.

Example 3.1 (Clayton Copula). Archimedean copula is de-
fined as

C(u1, u2) = φ−1 (φ(u1) + φ(u2)) , u1, u2 ∈ [0, 1]

where the generator φ is a decreasing function from [0, 1]
to [0,∞], satisfying φ(0) = ∞ and φ(1) = 0. Clayton cop-
ula is a member of Archimedean family. The generator of
Clayton copula is φ(t) = (t−θ − 1)/θ. Figure 2(a) shows
the concentrated 3-partition of Clayton copula with level
a = (1/3, 1/3, 1/3), in which the parameter of the Clay-
ton copula θ =0.8571, and its Kendall’s tau equals 0.3. In
this example, we have P (A1) = 0.4958, P (A2) = 0.3418,
P (A3) = 0.1624.

Clayton copula has a positive lower tail dependence co-
efficient, i.e., limu↓0 C(u, u)/u > 0, which means that there
is a comovement near (0, 0). Hence we can see an obvious
asymmetry between the lower left and upper right corner in
Figure 2(a).

Beyond the Archimedean copula family, Gaussian cop-
ula is also an important parametric copula family. It has
the advantage that the Gaussian copula can illustrate the
dependence structure only using the correlation coefficient,
which is easy to calibrate and apply in practice.

Example 3.2 (Gaussian Copula). Figure 2(b) shows the
concentrated 3-partition of Gaussian copula with level a =
(1/3, 1/3, 1/3), where the correlation parameter ρ = 0.4540.
We notice that the first concentration set with level 1/3 is
near the points (0, 0) and (1, 1). It is because that Gaussian
copula with positive correlation parameter has a large den-
sity near these two points. In this case, we have P (A1) =
0.4811, P (A2) = 0.3402, P (A3) = 0.1787. Figure 3 shows
the concentrated partitions of Gaussian copula and student
T-copula. From the concentrated partitions, we can see that
tail dependence of student T-copula is higher than the Gaus-
sian copula. In the view of the information content, the area
near the left lower tail is valuable for calculating risk mea-
sures such as Value-at-Risk and expected shortfall (McNeil,
Frey and Embrechts, 2005).

In the next example, we consider a copula which is not
absolutely continuous to the Lebesgue measure.

Figure 2. Concentrated partition of Clayton and Gaussian
copula with level a = (1/3, 1/3, 1/3). The parameter of

Clayton copula is 0.8571, and the correlation parameter of
Gaussian copula is 0.4540. Kendall’s tau of the two copulas
both equal 0.3. According to Corollary 3.1, the edges of each

part are contour lines of copula density functions.

Example 3.3 (Fréchet Copula). Fréchet copula has the fol-

lowing form

C(u1, u2) = α ·min(u1, u2) + γ ·max(u1 + u2 − 1, 0)

+ (1− α− γ) · u1u2

for (u1, u2) ∈ [0, 1], where α, γ ≥ 0 and α + γ ≤ 1. For the

level a = (a1, . . . , am), ai > 0 with
∑m

i=1 ai = 1, we use the

adjustment rule (1) in Remark 2.1. Let B0 be the set defined

in (2.3), so B0 = {[0, 1]2 |u1 = u2 or u1 + u2 = 1}, then the

concentrated partition of Fréchet copula is

B∗
1(a) = ([0, a1)× [0, 1]) ∪B0,

B∗
k(a) =

([
k−1∑
i=1

ai,

k∑
i=1

ai

]
× [0, 1]

)
∩Bc

0, k = 2, . . . ,m.

Note that the set B0 contains the support of the comono-

tonic copula min(u1, u2) and the countermonotonic cop-

ula max(u1 + u2 − 1, 0) in Fréchet copula. Then P (A1) =

α + γ + (1 − α − γ)a1 and P (Ak) = (1 − α − γ)ak for

k = 2, . . . ,m. Recalling the decomposition in equation (3.3),

we can compute the conditional margins as following. The

marginal distributions can be expressed as

F1(u) = P (U1 ≤ u|A1)

= (αu+ γu+ (1− α− γ)min(u, a1))/P (A1),

Fk(u) = P (U1 ≤ u|Ak)

= min
(
max

(
u−

∑k−1
i=1 ai, 0

)
/ak, 1

)

for k = 2, . . . ,m. And Gk(u) = P (U2 ≤ u|Ak) = u for

all k = 1, . . . ,m. It is easy to verify that for k ≥ 2, the

conditional copula Ck on Ak is the independent copula u1u2.
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Figure 3. Concentrated partition of Gaussian copula and
student T-copula with level a = (1/m, . . . , 1/m). Kendall’s
tau of the copulas all equal 0.3. The freedom parameters of
the T-copula in subplot (c) and (d) are 3 and 6 respectively.

For the conditional copula C1, we have

C1(u1, u2) =
{
γmax(F−1

1 (u1) + u2 − 1, 0)

+ (1− α− γ)min(F−1
1 (u1), a1)u2

+ αmin(F−1
1 (u1), u2)

}
/P (A1),

where

F−1
1 (x) =

{
P (A1)x, 0 ≤ x ≤ a1/P (A1);

a1 + (1− a1)
P (A1)x−a1

P (A1)−a1
, a1/P (A1) < x ≤ 1.

Compared with the regular partition (e.g. Zheng, Yang
and Huang, 2011), the concentrated partition is more ef-
ficient to describe the correlation structure. For instance,
for the comonotonic copula min(u, v), the regular partition
(e.g. Zheng, Yang and Huang, 2011) considers m2 squares
{Ii × Ij , i, j = 1, . . . ,m} with Ii = [ i−1

m , i
m ), and there are

m subsets with positive probabilities. However, applying our
concentrated partition method, only the first concentration
set has positive probability, so all the correlation informa-
tion is concentrated in the first partition subset.

3.3 Concentration measure of copula
functions

Given positive integer m > 1, we set a = (1/m, . . . , 1/m)
in this subsection. Recall that for a copula function C, we
can find its concentrated m-partition {B∗

i (a), 1 ≤ i ≤ m}

in Theorem 3.1. Following the concentrated partition, we
define

λC(m) = max
2≤i≤m

(
μC(B

∗
i−1(a))− μC(B

∗
i (a))

)
.

From the definition of the concentration sets, we know that
the solution B∗

i (a) may not be unique, but λC(m) is inde-
pendent of this choice.

For any copula function C, we can calculate the sequence
λC(2), λC(3), . . .. Hence we call the vector

ΓC = (λC(2), λC(3), . . .)

the concentration measure of the copula function C. Note
that this measure consists of infinite components, and for
each m ≥ 2,

0 ≤ λC(m) ≤ 1.

It is easy to check that ΓC = (1, 1, . . .) when the
Lebesgue measure of the support of C equals to zero, and
ΓC = (0, 0, . . .) when C is the independent copula. And if
λC1(m) > λC2(m) for each m ≥ 2, then we can conclude
that C1 is more concentrated than C2.

For some special copula functions, we will show the lin-
earity of the measure ΓC in the next theorem.

Theorem 3.2. (I) If λC(m) = 0 for some m ≥ 2, then C
must be the independent copula Π(u1, u2) = u1u2, u1, u2 ∈
[0, 1] and ΓC = (0, 0, . . .).

(II) If copula C and C1 satisfy C = γC1 + (1 − γ)Π for
some γ ∈ [0, 1], we have ΓC = γΓC1 .

Proof. Given m ≥ 2 and a = (1/m, . . . , 1/m).
(I) Recall the decomposition in (2.2). Denote the concen-

trated partition with respect to C by B∗
m,i, i = 1, . . . ,m,

and denote the concentrated partition with respect to the
continuous part νc by B̃∗

m,i, i = 1, . . . ,m.
The fact λC(m) = 0 implies that for any 2 ≤ i ≤ m,

(3.4) μC(B
∗
m,i−1) = μC(B

∗
m,i).

Next we will prove that the density of C exists almost surely.
Then it will be proved that the density of C equals 1 almost
surely.

Denote B0 as the support of νd defined in (2.3). Corol-
lary 3.1 says that

B∗
m,1 = B̃∗

m,1∪B0 and B∗
m,i = B̃∗

m,i \B0 , i = 2, . . . ,m.

On the other hand, νc(B̃
∗
m,1) ≥ νc(B̃

∗
m,2) owing to the con-

clusion in (3.2). Combining with μ(B0) = 0, we have if
α < 1,

μC(B
∗
m,1) = μC(B̃

∗
m,1 ∪B0) = μC(B0) + μC(B̃

∗
m,1 \B0)

= 1− α+ μC(B̃
∗
m,1 \B0) = 1− α+ α · νc(B̃∗

m,1 \B0)

= 1− α+ α · νc(B̃∗
m,1) > α · νc(B̃∗

m,1) ≥ α · νc(B̃∗
m,2)

= α · νc(B̃∗
m,2 \B0) = μC(B̃

∗
m,2 \B0) = μC(B

∗
m,2),
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contradictory to (3.4). Therefore we conclude α = 1, then
the density function of copula C exists. Next we continue
to prove that this density function c(u1, u2) equals 1 almost
surely. From Theorem 3.1, we know that for any 2 ≤ i ≤ m,

μC(B
∗
m,i−1) ≥ essinf(u1,u2)∈B∗

m,i−1
c(u1, u2)/m

≥ esssup(v1,v2)∈B∗
m,i

c(v1, v2)/m ≥ μC(B
∗
m,i),

where the equalities hold if and only if

c(u1, u2) = essinf(w,z)∈B∗
m,i−1

c(w, z)

= esssup(w,z)∈B∗
m,i

c(w, z) = c(v1, v2)

almost surely for any (u1, u2) ∈ B∗
m,i−1 and any (v1, v2) ∈

B∗
m,i. It follows that c(u1, u2) = 1 almost surely in [0, 1]2.

Therefore, the copula C is the independent copula, and
ΓC = (0, 0, . . .).

(II) Denote the concentrated partition with respect to
C1 by A∗

m,i, i = 1, . . . ,m. We will prove that A∗
m,i is also a

solution to (3.1) with respect to C.

Firstly we will prove that if B∗(a) is a solution to (2.1)
with respect to C1 for a ∈ [0, 1], then it is also a solution to
this problem with respect to C. In fact, for any B ⊆ [0, 1]2

with μ(B) = a, we have μC1(B
∗(a)) ≥ μC1(B) owing to the

definition of B∗(a), then

μC(B
∗(a)) = γμC1(B

∗(a)) + (1− γ)μΠ(B
∗(a))

≥ γμC1(B) + (1− γ)μΠ(B)

= μC(B).

The above inequality implies that B∗(a) is the solution to
(2.1) with respect to C. According to Theorem 3.1, we know
that {A∗

m,i, i = 1, . . . ,m} is also a solution to (3.1) with
respect to C. Then we can get

λC(m) = max
2≤i≤m

(
μC(A

∗
m,i−1)− μC(A

∗
m,i)

)
= max

2≤i≤m

(
γ · μC1(A

∗
m,i−1)− γ · μC1(A

∗
m,i)

)
= γ · λC1(m).

Hence the proof is completed.

Theorem 3.2 shows that the concentration measure ΓC

reaches its minimum if and only if C is an independent cop-
ula. Thus ΓC can be regarded as a measure for the distance
from the independent copula. When the concentration mea-
sure is large, the samples of the copula will concentrate in
some small area.

Different from the traditional association measures, the
concentration measure ΓC is an infinite-dimensional vector.
Through the components of the vector, we can obtain de-
tailed information about the local correlation structure of
copula functions.

Theorem 3.3. Assume that the probability measure μC

generated by copula C has the decomposition in (2.2).
(I) We have lim

m→∞
λC(m) = 1 − α. Furthermore, if

lim
m→∞

λC(m) = 0, then C has density function.

(II) If ΓC = (λ, λ, . . .), then λ = 1− α and νc in (2.2) is
a probability measure generated by the independent copula.

Proof. Suppose that for m ≥ 2, the concentrated partition
for νc is denoted as B̃∗

m,i, i = 1 . . . ,m, and the concentrated
partition for μC is denoted as B∗

m,i, i = 1 . . . ,m.
(I) Firstly we will prove that the limit of λC(m) exists

and equals 1− α.
If α = 0, we know that μC(B

∗
m,1) = 1. It follows that

λC(m) = 1 for any m and we can get the conclusion. Now
we assume that α ∈ (0, 1]. Since νc is absolutely continuous
to the Lebesgue measure, we have

0 ≤ lim
m→∞

max
2≤i≤m

(
νc(B̃

∗
m,i−1)− νc(B̃

∗
m,i)

)
≤ lim

m→∞
max

2≤i≤m
νc(B̃

∗
m,i−1) = lim

m→∞
νc(B̃

∗
m,1) = 0.

Therefore, we obtain

lim
m→∞

λC(m)

= 1− α+ α lim
m→∞

max
2≤i≤m

(
νc(B̃

∗
m,i−1)− νc(B̃

∗
m,i)

)
= 1− α.

If lim
m→∞

λC(m) = 0, then from the above equation we know

that α = 1 in (2.2), which implies that the density of copula
C exists.

(II) Now we assume that λC(m) = λ ∈ [0, 1] for allm ≥ 2,
then limm→∞ λC(m) = λ = 1 − α. On the other hand,
λC(m) = 1 − α implies νc(B̃

∗
m,i) = νc(B̃

∗
m,i−1) for any 2 ≤

i ≤ m. By the same argument in the proof of Theorem 3.2,
we conclude that the density c̃ = dνc/dμ satisfies c̃(u, v) = 1
on [0, 1]2 almost surely. Therefore νc is a probability measure
generated by the independent copula.

Next we will give some examples for a better understand-
ing of the concentration measure ΓC .

Example 3.4. For the Fréchet copula C defined in Exam-
ple 3.3, ΓC = (α+ γ, α+ γ, . . .). We know that the Fréchet
copula C is a mixture of the comonotonic copula, the coun-
termonotonic copula and the independent copula, so λC(m)
is the sum of the weights of the comonotonic and counter-
monotonic parts. Thus λC(m) measures the difference be-
tween the Fréchet copula and the independent copula.

Example 3.5. For Gaussian copula CN
ρ with correlation

ρ ∈ [0, 1), we can calculate the measure λCN
ρ
(m) numerically

for different m, which is shown in Figure 4. For ρ ∈ (−1, 0)
we know that λCN

ρ
(m) = λCN

−ρ
(m) from the symmetry of

Gaussian copula density. From Figure 4 we can see that
λCN

ρ
(m) is positively correlated with ρ. It is because the
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Figure 4. Concentration measure of Gaussian copula with
different ρ and m.

difference between the Gaussian copula Cρ
N and the inde-

pendent copula becomes larger when ρ increases. For a fixed
ρ, the measure λC(m) becomes smaller when m increases,
and tends to 0 as m → ∞.

4. EMPIRICAL SUPPORT FOR THE
CONCENTRATION SETS

In this section, we apply the concentrated partition to the
copula of level and slope factors in Chinese government bond
yield and give the empirical support for our methodology.

4.1 Data description and modeling

In this subsection we introduce the Nelson-Siegel model
to determine the level factor lt and the slope factor st in
Chinese government bond yield data.

Nelson-Siegel (NS) model is widely used to describe the
term structure of interest rates. This model is firstly intro-
duced by Nelson and Siegel (1987) and supported by a num-
ber of papers such as Diebold and Li (2006) and Luo, Han
and Zhang (2012). In this model the instantaneous forward
rate f(t, τ) satisfies the following equation

f(t, τ) = lt + ste
−λτ + ctλτe

−λτ ,

where t is the current time, τ is the time to maturity and
λ is the scale parameter. The three factors lt, st and ct
are the level, slope and curvature factors of the yield curve,
respectively. Therefore, the yield term structure is

(4.1) y(t, τ) = lt + st

(
1−e−λτ

λτ

)
+ ct

(
1−e−λτ

λτ − e−λτ
)
.

We use daily Chinese inter-bank treasury bond yields
from January 1, 2006 to September 30, 2012 with 1689 trad-
ing days from the China bond website1. Following Diebold
and Li (2006), we set λ = 0.16 as a pre-specified constant,

1http://www.chinabond.com.cn

then we use ordinary least squares (OLS) to estimate the
level, slope and curvature factors for each day.

Next we focus on the daily difference of the level and
slope factors, i.e., we study the historical copula function of
Xt = lt − lt−1 and Yt = st − st−1. Precisely, we estimate
the marginal distributions of Xt and Yt empirically, then
we use Beta kernel function to estimate the copula density
function.

Essentially, the pseudo-sample points are defined as

Ût =
rank (Xt)

T + 1
=

1

T + 1

T∑
k=1

1Xk≤Xt ,

V̂t =
rank (Yt)

T + 1
=

1

T + 1

T∑
k=1

1Yk≤Yt ,

where T = 1,688 is the length of samples (Xt, Yt). The
pseudo-samples are shown in Figure 5(a). Based on the
pseudo samples Ût and V̂t, the Beta kernel estimation (Char-
pentier, Fermanian and Scaillet, 2007) for the density c is

ĉ(u1, u2) =
1

T

T∑
t=1

K

(
Ût;

u1

h
+ 1,

1− u1

h
+ 1

)

×K

(
V̂t;

u2

h
+ 1,

1− u2

h
+ 1

)
,

where (u1, u2) ∈ (0, 1)2, h is the window width, and
K(·;α, β) is the Beta kernel function

K(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, x ∈ (0, 1), α, β > 0,

in which the Beta function B(α, β) =
∫ 1

0
sα−1(1− s)β−1ds.

The Beta kernel function K(·;α, β) is chosen to meet the
natural property that the copula density is defined on the
set [0, 1]2. Furthermore, it is free of boundary bias and can
improve the accuracy of estimation. Figure 5(b) is the copula
kernel density, and the window width h is chosen to be 0.031,
which is optimized according to Chen (1999).

4.2 Concentrated partition of the copula
between level and slope factors

In this subsection, we apply our concentrated partition to
the above fitted copula, and the result of the empirical study
shows our partition is more meaningful than the traditional
regular partition.

From the pseudo-sample scatter plot in Figure 5(a), we
find that the points gather at the corners (0, 0) and (1, 1),
and are around the line {u1+u2 = 1}, which is the support
of the countermonotonic copula. Also in the estimated cop-
ula density in Figure 5(b), the density function is obviously
higher in these regions.

Figure 5(c) shows the concentrated 3-partition, in which
the Lebesgue measure of each part is 1/3. The concentrated

Copula function’s concentration set and its concentrated partition 327



Figure 5. (a) Pseudo-samples of daily difference of the level
and slope factors. (b) Copula density estimated by Beta
kernel function. (c) Concentrated partition with level

a = (1/3, 1/3, 1/3). (d) The concentration measure λm(C).

partition finds out the most important set, which illustrates
the main feature of the correlation between the two factors.
The partition result shows that samples concentrate at the
corners (0, 0) and (1, 1) as well as along the line {u1 + u2 =
1}.

Figure 5(d) shows the concentration measure λC(m) for
the fitted copula. When m = 3, the measure is about 0.3,
which implies that the difference among the probabilities of
the copula on the three subsets is fairly large. And when m
is large, the partition becomes dense and λC(m) is close to
0.

By investigating the details of the dependence structure
between Xt = Δlt and Yt = Δst, we can find that the
daily change of short rate has a large kurtosis. According
to equation (4.1), we have limτ→0 y(t, τ) = lt + st. Hence
for a small time-to-maturity τ , the daily change of y(t, τ) is
more likely to be small if Δlt and Δst are countermonotonic,
and daily change of y(t, τ) is more likely to be large if Δlt
and Δst are comonotonic, so the daily change of short rate
should have an obvious peak and fat tails. In fact, during
January 2006 to September 2012, the kurtosis of the first
difference of one-year rate is 14, while that of ten-year rate
is 6. Therefore, looking into the copula function between
Δlt and Δst provides more detailed information of term
structure.

5. CONCLUSION

In this paper we defined the concentration set of a cop-
ula function for discussing the local correlation structure of a

copula function. Based on the concentration set, we also es-
tablished a concentrated partition for copula function. The
properties of the concentration set and the concentrated par-
tition were discussed. Based on the concentrated partition,
concentration measure were defined for measuring copula
function’s local correlation structure. At last, an empirical
study was provided to support our idea of establishing the
concept of the concentration set.
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