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Exponential random graph models for networks
resilient to targeted attacks
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One important question for complex networks is how the
network’s connectivity will be affected if the network is un-
der targeted attacks, i.e., the nodes with the most links are
attacked. In this paper, we fit an exponential random graph
model to a dolphin network which is known to be resilient
to targeted attacks. The fitted model characterizes network
resiliency and identifies local structures that can reproduce
the global resilience property. Such a statistical model can
be used to build the Internet and other networks to increase
the attack tolerance of those networks.
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1. INTRODUCTION

In recent years, there has been an increasing interest
in studying the effects of attacks on real-world networks.
For example, terrorist attacks on physical networks, such as
power networks, transportation networks, or the Internet,
can traumatize modern societies (Arianos et al., 2009; Al-
bert et al., 2000; Schneider et al., 2011). Attacks by hackers
on computer networks can lead to security breaches in the
cyber space. Two types of attacks have been studied in the
literature: random attacks and targeted attacks. Random
attacks mean the nodes are attacked at random, and tar-
geted attacks mean the nodes with the highest degrees (i.e.,
with the most links) are attacked. Many complex networks
are quite robust to random attacks, but are highly vulner-
able to target attacks (Albert et al., 2000). In social net-
works and technology networks, the degree distributions are
mostly disclosive, so the high degree nodes are often easy
to identify and are exposed to targeted attacks. In some
networks, the high degree nodes are more likely to fail due
to their load. Since the most connected nodes play an im-
portant role in maintaining the network’s connectivity, it is
important to understand how to design networks that are
robust to targeted attacks.
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It is well known that the Internet and the World Wide
Web (WWW) are highly vulnerable to targeted attacks (Al-
bert et al., 2000). If the 2.5% most connected nodes in the
Internet are removed, then the diameter (average length of
the shortest paths between any pair of nodes) of the Internet
more than triples (Albert et al., 2000). Surprisingly Lusseau
(2003) found that for the network of 62 bottlenose dolphins
in a community at Doubtful Sound, New Zealand, the diam-
eter only increases by 5.78% when 5% of the dolphins with
the most links are removed. Figure 1 is the social network of
these bottlenose dolphins. Two dolphins are linked if they
were seen together more frequent than expected. The data
were collected between 1995 and 2001. Every time a school of
dolphins was sighted, all adult members were photographed
and identified based on the natural markings on their dor-
sal fins. These data provide information on the frequency
that two dolphins were seen together. Based on these data,
Lusseau (2003) implemented a permutation test to deter-
mine whether two dolphins were seen together more often
than by chance, which is referred to as ‘preferred compan-
ionship’ in Lusseau (2003). The network in Figure 1 was
constructed based on preferred companionship.

The dolphin network has a very small increase in diam-
eter even when the community is under targeted attacks.
Zhang and Chen (2013) developed an efficient sequential
sampling algorithm to compare the dolphin network with
random networks with the same degree sequence, and they
concluded that such a small change in diameter is statisti-
cally significant. This indicates that the dolphin network is
formed in a particular way (instead of randomly linked with
each other) that is resilient to targeted attacks.

Most of the existing approaches for studying attack toler-
ance rely on analyzing one or two statistics of the network,
such as the diameter, global efficiency, local efficiency, clus-
tering coefficient, or the size of the largest connected cluster
(Albert et al., 2000; Crucitti et al., 2003; Schneider et al.,
2011). In order to better understand the resilience property
of the dolphin network and find statistical models that char-
acterize network resiliency, we fit the dolphin network with
the exponential random graph model (ERGM), which is one
of the most widely used models for social network analysis
(Wasserman and Pattison, 1996; Robins et al., 2007a). The
ERGM involves a set of local structures of the network, so
fitting an ERGM can help us understand what kind of lo-
cal features can contribute to the global resilience property.
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Figure 1. Social network of 62 bottlenose dolphins in
Doubtful Sound, New Zealand.

Such a statistical model can also be used to build the Inter-
net and other networks to increase the attack tolerance of
those networks.

The paper is organized as follows. Section 2 introduces
the global efficiency measure and explains the resilience
property of the dolphin network. Section 3 reviews the
ERGM and the model fitting procedure. Section 4 discusses
the constraints we put on the network space. Section 5 fits
the ERGM to the dolphin network. Section 6 studies the
attack tolerance of the fitted model, and Section 7 provides
concluding remarks.

2. RESILIENCE PROPERTY OF THE
DOLPHIN NETWORK

In the discussion of the attack tolerance of the Internet,
the World Wide Web, and the bottlenose dolphins in the
Introduction, we used the change of the diameter after the
attack as the measure. The diameter of a network is the av-
erage of the minimum distances between any pair of nodes
in the network. It is a well-studied, important network met-
ric because it is one of the metrics that characterize the
small world property of networks. However, the diameter is
not well defined for networks that are not connected. This
is problematic because in practice some networks consist
of several isolated fragments or become disconnected after
attacks. In that case, it is often up to the researchers to
redefine diameters.

Recently, another measure called global efficiency was
proposed to characterize the small world property of net-
works (Latora and Marchiori, 2001). For a network G with
n nodes, its global efficiency is defined as

(1) E(G) =
1

n(n− 1)

∑
i �=j∈G

1

dij
,

where dij is the length of the shortest path between nodes i
and j. The global efficiency is closely related to the diameter

because the diameter is the average of dij instead of 1/dij . If
nodes i and j are disconnected, then dij = ∞ and 1/dij = 0,
so global efficiency is well defined for disconnected networks
as well. The global efficiency is always between 0 and 1, with
E(G) = 0 for an empty graph with no edges and E(G) = 1
for a complete graph with all n(n− 1)/2 possible edges.

Global efficiency has been shown to be a better measure
than the diameter for describing the global properties of
complex networks, especially when a large number of nodes
are removed (Crucitti et al., 2003). Therefore we will use
the percentage of global efficiency change after the attack
to measure network resilience. It is shown by Crucitti et
al. (2003) that scale-free networks are extremely vulnerable
to targeted attacks in terms of the global efficiency. We
looked at the global efficiency change for two real data
sets. The first is the Internet router-level network based
on the ITDK0304 skitter data between April 21 and
May 8 of 2003. The data is available at the web page of
the Cooperative Association for Internet Data Analysis
(http://www.caida.org/tools/measurement/skitter/router
topology/). This network contains 192,244 nodes and
609,066 undirected edges. After removing the 2.5% most
connected nodes, the global efficiency reduced from 0.1501
to 0.0696, which is a decrease of 53.63%. The second data
set is a subset of the World Wide Web containing 325,729
nodes and 1,090,108 undirected edges (Albert et al., 1999).
After a 2.5% targeted attack, the global efficiency reduced
from 0.1535 to 0.0189, which is a decrease of 87.69%.
Such vulnerability to targeted attacks is also observed in
simulated scale-free networks similar to the Internet and
the World Wide Web (Crucitti et al., 2003).

The bottleneck dolphin network has 62 nodes and 159
edges with a global efficiency of 0.3792. After removing the
three most connected individuals (about 5% of the com-
munity), the global efficiency becomes 0.3585 which only
decreases by 5.459%. This is a very small change compar-
ing to the behavior of other complex real world networks.
It also shows that under the global efficiency measure, the
dolphin network is still resilient to targeted attacks. To test
the statistical significance of this small change in global effi-
ciency, we compared the dolphin network with random net-
works having the same degree sequence as the dolphin net-
work. Totally 1,000 random networks were generated using
the sequential importance sampling algorithm developed in
Zhang and Chen (2013), and for each network the percent-
age of global efficiency change is computed after the removal
of the three most connected nodes. The histogram of the
1,000 values of the percentage of global efficiency change is
given in Figure 2, and the probability of having a change of
global efficiency less than or equal to 5.459% is estimated
to be 0.0152 with standard error 0.0039. This shows that
the dolphin network is formed in a way that has a very high
attack tolerance comparing to other random networks with
the same degree sequence. In this paper, we fit a statistical
model to the dolphin network to understand its resilience
property.
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Figure 2. The histogram of the percentage of global
efficiency changes based on 1,000 random samples. The

vertical line indicates the value calculated from the observed
dolphin network.

3. EXPONENTIAL RANDOM GRAPH
MODELS

A network (or graph) G with n vertices (or nodes) V
and a set of edges (or links) E can be represented by its
adjacency matrix y, where yij = 1 if there is an edge from
node i to node j and 0 otherwise. The degree of a node is
the number of edges incident to the node. We use {i, j} to
denote an edge between node i and node j. In this paper,
we are mainly concerned with simple undirected graphs (no
loops or multiple edges) because the dolphin network is of
this type. Therefore y is an n × n symmetric 0–1 matrix
with a zero diagonal.

The exponential random graph model (ERGM) specifies
a probability distribution on the space Y of all graphs under
consideration

(2) Pθ(Y = y) =
exp{θT g(y)}

κ(θ)
,

where κ(θ) is the normalizing constant, θ = (θ1, . . . , θp) is
the parameter, and the statistics g(y) = (g1(y), . . . , gp(y))
are counts of graph structures or features of the network.
Sometimes g(y) can also incorporate additional covariates
of the network. The normalizing constant κ(θ) usually can-
not be computed explicitly even for a moderate size graph
because it involves the summation over all y ∈ Y .

ERGMs have been used extensively in the study of net-
works (Wasserman and Pattison, 1996; Robins et al., 2007a,
2007b). The statistics g(y) often include a set of local struc-
tures of the networks. Some local rules can describe the
transitivity of the network, such as the ratio of the number
of triangles to the number of two-stars. Some can provide
information on how well the network conveys information,

such as the total number of edges. To fit an ERGM, we
need to identify a subset of local measures that can con-
cisely summarize the global property of a network. A well
fitted ERGM can help us understand how the global struc-
ture can be reproduced by local metrics and how local rules
could affect the global property of a network. We can also
use the fitted ERGM to design networks with certain prop-
erties.

3.1 Network statistics

Although basic local structures, such as star counts, tri-
angle counts, and the degree distribution, are traditional
candidates for the local measures (Frank and Strauss, 1986),
it is pointed out in Snijders et al. (2006) that includ-
ing such basic terms could result in a probability model
which concentrates its mass at either the full graph or
the empty graph. This so called “degeneracy” phenomenon
makes it very difficult to have reasonable parameter es-
timation, and places a serious barrier between specifying
a reasonable ERGM and making reliable parameter esti-
mation. However, the degeneracy issue is caused not by
the ERGM itself, but by the network statistics chosen to
be included in the model (Snijders et al., 2006). Hunter
(2007) discussed three new network metrics: geometrically
weighted degree (GWD), geometrically weighted edgewise
shared partner (GWESP), and geometrically weighted dyad-
wise shared partner (GWDSP). These new statistics not
only help avoid the degeneracy problem, but also pro-
vide insight on network structures from a different per-
spective. The definitions of these statistics are given be-
low.

For a network with n nodes and an n×n adjacency matrix
y, let Di(y) be the number of nodes in y with i edges. Then
Di(y), i = 0, . . . , n−1, are the degree distribution of y, and
they satisfy the linear constraint D0(y)+· · ·+Dn−1(y) = n.
For a given i, let EPi(y) be the number of edges {k, l} such
that nodes k and l are linked through an edge (i.e., nodes
k and l are neighbors) and they share exactly i partners
in common (i.e., there are exactly i nodes that are linked
to both nodes k and l). Then EPi(y), i = 0, . . . , n − 2,
are the edgewise shared partner distribution of y, and the
sum EP0(y) + · · · + EPn−2(y) equals the total number
of edges in the graph. For a given i, let DPi(y) be the
number of dyads (k, l) such that nodes k and l share ex-
actly i partners in common. Here the dyad k and l do
not need to be neighbors of each other. Then DPi(y),
i = 0, . . . , n − 2, are the dyadwise shared partner distribu-
tion of y, and the sum DP0(y)+ · · ·+DPn−2(y) equals the
total number of dyads in the graph. For a given i, define the
non-edgewise shared partner NSPi(y) as DPi(y)−EPi(y),
which equals the number of dyads in the network that
are not connected but share exactly i partners in com-
mon.

Based on the above terms, the statistics GWD, GWESP,
GWDSP and geometrically weighted non-edgewise shared
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partner (GWNSP) are defined as:

GWD = eτ1
n−1∑
i=1

{
1−

(
1− e−τ1

)i}
Di(y),(3)

GWESP = eτ2
n−2∑
i=1

{
1−

(
1− e−τ2

)i}
EPi(y),(4)

GWDSP = eτ3
n−2∑
i=1

{
1−

(
1− e−τ3

)i}
DPi(y),(5)

GWNSP = eτ4
n−2∑
i=1

{
1−

(
1− e−τ4

)i}
NSPi(y).(6)

Here τi ≥ 0, i = 1, . . . , 4, are decay parameters. When τ2 =
τ3 = τ4, it is easy to see that GWDSP = GWESP+GWNSP.
The intuition behind the four geometrically weighted met-
rics is to constrain the effect of higher order terms in the
summation and control the degeneracy problem. As ex-
plained in Snijders et al. (2006), a model with these geo-
metrically weighted metrics can avoid the model degeneracy
problem and capture the higher order dependency structure
in the network. More details about these four metrics can
be found in Snijders et al. (2006) and Hunter (2007).

3.2 Model fitting

We consider estimating the parameters in the ERGM
by the maximum likelihood method. Because the analyt-
ical form of the maximum likelihood estimate (MLE) is
not available for the ERGM, finding the MLE is normally
done with either a Markov chain Monte Carlo maximum
likelihood estimation (MCMCMLE) (Geyer and Thompson,
1992; Snijders, 2002) or maximum pseudo-likelihood estima-
tion (MPLE) (Frank and Strauss, 1986; Strauss and Ikeda,
1990). Although the MPLE procedure is easier to imple-
ment, it can produce unreliable estimates. In this paper,
we use MCMCMLE to make inference on the ERGM. See
Hunter and Handcock (2006) for the details of the MCM-
CMLE method. In this paper, fitting and simulating from
the ERGMs are done through the R package “ergm” (ver-
sion 2.4–3) (Hunter et al., 2008b).

4. CONSTRAINTS ON THE NETWORK
SPACE

In this section, we specify the space Y of all networks of
interest in the ERGM (2). Usually the number of nodes n
is fixed. In that case, the number of edges in the network
plays an important role in network resilience. In general, if
we add more edges to the network, it will increase the global
efficiency of the network. An extreme case is the complete
graph whose global efficiency is 1 before and after targeted
attacks, so it is most resilient to targeted attacks. However
the complete graph is not of particular interest here.

If we fix both the number of edges and the number
of nodes in the network to control for the effect of edge

density, it seems networks with evenly distributed degrees
tend to have a high attack tolerance. The importance of
the degree distribution in attack tolerance is discussed in
Albert et al. (2000). They showed that a network from the
Erdös-Rényi model (Erdös and Rényi, 1960), in which the
expected degree of each node is the same, tends to have
high tolerance to targeted attacks. On the other hand, for
some scale-free networks with inhomogeneous power-law
degree distribution, they are vulnerable to targeted attacks.
To control for both the effect of edge density and the effect
of degree variation, we fix the degree sequence (d1, . . . , dn)
in this paper. Of course this implies that the number of
nodes and the number of edges are fixed as well. So the
space Y consists of all networks with the same degree
sequence as the observed network.

Fixing the degree sequence has been considered in the
literature for various reasons. Schneider et al. (2011) argued
that in practice we cannot keep adding edges to increase
the robustness of the network because the cost of adding
links between every pair of nodes is too expensive in the
context of power grids or the Internet. They also assumed
that changing the node degree can be much more expensive
than changing the links between nodes. In some other sit-
uations, fixing the degree sequence may create a basis for
exact inference because they are sufficient statistics for the
unknown parameters (Chen, 2007). This is sometimes re-
lated to random graphs with given degrees which have been
used to model complex networks. Another reason to fix the
degree sequence is that the degree of a node may reflect
certain inherent characteristics of an individual, such as the
capacity of a machine or the friendliness of a person. These
characteristics may not be changeable, and we may need to
model the network with these quantities fixed.

The network of 62 bottlenose dolphins has low edge den-
sity and unevenly distributed degrees d=(6, 8, 4, 3, 1, 4,
6, 5, 6, 7, 5, 1, 1, 8, 12, 7, 6, 9, 7, 4, 9, 6, 1, 3, 6, 3, 3,
5, 5, 9, 5, 1, 3, 10, 5, 1, 7, 11, 8, 2, 8, 5, 6, 7, 4, 11, 2, 6,
1, 2, 7, 10, 4, 2, 7, 2, 2, 9, 1, 5, 1, 3), see Figure 3 for the
histogram of the degree sequence. Conditioning on the de-
gree sequence allows us to make a conditional inference on
how and to what extent configurations of local rules could
affect attack tolerance. The set of all graphs with the same
degree sequence as the dolphin network is the space Y for
the ERGM (2). The space Y is still enormous, containing
about 1.826× 10167 networks (Zhang and Chen, 2013). We
hope to find an appropriate model for the dolphin network
under these constraints.

5. MODEL FITTING FOR THE DOLPHIN
NETWORK

In this section, we fit ERGMs to the network of 62 bot-
tlenose dolphins. A list of network statistics can be potential
candidates for g(y) in the ERGM (2). However since the de-
gree sequence is fixed, metrics such as the number of edges,
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Table 1. Parameter estimates and their standard errors (in parentheses) for the three ERGMs. Here * means significant at the
0.05 level

Coefficients Model I (GWESP) Model II (GWNSP) Model III (GWESP and GWNSP)

θ1 1.468 (0.129)* – 0.058 (0.112)
θ2 – −0.313 (0.033)* −0.421 (0.015)*

Figure 3. The histogram of the degree sequence of the
dolphin network.

the number of nodes with degree k, the number of two-
paths, k-star counts, and the GWD all become fixed num-
bers. Although for networks with fixed degree sequence, the
degeneracy issue discussed in Section 3.1 should not occur,
we find that the ERGM with simple local structures, such
as triangle count or the number of open triads, does not fit
the data well. It may be necessary to include network statis-
tics that can capture the higher order dependency structure
in the network, such as the geometrically weighted metrics
defined in Section 3.1. In the following, we mainly look at
four statistics that are not constants in the set Y : k-cycle
counts, GWESP, GWDSP, and GWNSP.

In our study of the model fitting, we found that there is no
particular advantage to choose different decay parameter τ
for the three geometrically weighted metrics. When τ is cho-
sen to be the same, we have GWESP+GWNSP = GWDSP,
and this linear relation implies there is no need to consider
GWDSP. Based on the definition of edgewise shared part-
ners and dyadwise shared partners, we can write the number
of cycles as (Hunter et al., 2008a)

number of 3-cycle =
1

3

n−2∑
i=1

iEPi(y),(7)

number of 4-cycle =
1

2

n−2∑
i=2

(
i

2

)
DPi(y).(8)

Since GWESP and GWDSP are also weighted sums of
EPi(y) and DPi(y), there is a subtle connection between k-
cycle counts and geometrically weighted metrics. We found

through model selection that when GWESP and GWNSP
are included, adding k-cycle counts does not improve the fit-
ting of the model. Therefore only two metrics GWESP and
GWNSP will be considered for g(y). That leads to three pos-
sible ERGMs with the exponent θT g(y) being θ1 ·GWESP
(Model I), θ2 · GWNSP (Model II) and θ1 · GWESP + θ2 ·
GWNSP (Model III), respectively.

We fitted these three models to the observed dolphin net-
work. We found that for the decay parameter τ ranging from
0.1 to 0.5, MCMCMLE gave similar estimates for parame-
ters θ1 and θ2. The approximate AIC (Akaike information
criterion) values for fitted models with different τ are also
similar with τ around 0.4 being slightly better than others.
Therefore we fix τ = 0.4 in the model fitting. Table 1 gives
the estimates of the parameters for the three models, and
each model is fitted and diagnosed with R package “ergm”.

The estimate of θ1, the coefficient for GWESP, is positive
for both Models I and III. This indicates that two neighbor-
ing individuals are encouraged to share partners. Consider
the hypothetical situation that the number of shared part-
ners for a pair of neighboring nodes with k shared part-
ners is increased to k + 1, and assume this only results in
a change of (EPk, EPk+1) to (EPk − 1, EPk+1 + 1) and all
other EPi and NSPi are not affected. This assumption is
difficult to satisfy in practice because the increase of the
shared partner for one neighboring pair typically will af-
fect the edgewise shared partner distribution as well as the
non-edgewise shared partner distribution. However, study-
ing the probability change under this seemingly unrealis-
tic assumption can provide some insight on what kind of
networks the model favors. Let Pbefore and Pafter denote
the probability of the network before and after the change
(EPk, EPk+1) → (EPk − 1, EPk+1 + 1) occurs. We have

log

(
Pafter

Pbefore

)
(9)

=
(
θ1e

τ
[
(EPk − 1)

(
1− ρk

)
+ (EPk+1 + 1)

(
1− ρk+1

)])
−

(
θ1e

τ
[
EPk

(
1− ρk

)
+ EPk+1

(
1− ρk+1

)])
= θ1ρ

k,

where ρ = 1−e−τ . Therefore the change of (EPk, EPk+1) to
(EPk − 1, EPk+1 +1) will result in a log probability change
of θ1ρ

k. Since θ1 is positive in our models, we can see that
the probability increases when a neighboring pair obtain one
more shared partner, but the additional gain in probability
due to the increase of one shared partner decreases as the
number of shared partners k increases.
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The estimate of θ2, the coefficient for GWNSP, is nega-
tive for both Models II and III. This indicates that if two
individuals are not connected, the model discourages them
to have shared partners. In other words, two individuals
are discouraged to have distance two. Interestingly, similar
properties have been discussed for the brain network, i.e.,
two nodes have a direct connection if needed, but otherwise
prefer a longer path between them to maintain efficiency
or stability of the network (Simpson et al., 2011). We can
also look at how the probability of a network changes when
a pair of unconnected nodes increase their shared partner
count by one, assuming this does not affect other terms in
the model. Similar analysis as (10) suggests that the reduc-
tion in probability due to the increase of one shared partner
decreases as the number of shared partners k increases. In
Model III, the estimate of θ1 is small and it is not signifi-
cant at the 0.05 level. This shows that the GWESP is a less
important term than the GWNSP.

5.1 Goodness of fit test

To select an appropriate ERGM from the three mod-
els under consideration, traditional criteria that involve the
likelihood function have their limitations because the in-
tractable normalizing constant κ(θ) cannot be computed di-
rectly and some approximation will be necessary. It is also
hard to use the traditional criteria to answer the central
question in fitting ERGMs, i.e., can the global structures
be reproduced by the local rules? To emphasize this special
aspect of ERGM fitting, Hunter et al. (2008a) proposed to
simulate a number of samples from the fitted model and
compare the values of a set of network statistics in the ob-
served network to those calculated from sampled networks.
If the comparison shows that one or more of the observed
network statistics are not typical, it indicates that the model
does not fit well.

The set of network statistics used in the comparison
should characterize different aspects of network structures.
Hunter et al. (2008a) proposed using the degree distribu-
tion, the minimum geodesic distance distribution, and the
edgewise shared partner distribution as the statistics. Since
the degree distribution is fixed in our network space, it is
not of interest to consider that in our study. The minimum
geodesic distance for any pair of nodes is the length of the
shortest path connecting them. It is one of the most im-
portant metrics of networks and many useful characteristic
metrics, such as the diameter and vertex betweenness, are
calculated based on the minimum geodesic distance. The
edgewise shared partner can quantify the clustering of the
network and give triangle counts and other high order met-
rics. In this paper, we select models based on Hunter et al.’s
(2008a) graphical goodness of fit method using the minimum
geodesic distance distribution and the edgewise shared part-
ner distribution.

We generated 100 samples from each fitted model and the
goodness of fit plots for each model are given in Figure 4.

We can see that for Model III, the observed network statis-
tics always fall in the 95% confidence intervals formed by
the simulated networks, but that is not the case for Models
I and II. In terms of the minimum geodesic distance, both
Models I and II overestimate the number of dyads with min-
imum distances 2 and 3, but underestimate the number of
dyads with minimum distance 5, 6, 7, etc. This shows that
comparing to the observed network, the distance between a
pair of nodes tends to be shorter in the simulated networks
from Models I and II. In terms of edgewise shared partners,
Model I underestimates EP0(y) which denotes the number
of neighboring pairs that share no partners in common. Be-
cause the sum of EPi(y) equals the total number of edges
which is a fixed constant here, we can see that comparing
to the observed network, more neighboring pairs in the net-
works generated from Model I share common partners. On
the contrary, Model II overestimates EP0(y). Both Models I
and II seem to overestimate EP1(y) which denotes the num-
ber of neighboring pairs that share one partner in common.
Therefore, based on the goodness of fit plots, Model III has
the best fit among the three.

6. ATTACK TOLERANCE OF THE FITTED
MODELS

In this section, we study the attack tolerance of the sam-
ples from three fitted models. For each model, we generated
5,000 samples from the model and computed the percentage
of global efficiency change for each sample under the same
targeted attack (removing three most connected individu-
als). The histogram of the percentage of global efficiency
change for samples generated from each model is given in
Figure 5.

The global efficiency for the dolphin network decreases
5.459% after the 5% targeted attack. Based on the 5,000
samples from Model III, the probability of seeing less than
or equal to 5.459% global efficiency change is estimated to
be 0.6398 with standard error 0.0152. This indicates that
Model III does capture the resilience property of the dol-
phin network. Comparing with the random networks shown
in Figure 2, we can see that samples from Model III are
more resilient to targeted attacks than random networks.
The samples from Model I, however, estimated the proba-
bility of seeing less than or equal to 5.459% global efficiency
change to be 0.0116 with standard error 0.0034. This shows
Model I does not capture the resilience property of the dol-
phin network. For Model II, the estimate for the same prob-
ability is 0.4054 with standard error 0.0155. This indicates
that Model II also does pretty well in terms of capturing
the resilience property of the dolphin network. Both Models
II and III share the statistic GWNSP, and the simulation
shows that the GWNSP is important for reproducing the
resilience property of the dolphin network.

The following argument provides some connection be-
tween the GWNSP and the resilience property. We start
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Figure 4. Goodness-of-fit plots for model I (top), Model II (middle), and Model III (bottom). In each plot, the black solid line
indicates the statistics computed from the dolphin network. The grey lines indicate the range that covers 95% of the statistics

computed from 100 sampled networks. The boxplot indicates the median and the interquartile range.

by rewriting the expression of the global efficiency as
(10)

E(G) =
1

n(n− 1)

∑
i �=j∈G

1

dij
=

2

n(n− 1)

n−1∑
k=1

sk
k

� c
n−1∑
k=1

sk
k
,

where sk is the number of dyads (i, j) in the network with
dij = k, and c = 2/n(n − 1). After a targeted attack of l
most connected nodes, the global efficiency of the remaining
graph G̃ becomes

E(G̃) =
1

(n− l)(n− l − 1)

∑
i �=j∈G̃

1

dij
(11)

=
2

(n− l)(n− l − 1)

n−l−1∑
k=1

s̃k
k

� c̃

n−l−1∑
k=1

s̃k
k
,

where s̃k is the number of dyads (i, j) in G̃ with dij = k,

and c̃ = 2/(n − l)(n − l − 1). If G̃ is connected, a simple

lower bound for E(G̃) is

(12) E(G̃) ≥ c̃s̃1+c̃

n−l−1∑
k=2

s̃k
n− l − 1

= c̃s̃1+c̃

(
n−l−1

2

)
− s̃1

n− l − 1
.

If G̃ is not connected, then E(G̃) can be simply bounded
below by c̃s̃1. Assume that G̃ is connected (the argument
for the disconnected case is similar). Then the change of the
global efficiency after the attack is

E(G)− E(G̃)(13)

= c

n−1∑
k=1

sk
k

− c̃

n−l−1∑
k=1

s̃k
k

≤ cs1 − c̃s̃1 + c

n−1∑
k=2

sk
k

− c̃

(
n−l−1

2

)
− s̃1

n− l − 1
.

Since s1 and s̃1 equal to the total number of edges in G
and G̃ respectively, they are fixed numbers. The last term
in the upper bound is also fixed. Therefore the only term
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Figure 5. The histograms of the percentage of global efficiency change for samples generated from Model I (top left),
Model II (top right), and Model III (bottom). The vertical line indicates the percentage of global efficiency change for the

dolphin network.

that may vary is
∑n−1

k=2 sk/k. Since
∑n−1

k=1 sk equals to the
total number of dyads in G which is a fixed number, so∑n−1

k=2 sk =
∑n−1

k=1 sk − s1 is fixed as well. If we decrease s2
and increase s3, . . . , sn−1 correspondingly, then

∑n−1
k=2 sk/k

would decrease because the leading term s2 has the largest
coefficient 1/2.

There is a subtle connection between s2 and the GWNSP.
Notice that the GWNSP is defined as eτ4

∑n−2
i=1 {1 − (1 −

e−τ4)i}NSPi(y). As i increases, the coefficient 1−(1−e−τ4)i

becomes close to 1. If we replace this coefficient by 1, we have
an approximation to the GWNSP as eτ4

∑n−2
i=1 NSPi(y) =

eτ4s2. In other words, the GWNSP is approximately pro-
portional to s2. The term GWNSP is in Models II and
III. For example, Model II takes the form of P (Y = y) ∝
exp{θ2 ·GWNSP}. When θ2 < 0, the model discourages net-
works with a large value of the GWNSP. Since the GWNSP
is approximately proportional to s2, Model II also tends to
discourage networks with large value of s2. As we argued
earlier, a small s2 will lead to a small

∑n−1
k=2 sk/k and a

small upper bound of the global efficiency change in (14).
Although a small upper bound does not necessarily mean
a small global efficiency change, it still sheds light on why
Models II and III with θ2 < 0 for the GWNSP tend to favor
networks resilient to targeted attacks.

Because the term GWNSP seems to play an important
role in producing networks with high attack tolerance, in the
next simulation study, we look at how the attack tolerance of
the model changes as we vary the coefficient θ2 for GWNSP.

Consider Model II

(14) P (Y = y) ∝ exp{θ2 ·GWNSP}, y ∈ Y ,

where the space Y consists of all networks with the same
degree sequence as the dolphin network. We chose τ = 0.5
and five different values for θ2: −0.5, −0.25, 0, 0.25, and
0.5. For each θ2, we used the R package “ergm” to generate
1,000 samples from the corresponding model. These samples
are from an MCMC output with 50,000 burn-in steps and
every thousandth sample in the chain is kept for inference.
To study the attack tolerance of these five models, we com-
puted the percentage of the global efficiency change after 5%
targeted attacks for the 1,000 samples from each model, and
then used kernel density estimation to obtain the plots in
Figure 6. We can see that the density curve gradually shifts
to the right as θ2 increases, which indicates that the at-
tack tolerance gradually decreases as θ2 increases. Another
interesting observation is that some of the 1,000 sampled
networks are disconnected (before the attack), and the per-
centage of disconnected networks is 0.611, 0.302, 0.1, 0.017,
and 0.008 for samples from the five models, which again
shows a decreasing pattern as θ2 increases.

We did the same simulation study for another degree se-
quence following the power-law distribution P (k) ∝ k−2.5

with 100 nodes and 179 edges. We used the same τ and θ2
values as before, generated 1,000 samples from each model
using the “ergm” package, and computed the percentage of
global efficiency change after 5% targeted attacks. Figure 7
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Figure 6. Densities of the percentage of global efficiency
change after 5% targeted attacks for Model II on the space of

networks with the same degree sequence as the dolphin
network. Five different values for the parameter θ2 in Model II

are considered: −0.5, −0.25, 0, 0.25, and 0.5.

shows the same pattern as Figure 6, i.e., the density curve
gradually shifts to the right as θ2 increases. We did not ob-
serve disconnected networks from models with θ2 = 0.25 and
0.5. The percentage of disconnected networks from models
with θ2 = −0.5, −0.25, and 0 are 0.109, 0.032, and 0.003,
respectively. Again the percentage of disconnected networks
decreases as θ2 increases.

The simulation results suggest that if we need to build a
network that is resilient to targeted attacks and the degree
sequence is already given, we may sample a network from
Model II with a negative parameter value θ2. Or we may run
an MCMC algorithm with Model II as the stationary dis-
tribution, and then pick a network from the MCMC output
that has the highest attack tolerance. The idea of simulated
annealing can be used as well. This could be useful for build-
ing the Internet, the World Wide Web, or some other net-
works to achieve high attack tolerance. Models with small
θ2 seem to have high attack tolerance, but they also tend
to generate some disconnected graphs. If connectivity is a
basic requirement, we can focus on the sampled networks
that are connected.

7. DISCUSSION

In this paper, we fit ERGMs to a dolphin network to
study its resilience to targeted attacks. To control for the
effect of edge density and degree variation and focus on how
the nodes are connected with each other to make the net-
work resilient, we consider networks having the same de-
gree sequence as the dolphin network. The local structures
we identified that play an important role in the resilience
property are GWNSP and GWESP, with GWNSP being the
most important one. The samples generated from the fitted
model show that the model captures the resilience property
and fits the dolphin network well. Such a statistical model

Figure 7. Densities of the percentage of global efficiency
change after 5% targeted attacks for Model II on the space of
networks with the same degree sequence as the one generated

from a power-law with 100 nodes and 179 edges. Five
different values for the parameter θ2 in Model II are

considered: −0.5, −0.25, 0, 0.25, and 0.5.

can be used to build the Internet and other networks with
the same resilience property.

The attack tolerance is measured by the percentage of
global efficiency change in our study. The conclusion still
holds when the absolute change of global efficiency is used
as the measure. Most figures, such as Figures 2 and 5, are
similar under these two measures.
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