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LCN: a random graph mixture model for
community detection in functional brain networks∗
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The aim of this article is to develop a Bayesian random
graph mixture model (RGMM) to detect the latent class
network (LCN) structure of brain connectivity networks and
estimate the parameters governing this structure. The use
of conjugate priors for unknown parameters leads to effi-
cient estimation, and a well-known nonidentifiability issue
is avoided by a particular parameterization of the stochastic
block model (SBM). Posterior computation proceeds via an
efficient Markov Chain Monte Carlo algorithm. Simulations
demonstrate that LCN outperforms several other compet-
ing methods for community detection in weighted networks,
and we apply our RGMM to estimate the latent commu-
nity structures in the functional resting brain networks of
185 subjects from the ADHD-200 sample. We find overlap
in the estimated community structure across subjects, but
also heterogeneity even within a given diagnosis group.

AMS 2000 subject classifications: Primary 62P10, 62-
09; secondary 62-07.

1. INTRODUCTION

A problem of particular interest in the field of neuro-
science is to understand the structure and organization of
functional and structural brain networks and their relation-
ships with predictors such as disease status and behavior
[16, 3]. The existing literature has largely focused on various
topological measures, such as degree distribution, clustering
coefficient and network diameter, and their clinical implica-
tions [3, 26, 14, 9]. These types of global and local network
characteristics are convenient in their ability to reduce large
networks to a small set of statistics that describe their large-
scale organization. The community network structure, in
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which there exist groups of nodes (sometimes called “mod-
ules”) that have dense connections within each group and
sparse connections between different groups, has been ob-
served in numerous real life networks [34, 10, 7, 15, 33],
including functional brain networks [26, 16]. See [7] for a
comprehensive review of various approaches to the commu-
nity detection problem.

Our motivating data are resting-state functional mag-
netic resonance images (fMRI) from the ADHD-200 sample,
which is downloadable from http://fcon 1000.projects.nitrc.
org/indi/adhd200. In this study, we have used the dataset
with 215 subjects collected at New York University. After
removing the ADHD hyperactive/impulsive subtype due to
a small sample size, our analysis dataset consists of 185 sub-
jects: 91 typically developing controls, 62 of the ADHD com-
bined subtype, and 32 of the ADHD inattentive subtype. For
each subject, we calculated a 116× 116 Fisher-transformed
correlation matrix based on the 116 predefined regions of
interest (ROI) defined by the automated anatomical label-
ing (AAL) template [30] and used it as a resting-state fMRI
connectivity network. See Figure 1 for the networks of two
randomly selected subjects, which have been visualized with
the BrainNet Viewer (http://www.nitrc.org/projects/bnv/)
[32]. Thus, our networks consist of 116 nodes (brain regions)
and the weighted edges between them (Fisher-transformed
correlations between time courses). We are interested in un-
derstanding the modular structure of these functional brain
networks, which we address by formulating a Bayesian ran-
dom graph mixture model to detect the latent community
structure in each network and estimate the modularity pa-
rameters governing the edge weights.

Two major classes of community detection methods in-
clude optimization algorithms and model-based methods.
The typical approach to model-based community detection
is via the stochastic block model (SBM), which summarizes
the network characteristics through a low dimensional latent
space, while partitioning the network into blocks of nodes
with similar connectivity characteristics [20, 17, 18]. The
SBM can be seen as an extension of the well-known Erdős-
Rényi random graph model for binary graphs [6]. While
much of the focus has been on binary graphs (e.g. Nowicki
and Snijders [20], Choi, Wolfe and Airoldi [4], Vu, Hunter
and Schweinberger [31], Schweinberger and Handcock [24]),
versions of the SBM have been proposed to estimate the
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Figure 1. Functional brain networks for subject 1 (L) and
subject 2 (R). There are 116 brain regions in each image.
Different colored nodes indicate different estimated latent

classes, but colors are not comparable between
subjects.

community structure of random weighted graphs [17]. How-
ever, calculating unknown parameters in these SBMs repre-
sents major computational challenges. For instance, maxi-
mum likelihood estimation is only possible for small graphs
due to the intractable summation in the EM algorithm for
the SBM likelihood [27]. Alternatively, Bayesian methods
based on Markov chain Monte Carlo (MCMC) sampling and
variational algorithms have been developed for the calcula-
tion of posterior estimates for the SBM [17, 12, 1]. Moreover,
other approximating methods, such as the use of a compos-
ite likelihood and moment estimators, have been proposed
to compute parameter estimates for some versions of the
SBM [2].

In this paper, we develop a fully Bayesian framework
for the weighted SBM as a hierarchical random graph
mixture model (RGMM), in order to estimate the latent
class network (LCN) structure in functional brain net-
works. We propose conjugate priors for the unknown pa-
rameters in order to achieve efficient estimation and use
the more parsimonious affiliation version of the SBM to
avoid a well-known nonidentifiability issue. We develop an
efficient Markov chain Monte Carlo (MCMC) algorithm
to draw random samples from the desired posterior dis-
tribution. Our MCMC algorithm can handle graphs with
thousands of nodes or relatively few nodes without hav-
ing to rely on any asymptotic assumptions or approxi-
mations. Our simulations demonstrate that our estima-
tion approach outperforms several existing methods for the
weighted SBM in terms of both classification accuracy and
accuracy in estimating the modularity parameters, and we
apply our method to the sample of functional brain net-
works and examine the patterns of estimated latent com-
munity structure across children from different ADHD di-
agnosis groups.

The rest of the article is organized as follows. Section
2 introduces the formulation of our random graph mixture
model and its associated MCMC sampling algorithm. In Sec-
tion 3, we compare our method to several competing meth-
ods using simulated data. Then in Section 4, we apply our
method to the functional brain network dataset discussed
above. In Section 5, we present some concluding remarks.

2. METHODOLOGY

2.1 Random graph mixture model

Let Y = (Yij) denote an observed undirected graph with
n nodes, where Yij denotes the weighted edge value between
node i and node j. We assume that the n nodes each fall
into one of Q latent classes, with the unobserved class label
of node i given by the random vector Zi = (Zi1, . . . ZiQ),
where Ziq = 1 indicates that node i is in the q−th group.
Following the version of the SBM in [2], our RGMM consists
of:

• (i) A latent class model for characterizing the class label
Zi for each node i = 1, . . . n.

• (ii) A measurement model for characterizing the condi-
tional distribution of Yij given {Zi, Zj}.

We assume that the latent classes {Zi} are indepen-
dently and identically distributed as Multinomial random
variables with the probability vector π = (π1, . . . πQ) such
that 0 ≤ πq ≤ 1 and

∑
q πq = 1. The measurement model is

a two-component mixture model: we assume that Yij con-
ditional on {Zi}1≤i≤n are independent and the conditional
distribution of Yij given Zic · Zjd = 1 is given by

pcdf(·; θcd) + (1− pcd)δ0(·) for i, j = 1, . . . n,

where f(·; θcd) is a prefixed probability distribution with an
unknown parameter vector θcd and δ0(·) denotes the Dirac
measure at zero accounting for non-present edges. By assum-
ing that the edge values are conditionally independent given
the latent classes of the nodes, the (marginal) dependencies
of the graph are fully determined by the latent community
structure.

Furthermore, we impose the affiliation SBM by reduc-
ing the Q · (Q + 1) parameters in {pcd}1≤c≤d≤Q and
{θcd}1≤c≤d≤Q to:

pcd =

{
pin if c = d,
pout if c �= d,

and θcd =

{
θin if c = d,
θout if c �= d.

Use of this parameterization allows us to avoid the typ-
ical problem of label switching/swapping in Bayesian mix-
ture modeling. When non-symmetric priors are used for the
group proportions, the nonidentifiability of the order of the
latent classes of nodes can lead to the class labels chang-
ing between successive MCMC samples and make posterior
inference difficult. The affiliation SBM does not have class-
specific parameters, so the sampler arbitrarily sets the order
in the initialization step and then sampling proceeds with-
out label swapping.

This framework is flexible and can model directed graphs
by utilizing a bivariate distribution for f(Yij , Yji) and al-
lowing pcd �= pdc and θcd �= θdc. Here we focus on
Gaussian-weighted edges, such that θ = (θin, θout) =
(μin, τin, μout, τout), but we can easily incorporate differ-
ent distributions for the edge distribution f(·). We can also
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adapt the model for more complex latent structures such as
the overlapping SBM and correlated latent groups by alter-
ations within this hierarchical formulation.

2.2 Prior distributions

Priors are chosen to preserve conjugacy to allow for effi-
cient MCMC estimation as follows:

π|Q ∼ Dirichlet(a1, . . . aQ), pin, pout ∼ Uniform(0, 1),

μin|τin ∼ N(μ0,in,
σ2
0,in

τin
), μout|τout ∼ N(μ0,out,

σ2
0,out

τout
),

τin ∼ Ga(α0,in, β0,in), τout ∼ Ga(α0,out, β0,out),

where Ga(a, b) is a gamma distribution with shape a and
rate b. To achieve relatively flat priors, we set the hyperpa-
rameters to be: a1, . . . aQ = 1, μ0,in = μ0,out = 0, σ2

0,in =

σ2
0,out = 10, and α0,in = α0,out = β0,in = β0,out = 0.01.

2.3 Estimation

We utilize a Gibbs sampler for posterior computation,
with all full conditional posterior distributions given in the
Appendix. The Gibbs sampler involves sampling from a se-
ries of conditional distributions while each of the compo-
nents is updated in turn. Our Gibbs sampler starts as fol-
lows:

• Initialize π
(0)
q = 1/Q for q = 1, . . . Q.

• Sample Z
(0)
i from Dirichlet(π(0)) for i = 1, . . . n.

• Initialize p
(0)
in = p

(0)
out = 1

2 , μ
(0)
in = μ

(0)
out = 0, τ

(0)
in =

τ
(0)
out = 1.

Then for t = 1, . . . N , we sequentially update all parameters
as follows:

• Sample π(t) from P (π|Q, Y, Z(t−1)).

• For i = 1, . . . n, sample Z
(t)
i from

P (Zi|Q, Y, Z
(t)
1:(i−1), Z

(t−1)
(i+1):n, π

(t), p
(t−1)
in , p

(t−1)
out ,

μ
(t−1)
in , μ

(t−1)
out , τ

(t−1)
in , τ

(t−1)
out ).

• Sample μ
(t)
in from P (μin|Q, Y, Z(t), τ

(t−1)
in ) and μ

(t)
out from

P (μout|Q, Y, Z(t), τ
(t−1)
out ).

• Sample τ
(t)
in from P (τin|Y, Z(t), μ

(t)
in ) and τ

(t)
out from

P (τout|Y, Z(t), μ
(t)
out).

• Sample p
(t)
in from P (pin|Y, Z(t)) and p

(t)
out from

P (pout|Y, Z(t)).

To improve sampling performance, we run multiple
MCMC chains and use the Integrated Completed Likeli-
hood (ICL) criterion to automatically select the chain that
maximizes ICL [17, 5]. For a graph with n nodes, the ICL
criterion is given by:

(1) ICLQ = max
θ

log P(Y, Z̃|Q, θ)

− 1

2
[PQ · log

(
n(n− 1)

2

)
+ (Q− 1) · log(n)],

where Z̃ denotes the predictions for the latent Z and PQ de-
notes the number of independent parameters. In this case,
we have θ = (pin, pout, μin, μout, τin, τout) and PQ = 6.
Moreover, we plug in the univariate mode of each parameter
into ICLQ. This amounts to maximizing the observed data
likelihood when comparing two MCMC chains with Q and
n fixed.

To achieve better sampling performance for large graphs,
we propose using spectral clustering to estimate the initial
value of the latent structure Z(0); we can use the k-means
clustering algorithm [11] to cluster all n nodes into Q groups
according to the first Q eigenvectors of a graph. Moreover,
the diagnostic tools in the coda R package [22] can be used
to assess posterior convergence.

3. SIMULATIONS

We carried out simulations to examine the finite sample
performance of the LCN RGMM in detecting the community
structure of simulated networks and quantify their network
modularity.

3.1 Setup

We simulated networks as follows: for a given Q∗, π was
randomly generated from Dirichlet(a1, . . . aQ∗), and then
each Zi for i = 1, . . . n was independently generated from
Multinomial(π1, . . . πQ∗). The data Yij were generated from
a mixture of zero-valued edges, randomly drawn from either
Bernoulli(1−pin) or Bernoulli(1−pout) distributions and ei-
ther Normal(μin, τ

−1
in ) or Normal(μout, τ

−1
out), depending on

whether nodes i and j are in the same latent class. We set
hyper-parameters σ2

0,in and σ2
0,out to one. The parameters

pin, pout, μin, μout, τin, and τout were fixed at various values
in order to examine the finite sample performance of LCN
and the associated MCMC algorithm as modularity mea-
sures change.

We considered six schemes and simulated 200 indepen-
dent graphs for each scheme. Simulation schemes are listed
in Table 1. Scheme 1 is an example of a relatively easy com-
munity detection problem with pin >> pout and μin >>

Table 1. 200 datasets were simulated from each of these
schemes, then analyzed using 2 MCMC chains, and the chain

with the greatest ICL was selected

Sim n Q∗ Q (est) pin pout μin μout τin τout
1 50 3 3 0.8 0.3 1 -1 1 1
2 50 3 3 1 1 0.5 -0.3 0.2 0.4
3 50 3 5 0.8 0.3 1 -1 1 1
4 500 3 3 0.8 0.3 0.5 -0.5 1 1
5 100 5 10 0.8 0.3 0.5 -0.5 1 1
6 50 10 10 0.8 0.3 0.5 -0.5 1 1
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μout. Scheme 2 is a much harder problem with decreased dis-
tance between mixture distributions and fully dense graphs
(no zero edges). Schemes 3 and 5 were designed to test per-
formance when the number of latent groups is misspecified.
Scheme 4 represents a scenario with a large number of nodes.
Scheme 6 is a scenario with a relatively large number of
smaller latent groups.

For each graph, we ran two independent chains of the
Gibbs sampler and then used ICL to choose the best chain
as described previously. We also compared our method
with several methods for community detection in weighted
graphs: the approximating method of Ambroise and Matias
based on a composite likelihood [2] (AM), the Bayesian im-
plementation of the original SBM of Nowicki and Snijders in
the hergm R package [20, 28, 25] (HERGM), the spin-glass
model of [23] (SPIN) [19, 29], and a simple spectral cluster-
ing algorithm, using k-means [11] on the eigenvectors of the
adjacency matrix (SPEC). To deal with the label switch-
ing phenomenon seen in the hergm output, MCMC sam-
ples were relabeled with the use of the loss function from
Carvalho (2013) [21], which is included in the R function
hergm.postprocess.

3.2 Results

Classification is typically accurate under all of the simula-
tion schemes, as shown via box plots of the misclassification
rates in Figure 2, though expectedly less so with more sim-
ilar mixture distributions. The most probable classes were
estimated from the 10,000 MCMC samples for each simu-
lation, and the misclassification rate was estimated as the

Figure 2. Boxplots of misclassification rates by simulation
scheme. The 6 schemes, each with 200 simulated datasets,
are listed in Table 1. Misclassification rate is defined as the
sum of the false positives and false negatives divided by the

total number of possible node pairs.

sum of false positives (nodes estimated to be in the same
community when they are not) and false negatives (nodes
estimated to be in different communities when they are in
the same) divided by the total number of possible latent
connections (n · (n− 1)/2). Most misclassification occurred
in MCMC chains that did not converge to the true poste-
rior distribution, which is seen in the tails of the box plots
– many of these incorrectly estimated a single latent class
containing all the nodes.

The methods mostly do well for the “easy” community
detection problem (Scheme 1). Our method outperformed
the other methods for the selection of the true number of
groups when more groups were specified (Schemes 3 and 5).
The approximating method of Ambroise and Matias (AM)
fares well with a large number of nodes (Scheme 4), but it is
not as accurate for smaller graphs (Schemes 2 and 6). The
Bayesian method (HERGM) [20, 28, 25] is approximately
exact, but it involves a computationally intensive algorithm
for solving the label switching problem, which adds another
level of error in estimating the latent structure, especially in
the difficult Scheme 2. The spin-glass method (SPIN) [19,
29], which is based on extension of modularity maximization
to networks with positive and negative weights, tends to be
accurate in classification but less so in Scheme 6, where there
are a greater number of smaller groups; it has been shown
previously that modularity optimization methods can fail
to detect communities that are smaller than a value which
depends on the total network size and the connectedness
of separate communities [8]. The simple spectral clustering
algorithm (SPEC) only performs well in Scheme 4, where the
simulated networks are larger than in the other schemes.

In our estimation method, when the MCMC chain con-
verges to the true distribution, estimation of the other pa-
rameters is accurate. Figure 3 shows the absolute deviation
from between the posterior median and the true parame-
ter value, scaled by the magnitude of the parameter. For
the edge parameters (μin, μout, τin, τout) estimated in both
our formulation and the parameterization used in [2], our
approach typically has less estimation error. Figure 4 gives
coverage of the 95% highest posterior density (HPD) re-
gions for the edge parameters; coverage is near 95% for most
edge parameters, except for pin and pout in Scheme 2 – in
which the parameters are on the boundary of the parameter
space. For large graphs such as in Scheme 4, decreasing HPD
widths indicate efficient estimation of the edge parameters.

4. ADHD-200 RESTING-STATE FMRI
NETWORKS

The resting state fMRI scans were acquired using a
Siemens Allegra 3T scanner for six minutes (voxel size =
3× 3× 4mm, slice thickness = 4mm, number of slices=33,
TR=2 s, TE=15ms, flip angle=90◦, field of view=240mm).
The Athena pipeline was applied for data preprocessing and
the images were band-pass filtered within a frequency range
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Figure 3. Absolute deviation between the posterior median of
each parameter and the true value, scaled by the true value,
from each of the 6 schemes listed in Table 1. For the edge
parameters μin, μout, τin, τout, results from our Bayesian
random graph model (A – on the left of each panel) are
compared to the method of Ambroise and Matias (B – on

right).

Figure 4. Percent of the 95% HPD intervals containing the
true value, across 200 simulations in each scheme. Simulation
schemes are listed in Table 1. The horizontal line indicates

95%.

of (0.009, 0.08) hz. We deleted the scans showing movement
artifacts or other problems based on the quality control in-
formation given in the phenotypic dataset and then, for the

Figure 5. Posterior estimates of modularity parameters
(Sparsity: pin and pout, edge weights: μin, μout, τin, τout) for
subject 1 (Blue) and subject 2 (Red). First 100 samples were

dropped, 9900 samples of each parameter shown.

subjects with at least one scan passing quality control, we
selected a single scan for calculation of that subject’s con-
nectivity network.

The automated anatomical labeling (AAL) template [30]
was used to split patients’ brains into 116 non-overlapping
regions of interest (ROIs); blood-oxygen-level dependent
(BOLD) contrast signals were averaged within each region
for each of 172 time points, and a Pearson correlation matrix
was estimated for each subject’s 116 ROI × 172 time point
matrix. Subsequently, the elements in each 116 x 116 matrix
were transformed to approximate normality via the Fisher
transformation, z = 0.5× ln( 1+r

1−r ). Additionally, the Fisher-
transformed correlation matrices were thresholded at ± 0.1
(which corresponds to r ∼ ±0.1) to allow for some level of
sparsity.

We applied our RGMM to each subject’s weighted net-
work as follows: two parallel MCMC chains of our Gibbs
sampling algorithm were run for each of Q = 3, 6, 9, and
12, and then ICL was used to choose the best of the 8 chains,
which allowed for anywhere between 1 and 12 latent classes
for each subject. Figure 1 shows the estimated latent classes
of the 116 ROIs for two randomly selected subjects as the
color of nodes in the networks; subject 1 (L) has 7 latent
classes of regions and subject 2 (R) has 8 latent classes of
regions. To assess the overlap of the community structures
of the two subjects, the adjusted Rand Index [13] between
the two clusterings was estimated to be 0.182, which is sig-
nificantly different from zero (which would indicate no over-
lap at all) via permutation testing (10,000 permutations of
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Figure 6. Number of latent classes of brain regions selected
across 185 subjects from the ADHD-200 sample.

the class labels, p < 0.001). So, while the latent community
structure for these two subjects is different, there is signifi-
cant overlap between them, which suggests that there may
be a shared latent structure and individual deviations from
this structure.

Figure 6 shows the estimated number of latent classes
across the 185 subjects, with values ranging from 2 to 9;
more than half of the subjects have either 4 or 5 estimated
latent classes of ROIs. In Figure 7, the overlap of the latent
structures of all 185 subjects is shown; the node pairs in
red are those that are in the same latent class in most net-
works, while the node pairs in green are in different latent
classes in most networks. The functional overlap between
these node pairs could be considered as the shared latent
functional brain structure, while other groups of node pairs
are in the same latent classes in only a subset of the subjects
(see the node pairs in black, which have been estimated to be
in the same latent class in approximately 50% of subjects).
Additionally, the posterior distributions of the modularity
parameters appear to vary across many of the subjects, in-
dicating heterogeneity in latent community structure even
beyond the latent class membership of the 116 ROIs. See
Figure 5 for posterior samples of the modularity parameters
of the two subjects from Figure 1.

5. DISCUSSION

We have developed the weighted affiliation SBM as a
Bayesian RGMM. Our RGMM utilizes an intuitive hierar-
chical parametric framework that accurately captures the
affiliation community structure in simulated data. The ben-
efits of using this fully Bayesian framework include incorpo-

Figure 7. Overlap of the latent class structure across 185
subjects from the ADHD-200 sample. Each element of the
matrix is the proportion of all 185 subjects in whom the
corresponding two nodes fall in the same estimated latent
class. The list of ROIs is given in Table 2 in the Appendix.

ration of prior data, the ability to characterize the entirety
of the posterior distribution, as well as the validity of esti-
mates and accurate classification with smaller graphs. Addi-
tionally, this approach yields estimates of the modularity of
the network as parameters in the model. For highly modu-
lar graphs, in which nodes in one latent class have consider-
ably more connections and different weights as compared to
nodes in different classes, our estimation method performs
well with minimal misclassification and accurate estimates
of the parameters.

Within the 185 functional brain networks from the
ADHD-200 sample, subjects were estimated to have between
2 and 9 latent classes of brain regions, but considerable over-
lap in the latent structure is seen between some subjects.
The commonalities between subjects appear to include some
level of symmetry in the latent classes across the left and
right hemispheres, as well as the functional overlap in the
regions of the occipital lobe (see the red region near the
center of the diagnoal of Figure 7) and several other groups
of ROIs. While the SBM is unrealistic as a model of the
true data-generating process in fMRI studies, it is nonethe-
less a useful and principled statistical tool for uncovering
the large-scale structure in correlation between ROI time
courses, which can help inform future studies in functional
brain connectivity.

This framework allows the flexibility to utilize different
distributions for the edge weights, detect overlapping com-
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munities, and estimate the community structure in directed
graphs, all by straightforward alterations to the model. Cur-
rent work is focused on extending this model to allow for
groups of subjects that share a common structure, which
appear plausible based on our analyses of the resting-state
fMRI networks from the ADHD-200 sample. Additionally,
we are working to incorporate regression and hypothesis
testing to assess the differences in functional brain struc-
ture associated with changes in covariates.

APPENDIX A. ROI LABELS

Table 2. ROI labels for Figure 7 (From Left (1) to Right
(116) and Top (1) to Bottom (116))

Label ROI Label ROI

1 Precentral L 59 Parietal Sup L
2 Precentral R 60 Parietal Sup R
3 Frontal Sup L 61 Parietal Inf L
4 Frontal Sup R 62 Parietal Inf R
5 Frontal Sup Orb L 63 SupraMarginal L
6 Frontal Sup Orb R 64 SupraMarginal R
7 Frontal Mid L 65 Angular L
8 Frontal Mid R 66 Angular R
9 Frontal Mid Orb L 67 Precuneus L
10 Frontal Mid Orb R 68 Precuneus R
11 Frontal Inf Oper L 69 Paracentral Lobule L
12 Frontal Inf Oper R 70 Paracentral Lobule R
13 Frontal Inf Tri L 71 Caudate L
14 Frontal Inf Tri R 72 Caudate R
15 Frontal Inf Orb L 73 Putamen L
16 Frontal Inf Orb R 74 Putamen R
17 Rolandic Oper L 75 Pallidum L
18 Rolandic Oper R 76 Pallidum R
19 Supp Motor Area L 77 Thalamus L
20 Supp Motor Area R 78 Thalamus R
21 Olfactory L 79 Heschl L
22 Olfactory R 80 Heschl R
23 Frontal Sup Medial L 81 Temporal Sup L
24 Frontal Sup Medial R 82 Temporal Sup R
25 Frontal Med Orb L 83 Temporal Pole Sup L
26 Frontal Med Orb R 84 Temporal Pole Sup R
27 Rectus L 85 Temporal Mid L
28 Rectus R 86 Temporal Mid R
29 Insula L 87 Temporal Pole Mid L
30 Insula R 88 Temporal Pole Mid R
31 Cingulum Ant L 89 Temporal Inf L
32 Cingulum Ant R 90 Temporal Inf R
33 Cingulum Mid L 91 Cerebelum Crus1 L
34 Cingulum Mid R 92 Cerebelum Crus1 R
35 Cingulum Post L 93 Cerebelum Crus2 L
36 Cingulum Post R 94 Cerebelum Crus2 R
37 Hippocampus L 95 Cerebelum 3 L
38 Hippocampus R 96 Cerebelum 3 R
39 ParaHippocampal L 97 Cerebelum 4 5 L
40 ParaHippocampal R 98 Cerebelum 4 5 R
41 Amygdala L 99 Cerebelum 6 L

Table 2. (Continued)

Label ROI Label ROI

42 Amygdala R 100 Cerebelum 6 R
43 Calcarine L 101 Cerebelum 7b L
44 Calcarine R 102 Cerebelum 7b R
45 Cuneus L 103 Cerebelum 8 L
46 Cuneus R 104 Cerebelum 8 R
47 Lingual L 105 Cerebelum 9 L
48 Lingual R 106 Cerebelum 9 R
49 Occipital Sup L 107 Cerebelum 10 L
50 Occipital Sup R 108 Cerebelum 10 R
51 Occipital Mid L 109 Vermis 1 2
52 Occipital Mid R 110 Vermis 3
53 Occipital Inf L 111 Vermis 4 5
54 Occipital Inf R 112 Vermis 6
55 Fusiform L 113 Vermis 7
56 Fusiform R 114 Vermis 8
57 Postcentral L 115 Vermis 9
58 Postcentral R 116 Vermis 10

APPENDIX B. DISTRIBUTIONS

Prior and sampling distributions are listed as follows:
The latent class for each node i is distributed as

P (Zi|π,Q) = πZi1
1 · · ·πZiQ

Q , P (π|Q) =

Q∏
q=1

πaq−1
q .

P (Y |Z, π,Q, θ, p) is given by∏
1<i<j<n

P (Yij |θin, θout, pin, pout, Zi, Zj , Q)

=
∏

1<i<j<n

∏
q,l

P (Yij |θin, θout, pin, pout, ZiqZjl = 1, Q)

=
∏

1<i<j<n

∏
q=l

[
Din(i, j)

]ZiqZjl
∏
q �=l

[
Dout(i, j)

]ZiqZjl

=
∏
A

(
pin(

τin
2π

)1/2 exp{−τin
2

(Yij − μin)
2}
)

∏
B

(
pout(

τout
2π

)1/2 exp{−τout
2

(Yij − μout)
2}
)

∏
C

(1− pin)
∏
D

(1− pout),

where Din (i, j) =

(
pin

(τin
2π

)1/2

exp{−τin
2

(Yij − μin)
2}
)1(Yij �=0)

× (1− pin)
1(Yij=0)

,

Dout (i, j) =

(
pout

(τout
2π

)1/2

exp{−τout
2

(Yij − μout)
2}
)1(Yij �=0)
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× (1− pout)
1(Yij=0)

,

and A,B,C, and D satisfy

A = {i < j, q : ZiqZjq = 1, Yij �= 0},
B = {i < j, q �= l : ZiqZjl = 1, Yij �= 0},
C = {i < j, q : ZiqZjq = 1, Yij = 0},
D = {i < j, q �= l : ZiqZjl = 1, Yij = 0}.

Moreover, we set

P (pin) = 1(0 < pin < 1), P (pout) = 1(0 < pout < 1),

P (μin|τin) =
(

τin
2πσ2

0,in

)1/2

exp{ τin
2σ2

0,in

(μin − μ0,in)
2},

P (τin) = β
α0,in

0,in

1

Γ(α0,in)
τ
α0,in−1
in exp{−β0,inτin},

P (μout|τout) =(
τout

2πσ2
0,out

)1/2

exp{ τout
2σ2

0,out

(μout − μ0,out)
2},

P (τout) = β
α0,out

0,out

1

Γ(α0,out)
τ
α0,out−1
out exp{−β0,outτout}.

Then, the full conditional distributions are derived as fol-
lows:

First, we have

P (Zi|π,Q, pin, pout, θ, Y )∝P (Y |θ, p, π, Z,Q)P (Zi|π,Q)

∝
∏

1≤i<j≤n

∏
q=l

[
Din(i, j)

]ZiqZjl
∏
q �=l

[
Dout(i, j)

]ZiqZjl

×
(
πZi1
1 · · ·πZiQ

Q

)
.

Therefore, the full conditional distribution of Zi given all
others is proportional to

Q∏
q=1

⎡
⎣∏
j �=i

Din (i, j)
Zjq Dout (i, j)

∑
r �=q

Zjr

⎤
⎦
Ziq

×
(
πZi1
1 · · ·πZiQ

Q

)
,

Thus, we have Zi| . . . ∼ Multinomial (π̃i1, . . . π̃iQ), where
π̃iq is given by

π̃iq =

πq

∏
j �=i

Din (i, j)
Zjq Dout (i, j)

∑
k �=q

Zjk

Q∑
q=1

πq

∏
j �=i

Din (i, j)
Zjq Dout (i, j)

∑
k �=q

Zjk

for q=1, . . . Q.

The full conditional distribution of π is given by

P (π|Q,Z, Y ) ∝ P (Z|π,Q)P (π|Q)

∝
(

n∏
i=1

πZi1
1 · · ·πZiQ

Q

)(
Q∏

q=1

πaq−1
q

)

∝ π

n∑
i=1

Zi1+a1−1

1 · · ·π
n∑

i=1
ZiQ+aQ−1

Q ,

which implies that

π| . . . ∼ Dirichlet

(
n∑

i=1

Zi1 + a1, . . .
n∑

i=1

ZiQ + aQ

)
.

The full conditional distribution of pin is given by

P (Y |θ, p, π, Z,Q)P (pin) ∝ pnA
in (1− pin)

nC · 1(0 < pin < 1),

so pin| . . . ∼ Beta(nA + 1, nC + 1), where nA = |A| and
nB = |B|. Similarly, we have

P (pout| · · · ) ∼ Beta(nB + 1, nD + 1),

where nC = |C| and nD = |D|.
The full conditional distribution of μin is given by

P (μin|τ, π, Z,Q, p, Y ) ∝ P (Y |θ, p, π, Z,Q)P (μin|τ−1
in )

∝ exp{
∑
A

−τin
2

(Yij − μin)
2}

× exp{− τin
2σ2

0,in

(μin − μ0,in)
2},

which implies that

μin| · · · ∼ N

⎛
⎝σ2

0,in

∑
A

Yij + μ0,in

nAσ2
0,in + 1

,
σ2
0,inτ

−1
in

nAσ2
0,in + 1

⎞
⎠ .

Similarly, we have

μout| · · · ∼ N

⎛
⎝σ2

0,out

∑
B

Yij + μ0,out

nAσ2
0,out + 1

,
σ2
0,outτ

−1
out

nBσ2
0,out + 1

⎞
⎠ .

The full conditional distribution of τin is given by

P (τin|μ, π, Z,Q, p, Y ) ∝ P (Y |θ, p, π, Z,Q)

×P (μin|τin)P (τin)

∝
[∏

A

(
pin(

τin
2π

)1/2 exp{−τin
2

(Yij − μin)
2}
)]

×
(

τin
2πσ2

0,in

)1/2

exp{ τin
2σ2

0,in

(μin − μ0,in)
2}

×β
α0,in

0,in

1

Γ(α0,in)
τ
α0,in−1
in exp{−β0,inτin}

∝ τ
(nA+1

2 +α0,in−1)
in exp{−τin

2

∑
A

(Yij − μin)
2}
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× exp{− τin
2σ2

0,in

(μin − μ0,in)
2 − β0,inτin},

which implies that

τin| · · · ∼ Gamma (α∗
in, β

∗
in) ,

where

α∗
in =

nA + 1

2
+ α0,in

and

β∗
in =

1

2

∑
A

(Yij − μin)
2
+

1

2σ2
0,in

(μin − μ0,in)
2
+ β0,in .

Similarly, we have

τout| · · · ∼ Gamma (α∗
out, ) ,

with

α∗
out =

nB + 1

2
+ α0,out,

and

β∗
out =

1

2

∑
B

(Yij − μout)
2
+

1

2σ2
0,out

(μout − μ0,out)
2
+β0,out .
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