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Handling heterogeneity among units in quantile
regression. Investigating the impact of students’
features on University outcome
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In many real data applications, statistical units belong to
different groups and statistical models should be tailored to
incorporate and exploit this heterogeneity among units. This
paper proposes an innovative approach to identify group
effects through a quantile regression model. The method
assigns a conditional quantile to each group and provides
a separate analysis of the dependence structure inside the
groups. The relevance of the proposal is provided through
an empirical analysis investigating the impact of students’
features on University outcome. The analysis is performed
on a sample of graduated students; the degree mark is the
response variable, a set of variables describing the students’
profile are used as regressors, and the attended School de-
termines the group effects. A working example and a small
simulation study are introduced to highlight the main fea-
tures of the proposed approach.
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1. INTRODUCTION

Many real datasets have a hierarchical or clustered struc-
ture, with statistical units grouped at different levels (e.g.
students and schools, regions and countries). In such a
framework, a statistical model must be tailored to incor-
porate and exploit the data structure. The analysis of the
relationship between a response variable and a set of regres-
sors cannot be carried out by neglecting the membership of
the units to the different levels of the hierarchical structure.
It is a matter of fact that if two units belong to the same
group, the dependence structures of their regression models
may be alike.

The present paper refers to the simplest hierarchical
structure, which consists of two levels: units (level 1) be-
long to one of m groups (level 2). The proposed approach
aims to estimate group effects in a regression model exploit-
ing quantile regression [11], a method that is able to model
the entire conditional distribution of a response variable.

Different approaches have been proposed in the literature
to analyze group effects in a dependence model. All of them
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share the aim of inspecting how the hierarchical data struc-
ture affects the impact of the regressors on the dependent
variable, although they differ in terms of complexity and
ability to detect group effects in depth.

The simplest approach consists of estimating different
models for each group, but it obviously does not permit
the identification of the impact of the groups on the de-
pendent variable. It also requires ad hoc tools for compar-
isons of the models estimated on different samples. Fitting
a different model for each group may also be inappropriate
when groups contain different numbers of units and some
groups have very few units. The first issue makes it diffi-
cult to use the classical statistical tests to compare models.
The latter leads to unreliable estimates [5]. In the quan-
tile regression (QR) framework, the problems deriving from
the estimation of separate models are amplified because the
comparison must be carried out among models related to
the same quantile along the groups and/or among quantiles
inside each group.

A second solution exploits the introduction of dummy
variables among the regressors to denote group membership
[7]. An indicator variable is considered for each level except
the reference level. In such a case, the effect of each group is
immediately available, but the specific impact of the regres-
sors on the different groups is not available. This effect could
be caught up with the inclusion of appropriate interaction
terms, but the complexity of the deriving model makes this
approach unfeasible. Moreover, the inclusion of interaction
terms leads to the estimation of a unique model with resid-
uals that may not be independent [8]. Units belonging to
the same group often are often more similar to one another
than to units belonging to the other groups. In essence, this
approach does not effectively take into account the clustered
data structure.

A more widely used solution is provided by multilevel
modeling [3, 16, 17], also known as mixed models, hierarchi-
cal linear models, nested models and random–effects models,
according to the particular field of application. This class of
models restricts the analysis of group differences to the mean
of the dependent variable, requires classical distributional
hypotheses and detects group effects through a single coeffi-
cient (the estimation of the between–cluster variability). Re-
cently, many contributions to the literature have extended
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quantile regression to clustered data. These studies include
those published by Koenker [9], Lamarche [14] and Geraci
and Bottai [4], although some of these studies apply to lon-
gitudinal data. The use of quantile regression overcomes
the limitation of classical multilevel modeling, which focuses
on the estimate of the conditional mean of the dependent
variable. Notwithstanding, such proposals detect the group
effects through a single coefficient, in line with multilevel
models, and do not provide any details on the dependence
structure inside the groups. The use of interaction terms in a
QR model could overcome this limit at the cost of increased
complexity in the interpretation, as the corresponding coef-
ficients are replicated for each estimated quantile.

Within this framework, the aim of this paper is to intro-
duce a method that can provide a separate analysis of the
dependence structure for each group, limiting the number of
coefficients that must be estimated, and therefore simplify-
ing its use and interpretation for practitioners. In particular,
a quantile regression model is estimated on the whole sample
and a conditional quantile is assigned to each group. This ap-
proach allows us to detect group effects and easily compare
coefficients related to the different groups. The approach is
illustrated through an empirical analysis evaluating the ef-
fectiveness of the University educational process: data are
presented in Section 2, basic notation and a preliminary
analysis are described in Section 3, the detection of group
effects is carried out using the classical regression approach
in Section 4 and the proposed QR approach is presented
in Section 5. The potentialities of the proposal are further
investigated in Section 6 through a working example on a
synthetic dataset and a simulation study. Some concluding
remarks and directions for future avenues of research are
described in Section 7.

2. THE EFFECTIVENESS OF THE
UNIVERSITY EDUCATIONAL PROCESS:

DATA DESCRIPTION

The analysis focuses on modeling the final outcome of
graduated students in terms of socio–demographic and Uni-
versity experience attributes. The final outcome is measured
through the degree mark. As the dependence model can be
affected by the particular School students are enrolled in,
knowledge of their Schools allows us to consider the School
membership as a stratification variable.

The evaluation of the factors influencing the degree mark
is based on a random sample of 362 students who gradu-
ated from the University of Macerata [2], which is located
in the Italian region of Marche. The survey was completed
in 2007 and includes students who graduated between 2002
and 2005. The explicative variables included in the model
pertain to the student profile. In particular, the following
regressors have been considered: gender, place of residence
during University education (Macerata and its province,
Marche region, outside Marche), course attendance (no at-
tendance, regular), working condition (full-time student,

Figure 1. Degree mark density for the whole sample (left)
and boxplots according to School membership (right). The
degree mark shows a high left-skewed distribution with

different intensities among the Schools.

working student), number of years to obtain a degree and
diploma mark. The degree mark is measured on a discrete
scale ranging between 77 and 109. Students with degree
mark equal to 110 and 110 with the ‘cum laude’ have been
excluded from the analysis because a preliminary study re-
vealed that their performance is not affected by the consid-
ered features.

Because the School where students were enrolled can be
relevant in determining the final degree mark, it is a natural
candidate for the stratification variable in our procedure.
The levels of the School variable are: Economics (EC), Law
(LW), Liberal Arts (LA), Communication Sciences (CS),
Education (ED) and Political Science (PS).

The density plot of the response variable (Figure 1, left)
shows the presence of strong left skewness, which also dis-
tinguishes the distributions according to School (Figure 1,
right). From the boxplots related to the Schools, the differ-
ences among the levels of the stratification variable are evi-
dent, thus supporting the use of the School to discern group
effects. It is worthwhile to notice how the simple analysis of
the response variable suggests the presence of two distinct
groups: LA, CS and ED, with a strong left skewness, and
EC and LW, with less pronounced skewness. The remaining
School, PS, shows intermediate behavior.

The main descriptive statistics of the degree mark (Ta-
ble 1) confirm the asymmetric distribution of the degree
mark.

3. QUANTILE REGRESSION:
METHODOLOGY AND MAIN RESULTS

Quantile regression, introduced by Koenker and Bas-
set [11], can be considered the extension of ordinary least
squares (OLS) to the estimation of a set of conditional quan-
tile functions. QR allows the estimation of the conditional
quantiles of a response variable as a function of a set of
covariates without requiring assumptions on the error dis-
tribution. Although different functional forms can be used,
this paper deals only with linear regression models.

Let us consider a vector y[n] storing the dependent vari-
able and a matrix X[n×p] of regressors, where n denotes
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Table 1. Descriptive statistics of the degree mark for the
whole sample (first column) and according to School (second

through seventh). The peculiarities of LW and EC are
confirmed by the summary statistics

total LA CS LW ED PS EC

min 77 94 96 77 94 90 85
I quartile 98 102 103 94 104 100 96
median 103 106 105 99 106 103 100
mean 101.5 105 105 98 105 102 100
III quartile 106 108 108 104 108 105 105
max 109 109 108 109 108 108 108
Frequency 362 71 33 133 37 32 56
% Frequency 100% 20% 9% 37% 10% 9% 15%

the number of units and p the number of regressors. Let
the data be partitioned by row, where the partition is de-
termined by a categorical variable (hereafter stratification
variable) assuming m groups; the number of units in group
g (g = 1, . . . ,m) is denoted by ng; and the total sample size
can be expressed as n =

∑m
g=1 ng.

The QR model for a given conditional quantile θ, with
0 < θ < 1, can be formulated as follows:

(1) Qθ(ŷ|X) = Xβ̂(θ)

where Qθ(.|.) is the conditional quantile function for the
θth quantile. The estimates in QR linear models have the
same interpretation as those of any other linear model. Each
β̂j(θ) coefficient represents the rate of change of the θth con-
ditional quantile of the dependent variable per unit change
in the value of the jth regressor (j = 1, . . . , p), holding the
others constant.

In Table 2, for purely descriptive purposes, the QR coef-
ficients related to the three quartiles and the two extreme
quantiles, θ = {0.1, 0.25, 0.5, 0.75, 0.9}, are shown along with
their OLS counterpart (significant coefficients at α = 0.10
in bold). The standard errors, used to evaluate the statisti-
cal significance of the coefficients, have been estimated using
the standard xy–pair bootstrap [15]. The QR coefficients are
also depicted in Figure 2. Each panel represents a single re-
gression coefficient, i.e. the intercept and the slopes for the

Figure 2. OLS and QR coefficients and related confidence
intervals. The horizontal axis displays the different quantiles,
while the coefficients are represented on the vertical axis. The
shaded region in each subplot shows the confidence band

(α = 0.1). The lines parallel to the horizontal axis correspond
to OLS coefficients and the related confidence intervals are in

dashed lines using the same level for α.

different features of the student profile. The horizontal axis
displays the different quantiles, while the effect of each fea-
ture holding the others constant is represented on the verti-
cal axis. QR confidence bands (in grey) are obtained through
the bootstrap method using α = 0.1. The solid lines parallel
to the horizontal axis correspond to OLS coefficients, and
the dashed lines representing the corresponding confidence
intervals using the same significance level.

The analysis of Table 2 and Figure 2 shows that the effect
of the student features on the degree mark is different both

Table 2. OLS (first column) and QR coefficients (from the second to the last column) for five distinct conditional quantiles:
θ = {0.1, 0.25, 0.5, 0.75, 0.9}. Significant coefficients at α = 0.10 are shown in bold. The impact of the regressors varies

across the different parts of the degree mark distribution

OLS θ=0.10 θ=0.25 θ=0.50 θ=0.75 θ=0.90

(Intercept) 101.78 100.12 101.08 102.19 103.60 106.45
Gender = Male -3.42 -1.94 -3.92 -4.12 -2.60 -1.38
Place of residence = Marche region 0.95 0.89 1.69 1.33 1.05 0.17
Place of Residence = outside Marche -2.51 -8.19 -2.50 -2.04 -0.95 -0.79
Courses attendance = regular 1.87 2.52 0.92 2.34 1.25 1.25
Working student = yes -0.20 0.62 0.42 -0.21 -0.60 -0.31
Numbers of years to get a degree -0.82 -1.27 -1.42 -0.88 -0.35 -0.17
Diploma mark 0.06 0.01 0.08 0.07 0.05 0.02
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in sign and in quantity among the considered features. More-
over, the strong skewness of the response variable engenders
differences among the conditional quantile estimates for each
feature. Gender and residence during University education
have great influence on the lowest quantiles of the distribu-
tion: males and residents outside the Marche region show
negative coefficients. A foreign experience positively influ-
ences the degree mark. This effect decreases in the higher
part of the distribution, indicating that very good students
are less influenced by their University experiences abroad.
Working students are less likely to get high degree marks
(the OLS coefficient is equal to –0.50), but the QR results
show how this effect becomes relevant at the highest part
of the distribution and is negligible elsewhere. All the coef-
ficients of the variable numbers of years to get a degree are
negative, particularly for the lowest quantiles. It is worth
noticing that only the coefficients related to the 0.25 and
0.5 quantiles are significant. The diploma mark always has
a positive effect, but its value is very low for successful stu-
dents. In the higher part of the response variable distribu-
tion, the only positive effect is provided by regular course
attendance, while residence outside Marche negatively in-
fluences the final degree mark. Regressors do not play any
effect on the 90th percentile of the conditional distribution
of the degree mark, which is a sign that the highest perfor-
mances are related to other student features.

Model (1) does not evaluate the difference in the depen-
dence structure with respect to group membership. Two
units sharing the same level of the stratification variable
could indeed share a more similar dependence structure than
two units belonging to different groups. In the following, a
strategy aiming to evaluate group effects through the assign-
ment of a particular quantile to each group is introduced.

4. MAIN REGRESSION APPROACHES TO
DETECT GROUP EFFECTS

In the framework of the classical regression, the evalua-
tion of the role of the School in predicting the final degree
mark can be carried out by exploiting one of the several ap-
proaches provided by the scientific literature to detect group
effects in a dependence model, as briefly introduced in Sec-
tion 1.
1) Different models for each School

A first attempt consists of estimating different models for
each School. Figure 3 shows a bar chart for the intercept and
for each regressor, where the height of each bar is equal to
the coefficient obtained from a model estimated on the whole
sample (first bar of each chart) or separately on each School
subsample (from the second to the last bar). Black bars rep-
resent coefficients significant at α = 0.10. Using the typical
dummy coding for the categorical variables, and excluding a
level for each variable, it follows that the intercept measures
the effect on the degree mark of the reference student with
the following features: female, living in Macerata and its

Figure 3. OLS coefficients obtained from separate regressions
on the whole sample (first bar of each plot) and for each

School sub-sample (from the second to the last bar of each
plot). The direct comparison of the coefficients is risky as
they derive from the estimation of different models for each

School. Black bars depict significant coefficient.

province, no course attendance, no foreign experience and
full-time student (no working student). Figure 3 easily shows
if and how the impact of each regressor changes among the
Schools and with respect to the whole sample. However, this
interpretation must be done with great caution because the
coefficients related to each School are separately estimated
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Figure 4. OLS (top panel) and QR coefficients for
θ = {0.10, 0.25, 0.50, 0.75, 0.90} (from the second to the last
panel) including School as a dummy variable in the model.
The effect played by each School varies in the lowest part of

the degree mark distribution.

and the groups are not of equal size, as shown in the last
two rows of Table 1. Finally, this approach becomes almost
unfeasible when the QR model is used because the effect
of the regressors has to be explored at several quantiles of
interest of the conditional distribution of the degree mark.
2) Model with dummy variables representing each School
level

With the introduction of a dummy variable for each
School, OLS coefficients indicate the impact played by each
School on the conditional average and QR results indicate
the same effect on the considered conditional quantiles of the
degree mark. To ease interpretation, the model is estimated
without intercept.

Figure 4 shows for each School (horizontal axis) the
effect it plays on the degree mark, setting the other re-
gressors to their reference values. The different panels re-
fer to the OLS results (top panel) and the QR results for
θ = {0.1, 0.25, 0.50, 0.75, 0.90} (from the second to the bot-
tom panel). Inspection of the obtained estimates (see Ta-
ble 3) highlights greater differences among the Schools at
the lowest quantiles, suggesting that the performance of the
best students, i.e. with the highest degree marks, is less af-
fected by the School of origin. With respect to the use of sin-
gle models for each School, this approach allows estimation
of the model only once on the whole sample. Nonetheless,
the School effect is captured only by the coefficients asso-
ciated to the dummy variables. Therefore, the model is not
able to capture the different impact of each regressor in the
groups.
3) Model with the group variable and all the interactions

To capture the group effect, the group variable and all the
interactions among the groups and the regressors are con-

Figure 5. Distribution of the observed and fitted (OLS and
QR) degree mark for each School.

sidered in the model (hereafter, group interaction model).
Because the analysis involves six Schools and six regressors,
with a total of 13 categories, the group interaction model
includes 48 regressors. A classical OLS regression as well
as a QR, using a dense grid of quantiles (from 0.1 to 0.9
with step equal to 0.1), has been carried out. Albeit such an
approach allows to take into account the group effect with
respect to all regressors, its main remark is related to the
huge number of coefficients to be interpreted. This number
increases for QR, because the coefficients are estimated in
correspondence to each quantile of interest.

Focusing only on prediction, both OLS and QR provide
quite similar results, as shown in Figure 5, where the ob-
served degree mark and the fitted values deriving from OLS
and QR regression are plotted for each School. QR out–
performs OLS with respect to the fitting capability: almost
all the corresponding BIC values (with the exception of
θ = 0.1 and θ = 0.2) are lower than the BIC obtained
for OLS regression (see Figure 6, where the horizontal line
depicts the BIC for OLS).

Moreover, the added value of QR in analysing the im-
pact of the regressors on the whole conditional distribu-
tion of the response is particularly useful for such data,
where the dependent variable is highly skewed. For exam-
ple, consider two regressors including the interaction terms:
CS:Male and CS:CourseAttendanceRegular, i.e. the coeffi-
cients linking the effect of the School in Communication
Sciences with the gender and the course attendance, respec-
tively. Figures 7 and 8 depict the corresponding QR coef-
ficients: the horizontal axis displays the different quantiles,
while the effect of each feature holding the others constant
is represented on the vertical axis. The dotted line paral-
lel to the horizontal axis corresponds to OLS coefficient.
It is evident how the analysis can be limited or even mis-
represented when it is confined to the interpretation of the
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Figure 6. BIC values related to the group interaction model
estimated using OLS (horizontal line) and QR (bars) at nine

different quantiles.

effect played by the two regressors on the conditional av-
erage distribution of the degree mark. In case of CS:Male,
the OLS coefficient provides a positive effect of this regres-
sor on the degree mark, but Figure 7 shows that this effect
decreases moving from lower to higher quantiles, becoming
negative after the conditional median. The opposite hap-
pens for the CS:CourseAttendanceRegular regressor, which
is negative on average but increasing and positive after the
median. In fairness, the interpretation of all the coefficients
of the group interaction model for each quantile of inter-
est becomes unfeasible. An innovative approach to over-
coming this limit is proposed in the next section. It aims
to take into account the effect played by the group mem-
bership on the degree mark for each regressor but with-
out penalizing the informative ability of the obtained re-
sults.

Figure 7. OLS and QR coefficients for the CS:male regressor.

4) Multilevel model
Finally, multilevel models are a natural solution given the

hierarchical structure of the analysed data: students, level 1
units, are enrolled in different Schools, level 2 units.

Following common practice, the null model (from now
Model 0) with no independent variable is estimated. It is
useful for obtaining estimates of the residuals and intercept
variance when only the clustering by School is considered.
It is a reference model for discussion and comparisons with
more complex models. Results from Model 0, in particular
AIC and BIC values along with intercept and residual stan-
dard deviations, are given in the first column of Table 4.
A second step consists of estimating the random intercept
model (from now Model 1) that contains varying intercepts
but constant slopes across the level 2 units. It assumes that
the Schools have different averages of the response variable

Table 3. OLS (first column) and QR coefficients (from the second to the last column) for five distinct conditional quantiles:
θ = {0.1, 0.25, 0.5, 0.75, 0.9} using the Schools as dummy regressors in the model. Significant coefficients at α = 0.10 are

shown in bold. The effect played by each School varies in the lowest part of the degree mark distribution

OLS θ=0.10 θ=0.25 θ=0.50 θ=0.75 θ=0.90

CS 100.5 93.72 97.81 100.2 103.08 105.26
EC 96.65 88.03 91.44 96.49 101.25 103.55
ED 100 93.52 97.59 100.18 102.62 104.94
LA 100.64 93.86 98.02 100.37 103.41 105.43
LW 95.01 85.41 90.03 95.34 99.46 102.72
PS 98.69 90.21 95.24 99.43 101.72 103.57
Male -2.53 -4.03 -2.06 -3.18 -2.51 -1.19
Residence in Marche region 0.23 -0.9 0.79 0.39 0.48 0.09
Residence outside Marche -2.12 -3.07 -1.22 -2.37 -0.89 -0.71
Regular course attendance 0.89 2.14 0.13 0.63 0.42 0.80
Working student 0.13 0.69 0.96 0.53 0.07 -0.15
Years to get a degree -0.55 -0.38 -0.72 -0.59 -0.24 -0.17
Diploma marks 0.09 0.10 0.12 0.11 0.07 0.05

546 C. Davino and D. Vistocco



Figure 8. OLS and QR coefficients for the
CS:CourseAttendanceRegular regressor.

Table 4. Performance measures and random effect in Model 0
and Model 1. The random intercept model (Model 1)

provides intercept and residual standard errors lower than the
null model, in which only the intercept is considered

Model 0 Model 1

AIC 4189.41 4008.93
BIC 4202.98 4058.67

Random effects
Intercept StdDev 2.93 2.04
Residual StdDev 5.16 4.78

but the regressors play a constant effect across the level 2
units. AIC and BIC values can be used to compare the two
random models, where smaller values reflect better model
fit. Table 4 shows that Model 1 provides a better fit to the
data: the within-School variation (Residual StdDev in Ta-
ble 4) and the variation in the intercept across the Schools
(Intercept StdDev in Table 4) decrease after introducing the
regressors into the model.

The estimated coefficients are consistent with the ex-
pected effect of the regressors on the students’ perfor-
mance. In particular, for Model 1 the estimates are (sig-
nificant coefficient for α = 0.10 in bold): intercept=97.15,
male=-1.99, residence in Marche region=0.08, residence
outside Marche=-2.69, regular course attendance=1.37,
foreign experience=1.36, working student=-0.23, years to
get a degree=-0.59, diploma mark=0.14.

It is worth highlighting the numerical problem founded
in estimating a random slope model, i.e. inserting a ran-
dom coefficient to model variation across the School levels.
Because the considered model includes several regressors,
the optimization algorithm based on the likelihood function
does not converge. This is a widespread problem affecting

the possibility of completely exploiting the potentialities of
multilevel models.

5. THE QUANTILE REGRESSION
PROPOSED APPROACH

This section introduces a procedure aiming to detect
group effects through a QR approach. Despite the use of
different models for each School, the proposed procedure
estimates the group dependence structure using the whole
sample, and thus it does not require ad hoc tools for com-
paring the models. Contrary to the use of a dummy variable
for each School level, the proposal is able to capture dif-
fering impacts of the regressors in the groups. Unlike the
model enclosing the group variable and all the interactions,
it is parsimonious in the number of coefficients, meanwhile
mimicking a multilevel approach with the association of a
particular quantile model for each group. The approach is
structured in the three steps detailed below: identification of
the best model for each group, estimation of the group de-
pendence structure and test of the differences among groups.

1) Identification of the best model for each group

Exploring the whole conditional distribution of the re-
sponse through QR offers a different perspective on the de-
pendence structure linking the response with the considered
regressors, as shown before in Figures 7 and 8. Taking into
account the group variable, the School, our approach starts
with the association of a representative quantile with each
group. Whereas the group variable is relevant for describ-
ing the data, such quantiles should be different, hence also
determining differences in the dependence structure among
groups. If instead the quantiles are similar, the group vari-
able will not play a relevant role in describing data.

The conditional quantiles representative of each group
are determined by computing the rank percentiles of each
statistical unit with respect to the response variable and
then averaging them by groups. The obtained means are
considered representative of the groups. The choice of the
proper location index should be dictated by the shape of the
distribution of the rank percentiles in the groups. The moti-
vation for the use of the percentile ranks is further examined
in Section 6 through a working example on synthetic data.

Figure 9 depicts the case of the analysed data: the plot is
divided into six panels referring to the six Schools, with each
point representing the percentile rank of the corresponding
units in the marginal degree mark distribution. The six stars
depict the group means computed through arithmetic aver-
age and are considered the quantiles representative of each
group. In particular, we have: CS: 0.70, EC: 0.40, ED: 0.72,
LA: 0.69, LW: 0.35, PS: 0.51. For the analysed data the use
of the median as location summary provides very similar
results.

In the following, we denote with θbestg , g = 1, . . . ,m, the
quantiles representative of each group. The identified best
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Figure 9. Percentile rank representation of the degree mark
according to School.

quantiles characterize the groups, meaning that, for exam-
ple, the dependence structure for EC students is best rep-
resented by a QR model with θ = 0.40, i.e. the features of
EC students mainly affect the 40th conditional percentile of
the degree mark. All the above remarks about the peculiari-
ties of the Schools are fully confirmed by the percentile rank
means as the best quantiles for LA, CS and ED are almost
equal.

The comparison among the θbestg values provides infor-
mation about the presence of group differences and pecu-
liarities. Namely, two groups characterized by different θbestg

values could have typical dependence structures. However,
as different θbestg values do not necessarily imply a different
impact of the regressors on the dependent variable, the next
step allows us to focus on the group dependence structures.
2) Estimation of the group dependence structure

In the second step, QR is carried out on the whole sam-
ple using the m quantiles θbestg assigned to the m groups in

the previous step. The generic element β̂j

(
θbestg

)
of the es-

timated coefficient matrix B̂
(
θbest

)
[p×m]

provides the effect

of the jth regressor in the gth group. The coefficient matrix
consists of m column vectors, one for each considered condi-
tional quantile, i.e. for each group. The inspection of such a
matrix allows detection of the group dependence structure.
Tools to test interquantile differences [6] are available to
evaluate the statistical significance of the differences among
the coefficients related to each group.

The results for the considered data are shown in Table 5,
where each column refers to a θbestg . Each School is indeed

characterized through the θbestg assigned according to its per-
centile rank mean. Significant coefficients at α = 0.10 are
shown in bold for each covariate (rows of the table). The
QR coefficients highlight the differences among the groups.
In particular, such differences can be identified in terms of

Figure 10. Degree mark distributions for the LW (upper part)
and PS (lower part) students. Each panel depicts the

observed degree mark (thick line) and the estimated curves
obtained through the best models assigned to each School.
Observed and estimated densities converge if the latter are

obtained using the proper best model.

the intensity of the values of each regressor. For example,
the effect on the degree mark of living in the Marche region
is always positive but is stronger in Schools such as EC and
LW. An additional check of the effectiveness of the θbestg for
each group is possible through inspection of the models as-
sociated to the groups in terms of predicted values. A trivial
casting out nines can be carried out, comparing the predic-
tions for the units of a given group using the best model for
the group with the ones provided by a model associated to
another group. Results should indeed worsen insomuch as
the two groups differentiate with respect to the associated
best quantiles. For example, Figure 10 (upper part) shows,
for LW students, the observed response variable (thick line)
and the estimated densities obtained using the best models
associated with each School. It is evident that the best model
assigned to the LW School (with θ = 0.35) provides the den-
sity closer to the observed distribution (dotted line). On the
contrary, if the LW degree mark is estimated through the
best model assigned to the LA/ED Schools (with θ = 0.0.69
and θ = 0.0.72), then the observed and estimated densities
move away. It is, of course, obvious to expect that when
referring to PS students, the best choice to estimate the de-
gree mark relies on the model assigned to the PS School, as
shown in the lowest part of Figure 10.
3) Test of the differences among groups

In the final step, the evaluation of the statistical signif-
icance of the differences among the coefficients related to
each group can be carried out by exploiting the classical in-
ferential tools available in the quantile regression framework
[1, 10]. It is important to highlight that group coefficients
can be compared because they have been estimated on the
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Table 5. Group effects estimated on the real data example (significant coefficients at α = 0.10 in bold). The coefficients
measure the dependence structure inside each group

CS EC ED LA LW PS
θ=0.70 θ=0.40 θ=0.72 θ=0.69 θ=0.35 θ=0.51

Intercept 103.26 100.97 103.47 102.90 102.61 104.12
gender-Male -3.39 -4.81 -2.54 -3.59 -5.08 -4.14
place of residence-Marche region 0.97 1.70 0.14 0.87 2.06 1.31
place of residence-outside Marche -1.03 -2.67 -0.99 -1.07 -2.29 -1.35
course attendance-regular 1.60 1.15 1.37 1.89 0.75 1.91
working student -0.60 0.07 -0.61 -0.65 0.00 -0.03
years to get a degree -0.42 -0.98 -0.38 -0.42 -1.16 -0.89
diploma mark 0.05 0.07 0.05 0.05 0.06 0.05

Table 6. P-values derived from testing differences on each slope coefficient (first through second to last column) and on the
whole model (last column) obtained considering all the possible pairwise comparisons between Schools

Male Marche outside regular working years to get diploma joint
Marche student student a degree mark test

CS vs EC 0.136 0.300 0.226 0.527 0.386 0.027 0.469 0.062
CS vs ED 0.010 0.195 0.932 0.120 0.986 0.478 0.724 0.060
CS vs LA 0.242 0.421 0.683 0.008 0.796 0.939 0.610 0.008
CS vs LW 0.077 0.135 0.175 0.224 0.431 0.002 0.779 0.005
CS vs PS 0.366 0.542 0.789 0.589 0.347 0.017 0.793 0.238
EC vs ED 0.022 0.428 0.206 0.764 0.385 0.018 0.436 0.013
EC vs LA 0.208 0.246 0.244 0.294 0.380 0.029 0.508 0.063
EC vs LW 0.497 0.311 0.612 0.278 0.846 0.161 0.402 0.697
EC vs PS 0.306 0.430 0.168 0.134 0.846 0.603 0.189 0.245
ED vs LA 0.005 0.149 0.867 0.001 0.854 0.535 0.566 0.000
ED vs LW 0.011 0.209 0.198 0.388 0.432 0.001 0.734 0.001
ED vs PS 0.069 0.763 0.749 0.334 0.345 0.010 0.859 0.049
LA vs LW 0.128 0.108 0.194 0.101 0.417 0.002 0.827 0.005
LA vs PS 0.508 0.437 0.821 0.984 0.354 0.020 0.732 0.313
LW vs PS 0.199 0.198 0.365 0.042 0.960 0.163 0.542 0.145

whole sample, unlike an approach estimating separate mod-
els for each group. This step can be conducted using one of
the classical tests proposed in [12] aimed at evaluating the
significance of the differences among coefficients pertaining
to different quantiles. The most common test statistic is a
variant of the Wald test, which is also able to provide a joint
test on all slope parameters. If we take into account pairwise
comparisons,

(
6
2

)
= 15 possible comparisons are possible for

the analysed real data example. They are presented on the
rows of Table 6, in terms of the p–values deriving from test-
ing differences on each slope coefficient (first though sec-
ond to last column) and on the whole model (last column).
Several significant differences come to light, both on the
whole model and for couples of coefficients. The same anal-
ysis could be carried out comparing more than two groups
using a similar test statistic.

6. FURTHER CONSIDERATIONS
THROUGH SYNTHETIC DATA

This section uncovers the main features of the proposed
approach through synthetic data: when the group depen-

dence structure is known, it is indeed possible to discuss
properties, strengths and weaknesses of the proposal with
respect to its ability to discover heterogeneity among units.

In Subsection 6.1 a working example is introduced to
show, step by step, if and how the group dependence struc-
ture identified by the proposed method matches with the
generated data. A Monte Carlo simulation study is provided
in Subsection 6.2 to deal with different patterns of group de-
pendence structure.

6.1 A working example

A simple synthetic dataset is generated according to a
specified group dependence structure: the data refers to two
groups of different sizes (n1 = 30; n2 = 70) and with different
dependence structures. Details are provided in Table 7.

By stacking data pertaining to the two groups, a depen-
dent variable y and a regressor x are derived:

(2) y =

[
y1

y2

]
x =

[
x1

x2

]

Figure 11 shows the distribution of the dependent vari-
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Figure 11. Histogram of the dependent variable (left) and scatter plot of the two variables (right) for the synthetic dataset.
The group membership is highlighted using different grey levels.

Table 7. Structure of the two groups composing the synthetic
dataset. The groups are well separated with respect to the

involved features (see also Figure 11)

group 1 group 2

sample size n1 = 30 n2 = 70
regressor x1 ∼ N(10; 1) x2 ∼ N(10; 1)
error e1 ∼ N(0; 1) e2 ∼ N(0; 1)
response variable y1=5+10x1+e y2=10+20x2+e

able (left-hand side) and the scatter plot of the two variables
(right-hand side) distinguishing the role of the two groups.
The group structure is evident both from the univariate dis-
tribution of the y variable and from the scatter plot depict-
ing the relationship between the two variables.

The best model for each group can be obtained by
analysing the percentile rank distribution of the dependent
variable in each group (left-hand side in Figure 12). In both
cases, the distribution looks quite symmetric, thus suggest-
ing that the best model for the two groups can be identified
using the percentile rank means (g1: 0.145, g2: 0.640). In or-
der to validate such percentile rank means as representative
quantiles for each group, the whole conditional dependence
structure can be exploited in detail. In particular, the quan-
tile regression model Qθ(ŷ|x) = β̂0(θ)+ β̂1(θ)x is estimated
using the whole quantile process [1, 10] and the best model
for each unit is identified by choosing the quantile that re-
turns the estimated value of the dependent variable closest
to the observed value. It is worth recalling that the quantile
process fits quantile regression models for the entire range of
quantile levels from 0 to 1. Therefore, it estimates the entire
probability distribution of a response variable conditional on
its covariates. From a practical point of view, for each unit,
several possible models are available, one for each possible

Table 8. Group effects estimated on the synthetic dataset.
The estimates properly detect the structure of the two groups

(see Table 7)

θ = 0.145 θ = 0.640
group 1 group 2

intercept 4.813 8.399
x 10.001 20.143

solution identified through the quantile process. Among such
models, the best model in terms of prediction is assigned
to each unit. The right-hand panel in Figure 12 compares
the observed response variable (left-hand side) with its esti-
mates: one provided by OLS (middle) and one representing
the best estimated vector ŷ

(
θbest

)
(right-hand side). From

the figure, the added value in considering the whole quantile
process is evident in that it almost perfectly reconstructs the
dependent variable.

Using the conditional quantiles that identify the best
model for each unit along with the group membership, it
is possible to derive the best model for each group. Such
models are indeed obtained by averaging the best quantiles
assigned to the units belonging to the group. In the case of
the analysed data, the results are practically equivalent to
the values obtained by exploiting the percentile ranks, as
previously introduced. This also allows easier interpretation
of the best quantiles associated to the involved groups.

For the synthetic dataset, the comparison of the QR coef-
ficients associated to the best quantiles (Table 8) compared
to the values determining the structure of the two groups
(Table 7), shows that the proposed approach is able to cor-
rectly estimate the dependence structure in each group. A
separate analysis of each group would lead to equivalent re-
sults, but the added value of the proposed approach relies

550 C. Davino and D. Vistocco



Figure 12. Boxplots of the percentile ranks of the dependent variable in the two groups (left). Distribution of the dependent
variable and the OLS and QR estimated dependent variable (right).

on the possibility of comparing groups through coefficients
obtained on the whole sample. Moreover, well-known tools
for statistical comparisons among coefficients related to dif-
ferent groups [6] can be used.

The presence of such a difference between the two groups
simplifies interpretation of the results. The value θ = 0.145,
which characterizes group 1, indicates that the correspond-
ing units are in the lower tail of the dependent vari-
able distribution. The same happens for group 2 but with
θ = 0.640.

Both the test of equality of distinct slopes and the joint
test of equality of slopes confirm that coefficients associated
to the two groups are statistically different.

6.2 A simulation study

The working example described in the previous section
permits appreciation of how the group dependence struc-
ture is identified and how to interpret the best quantiles
associated to each group. However, the results are specific
to the generated dataset and to its simple structure. There
are indeed several issues that should be taken into account
to provide a wider discussion on the features of the proposed
method. Such issues have been considered for the simulation
study presented in the next subsection.

6.2.1 Description of the study

The simulation study aims to explore the robustness of
the method with respect to the degree and type of overlap-
ping among the groups; the cardinality of each group (equal
or unbalanced); and the sample size.

This paper focuses on the case of one regressor and two
groups. Evaluations related to the introduction of more than
one regressor and more than two groups are postponed to a
future work.

To explore the effect played by the degree and type of
overlapping between the groups, a set of scenarios is gener-
ated. Figure 13 shows the scatter plot of the two variables
for each considered scenario, distinguishing units belonging
to each group by symbols and grey levels. Each row of the
scatter plot matrix refers to a class of scenarios:

Case 1: parallel group structures;
Case 2: group structures crossing outside the considered

range of the regressor;
Case 3: group structures crossing inside the considered

range of the regressor.

The columns represent instead the different degree of over-
lapping among the groups, distinguishing three increasing
levels denoted as a, b and c.

The dependence structures associated to each of the nine
considered scenarios are detailed in Table 9, where β0 and β1

represent, respectively, the intercept and the slope of each
model. For example, the scatter plot in the upper left part
of Figure 13 (Case 1a) refers to a model very similar to
that described in Subsection 6.1. Each scenario is gener-
ated considering a regressor x1 ∼ N(10; 1) for group 1, a
regressor x2 ∼ N(10; 1) for group 2, and in both cases an
error e ∼ N(0; 1). Data pertaining to the two groups are
stacked, thus obtaining a unique dependent variable and a
unique regressor observed on n units, as shown for the work-
ing example in the previous subsection. The effect played
by the cardinality of each group is explored by hypothe-
sizing equal group sizes (n1 = n2 = 70) or unbalanced
group sizes (n1 = 30; n2 = 70). As the sample size could
have an additional effect on the ability of the method to
discover the group dependence structure, 10 different sam-
ple sizes are considered: from 100 to 1,000 with step equal
to 100.

Handling heterogeneity among units in quantile regression 551



Figure 13. Scatter plots for each scenario of the simulation
study. Different type (rows) and degree (columns) of
overlapping among groups are taken into account.

Table 9. Coefficient values related to the considered scenarios

Group 1 Group2
β0 β1 β0 β1

Case 1a 5 10 25 10
Case 1b 5 10 15 10
Case 1c 5 10 7 10

Case 2a 300 2 250 10
Case 2b 310 2 250 10
Case 2c 310 3 280 7

Case 3a 310 3 250 10
Case 3b 315 3 250 10
Case 3c 400 -5 250 10

Summarizing, the simulation design is composed by:

- nine scenarios corresponding to different types (Case 1,
Case 2, Case 3) and degrees (a, b, c) of overlapping
between the groups;

- 1,000 replications of the data corresponding to each sce-
nario, both for the case of equal groups (n1 = n2 = 70)
and for the unbalanced case (n1 = 30;n2 = 70); and

- 1,000 replications of the data corresponding to each sce-
nario for each considered sample size (n from 100 to
1,000 with step equal to 100) considering unbalanced
groups (n1 = 30%× n; n2 = 70%× n). This choice was
preferred to the balanced case because it represents a
more difficult case.

6.2.2 Main results

The approach described in Section 5 is applied to each
scenario. The best model for each group has been computed

Figure 14. Monte Carlo distributions of the estimates
computed on the 1,000 replications for the intercepts

(left-hand side) and the slopes (right-hand side)
(n1 = n2=70). Stars and segments inside the boxes

represent, respectively, the true coefficients and the Monte
Carlo estimates. The method is able to identify the group

effects in most of the scenarios.

as the mean of the percentile ranks of the units belonging to
each group. The final estimates are obtained by performing
a QR on the whole sample considering only the two quantiles
representing the groups. Finally, the estimates obtained on
the 1,000 replications are averaged and reported in Table 10
for the balanced case and in Table 11 for the unbalanced
case.

The comparison of the original coefficients with the es-
timates shows how the method is able to correctly capture
the dependence structure in each group. Moreover, the vari-
ability and the distribution of the estimates complement the
evaluation.
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Table 10. Group QR estimates related to the 9 considered scenarios (standard deviations of the estimates are given in
parentheses) and corresponding coefficient values (n1 = n2=70). The method is able to identify the group effects in most of

the scenarios

Group 1 Group2
β0 β1 β0 β1

Case 1a
estimate 4.99 (1.93) 10.00 (0.19) 24.92 (2.08) 10.00 (0.21)

coefficient 5.00 10.00 25.00 10.00

Case 1b
estimate 4.99(1.92) 10.00 (0.19) 14.96 (2.07) 10.00 (0.21)

coefficient 5.00 10.00 15.00 10.00

Case 1c
estimate 5.03 (1.66) 10.00 (0.17) 6.95 (1.75) 10.00 (0.18)

coefficient 5.00 10.00 7.00 10.00

Case 2a
estimate 299.99 (1.93) 2.00 (0.19) 249.94 (2.08) 10.00 (0.21)

coefficient 300.00 2.00 250.00 10.00

Case 2b
estimate 309.56 (1.91) 2.04 (0.19) 250.45 (2.07) 9.95 (0.21)

coefficient 310.00 2.00 250.00 10.00

Case 2c
estimate 309.54 (1.87) 3.05 (0.19) 280.52 (1.97) 6.95 (0.20)

coefficient 310.00 3.00 280.00 7.00

Case 3a
estimate 306.22 (2.39) 3.38 (0.24) 253.68 (2.36) 9.63 (0.24)

coefficient 310.00 3.00 250.00 10.00

Case 3b
estimate 303.74 (5.20) 4.13 (0.53) 261.08 (5.17) 8.88 (0.52)

coefficient 315.00 3.00 250.00 10.00

Case 3c
estimate 332.77 (46.25) 1.72 (4.63) 317.31 (45.82) 3.27 (4.58)

coefficient 400.00 -5.00 250.00 10.00

Table 11. Group QR estimates related to the 9 considered scenarios (standard deviations of the estimates are given in
parentheses) and corresponding coefficient values (n1=30; n2=70). The method is able to identify the group effects in most

of the scenarios

Group 1 Group2
β0 β1 β0 β1

Case 1a
estimate 5.01 (3.33) 10.00 (0.33) 24.92 (1.78) 10.00 (0.18)

coefficient 5.00 10.00 25.00 10.00

Case 1b
estimate 5.01(3.34) 10.00 (0.33) 14.92 (1.78) 10.00 (0.18)

coefficient 5.00 10.00 15.00 10.00

Case 1c
estimate 5.07 (2.32) 9.99 (0.23) 6.96 (1.65) 10.00 (0.16)

coefficient 5.00 10.00 7.00 10.00

Case 2a
estimate 299.97 (3.33) 2.00 (0.33) 249.92 (1.78) 10.00 (0.18)

coefficient 300.00 2.00 250.00 10.00

Case 2b
estimate 308.81 (3.50) 2.12 (0.35) 250.17 (1.77) 9.98 (0.18)

coefficient 310.00 2.00 250.00 10.00

Case 2c
estimate 308.82 (3.15) 3.12 (0.32) 280.20 (1.72) 6.98 (0.17)

coefficient 310.00 3.00 280.00 7.00

Case 3a
estimate 300.41 (6.06) 3.96 (0.62) 251.60 (1.86) 9.83 (0.19)

coefficient 310.00 3.00 250.00 10.00

Case 3b
estimate 281.37 (10.42) 6.38 (1.11) 253.51 (2.00) 9.64 (0.20)

coefficient 315.00 3.00 250.00 10.00

Case 3c
estimate 266.91 (13.20) 8.30 (1.31) 254.85 (2.28) 9.51 (0.23)

coefficient 400.00 -5.00 250.00 10.00

Let us consider the case of equal cardinality of each group
(n1 = n2 = 70). Table 10 shows for each scenario (rows of
the table) the original coefficients and the average of the
Monte Carlo estimates for both the intercept and the slope
of each model (the standard errors of the estimates are given
in parentheses).

The Monte Carlo distributions of the estimates are re-
ported in Figure 14: each boxplot represents the distribution

for the intercepts (left-hand side) and the slopes (right-hand
side). Stars inside the boxplots represent the true coeffi-
cients.

The first issue worth mentioning is the ability of the
method to detect the two dependence structures in all the
simulated scenarios with the exception of case 3c. The re-
sults also begin to degrade in case 3b, as expected since
the crossing between the group structure starts to become
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Figure 15. Monte Carlo distributions of the estimates
computed on the 1,000 replications for the intercepts

(left-hand side) and the slopes (right-hand side) (n1=30;
n2=70). Stars and segments inside the boxes represent,
respectively, the true coefficients and the Monte Carlo

estimates. The method is able to identify the group effects in
most of the scenarios.

more pronounced. The crossing considered in case 3c is not
detectable using linear QR.

For Case 1 and Case 2, the estimates are instead unbi-
ased and the degree of overlapping (a, b or c) seems not to
affect the ability of the method to identify the true coeffi-
cients.

Also, in the case of unbalanced cardinality of the groups
(Figure 15 and Table 11), the ability of the method to iden-
tify the right coefficients for each group and for each model
still holds for Case 1 and Case 2. It is worth mentioning the
higher variability of the Monte Carlo estimates as shown by

Figure 16. Monte Carlo distributions of the intercept (upper
graph) and slope (lower graph) estimates, varying the sample

size from 100 to 1,000 with step equal to 100 - Case 1
(n1=30% of n; n2=70% of n). The variability of the

estimates falls as the sample size increases.

the standard deviations in Table 11.

The effect of the sample size for the 10 considered sizes
is shown in Figures 16, 17 and 18, depicting for each of the
three considered cases (1, 2 and 3) the distribution of the
intercepts (upper graphs) and the slopes (lower graphs) ac-
cording to the different degrees of overlapping among the
groups (a, b and c). The white boxplots refer to group
1 (n1 = 30% × n), and the black ones represent group 2
(n2 = 70%×n). As expected, in all the simulated scenarios,
the variability of the Monte Carlo distributions falls moving
from the left boxplot (sample size equal to 100) to the right
one (sample size equal to 1,000). Moreover, the variability
of the estimates of the smaller group is always greater than
the variability of the other group. These results confirm the
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Figure 17. Monte Carlo distributions of the intercept (upper
graph) and slope (lower graph) estimates, varying the sample

size from 100 to 1,000 with step equal to 100 - Case 2
(n1=30% of n; n2=70% of n). The variability of the

estimates falls as the sample size increases.

consistency of the proposed approach. Finally, the effect of
the sample size seems to be the same for the different degrees
of overlapping.

7. CONCLUDING REMARKS AND
FURTHER DEVELOPMENTS

The approach introduced in this paper exploits quantile
regression to evaluate if and how group membership affects
the relationship between a response variable and a set of
regressors. The effect of the group membership is identified
through assigning to each group the quantile best represent-
ing its impact on the dependent variable.

The working example on synthetic data has shown the
ability of the proposed method to distinguish the different

Figure 18. Monte Carlo distributions of the intercept (upper
graph) and slope (lower graph) estimates, varying the sample

size from 100 to 1,000 with step equal to 100 - Case 3
(n1=30% of n; n2=70% of n). The variability of the

estimates falls as the sample size increases.

dependence structures characterizing the groups. The syn-
thetic dataset illustrated the interpretation of the results.
The presented simulation study has allowed to appreciate
the robustness of the method with respect to the depen-
dence structure and the degree of separation between the
groups in the case of simple regression models when data
are stratified into two groups. The analysis in the case of
more than two groups, with different distributions of the
variables and multiple regression models, will be examined
in a future simulation study.

The method has been shown in action on a real data ap-
plication, aiming to evaluate the effect of several students’
features on University outcome. The application allows us
to highlight the following distinguishing features of the pro-
posed method:
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• estimation of the group dependence structure: for each
group, a set of regressor coefficients measures the speci-
ficity of the internal dependence structure;

• clarity of the final results: the coefficients associated to
each group follow the same interpretation of any linear
model; furthermore, the best quantile assigned to each
group synthesizes the location of the response condi-
tional distribution on which the group exerts the main
effect;

• availability of classical inferential procedures for testing
differences among the group, since the group effects are
identified using the whole sample.

The procedure estimates the best quantiles through the
mean of rank percentiles of the observed data according
to the group membership. Albeit the best quantiles are
data driven, and this could represent a potential limitation,
in real applications accurate information about the order
statistics of the population are quite rare. To deal with such
an issue, the procedure could be enhanced introducing a pre-
liminary study for assessing the stability of the estimated
best quantiles. Resampling methods are valuable tools at
this end.

A further issue worth of future work concerns the exten-
sion of the proposal to manage longitudinal data where the
role of the grouping variable is played by the time.
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