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Pólya urn model and its application to text
categorization∗

Haibin Zhang, Xianyi Wu
†
, and Xueqin Zhou

Pólya urn model is a basic model widely applied in statis-
tics and text mining. Most algorithms to training the model
are very slow and complicated so that it generally difficult
to fit a Pólya urn model to big data sets. This paper pro-
poses a new minorization-maximization (MM) algorithm for
the maximum likelihood estimation (MLE) of the Pólya urn
model in which the surrogate function is constructed by
means of a simple convex function. The convergence of the
MM algorithm is analyzed and the asymptotic normality of
the corresponding MLE for non-identically distributed ob-
servations is also derived. The performance of this new MM
algorithm is also compared with Newton method and other
MM algorithms. The Pólya urn model is applied to text
categorization. Its superiority to naive Bayes (NB) classi-
fier, k-Nearest Neighbor (k-NN) and support vector machine
(SVM) are demonstrated by a real newsgroup dataset.

Keywords and phrases: Pólya urn model, Minorization-
maximization, Asymptotic properties, Text categorization.

1. INTRODUCTION

Pólya urn model was first devised by Eggenberger and
Pólya in 1923, so as to model spread of contagious dis-
eases, and then widely applied to engineering, natural and
social sciences, and finance, etc. [11, 19]. This model allows
for interpretations in both the view points of frequentist
and Bayesian statistics. Within the frequentist framework,
the model characterizes the process of repeatedly and ran-
domly drawing a ball at each stage from a urn containing K
(K ≥ 2, known) colors of balls, in which the drawn ball is
returned back to the urn along with c new balls of the same
color at each stage. This process endows the urn with a self-
reinforcing property: the rich gets richer. From the Bayesian
perspective, the model characterizes the situation where an
observer knows that the urn contains K colors of balls, but
does not know in advance the proportion of each color in
the urn, of which, the uncertainty is, in turn, modeled by
a Dirichlet distribution, which is also the limiting distribu-
tion of the Pólya urn model interpreted in frequentist per-
spective. Almost all discrete probability distributions can
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be made related to Pólya urn model [17], such as the beta-
binomial distribution and the Dirichlet-multinomial distri-
bution. Dirichlet process (DP) [2, 4] is an extension of the
Pólya urn model which chooses balls from a urn with possi-
bly infinitely may colors of balls.

For parameter estimation, we focus on the estimation
of the unknown prior parameters based on the empirical
Bayesian method. The MLE of Dirichlet process priors was
successfully solved by Korwar and Hollander [9]. Yang and
Wu [24] discussed the case of Dirichlet process priors with
monotone missing data. The maximum likelihood estimate
is difficult to compute for Pólya urn model. Nearchal and
Morel [14, 15] proposed an improved method for the com-
putation of the maximum likelihood estimates. Yu and Shaw
[25] developed an efficient algorithm for accurate computa-
tion of log-likelihood function. However, asymptotic proper-
ties have not been discussed in the literature. In this paper,
the asymptotical normality of the MLE is proved.

There exists no closed-form solution for the MLE of Pólya
urn model so that the numerical methods are required. The
MM algorithm [6, 23] is a powerful tool of the most widely
used optimization methods for numerical problems, creating
a surrogate function in the first M step and maximized in
the second M step. This two step process always drives the
objective function uphill and is iterated until the parame-
ters converge. Expectation-maximization (EM) is a special
case of the MM algorithm and the surrogate function of EM
is conditional expectation. In this article, we propose a new
algorithm to compute the maximum likelihood estimates.
The key step of an MM algorithm is to find a good sur-
rogate function. Instead of a highly complicated surrogate
function for Pólya urn model by Zhou and Lange [26], the
surrogate function in our MM algorithm, based on the con-
vexity of the likelihood function, is simpler and straightfor-
ward which avoids any construction of complex inequalities
in the derivations. To evaluate the performance of this MM
algorithm, we compared it to Newton’s method, MM algo-
rithm and two accelerated MM algorithms: SqMPE1 (mini-
mal polynomial extrapolation) and SqRRE1 (reduced rank
extrapolation) [26]. Here note that, by Hua and Zhang [5],
Newton’s method is equivalent to an EM algorithm.

Text categorization [12] has become a very useful tool
to find relevant information in text mining and has a wide
range of applications including spam filtering, language
identification and sentiment analysis. In this paper, We ap-
ply the Pólya urn model to text categorization. Comparisons
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of its performance to other classifiers such as naive Bayes, k-
NN and SVM show that this new classifier is more powerful.

This paper is organized as what follows. In Section 2, we
make a brief review of the Pólya urn model. The maximum
likelihood estimates of this model are presented in section
3. We compare the method of the MLE to other four dif-
ferent MM algorithms by simulations in Section 4. A few
experiments of the model applied to text categorization are
discussed in Section 5. Section 6 concludes the paper with
some concluding remarks.

2. THE PÓLYA URN MODEL

There are two ways to define the Pólya urn model as
described below.

Initially, an urn contains an unknown number ak ∈
N

+ of color k balls, k = 1, 2, · · · ,K. Denote by a =
(a1, a2, . . . , aK). At each time i = 1, 2, . . . , a ball is ran-
domly picked out from the urn and then returned along
with c new balls of the same color back to the urn, where
c may be a positive, zero or negative integer, as long as it
makes sense.

Denote by ek is the column vector with 1 at the kth
component and zero at the others and introduce a K-
dimensional random binary vector Xi, taking values from
{e1, e2, . . . , eK}, to represent the color of the ball picked
from the urn at time i, so that Xi = ek indicates that a ball
of color k is drawn from the run at stage i.

The stochastic process {Xi, i ≥ 1} or its distribution is
called Pólya urn model. Clearly,

Yn = (Y1, Y2, · · · , YK)′ =
n∑

i=1

Xi

indicates the total numbers of the balls selected in the first
n periods, categorized by colors.

Recall the notation r(s,j) = r(r+s)(r+2s) · · · (r+(j−1)s)

with the convention r(s,0) = 1 and r[j]
�
= r(1,j) = r(r +

1) · · · (r+j−1) for generalized permutation numbers, where
r, s ∈ R and j ∈ N. It is easy to see that r(s,j) = sj( rs )

[j].
Moreover, denote by

(1) α =

∑K
k=1 ak
c

, pk =
ak∑K
k=1 ak

, k = 1, 2, · · · ,K

where, as just stated, c is the number of the balls added
to the urn at every stage. Let p = (p1, p2, · · · , pK)′.
Then, by Mahmoud [11], the joint distribution of X =
(X1,X2, · · · ,Xn) is

Pr(X1 = x1,X2 = x2, · · · ,Xn = xn) =

a
(c,y1)
1 · · · a(c,yK)

K

(a1 + · · ·+ aK)(c,n)
=

(αp1)
[y1] · · · (αpK)[yK ]

α[n]
,

(2)

where y = (y1, yk · · · , yK) =
∑n

i=1 xi ∈ {0, 1, · · · , n}K sat-

isfies
∑K

k=1 yk = n and, hence, the distribution of Yn is

Pr(Yn = y) =

(
n

y1, · · · , yK

)
a
(c,y1)
1 · · · a(c,yK)

K

(a1 + · · ·+ aK)(c,n)

=

(
n

y1, · · · , yK

)
(αp1)

[y1] · · · (αpK)[yK ]

α[n]
,

(3)

where
(

n
y1,y2,··· ,yK

)
is the combinatory number of the sce-

narios of y1, y2, · · · , yK balls of different colors, so that Yn

asymptotically follows a multinomial distribution, i.e.,

lim
α→∞

Pr(Yn = y) =

(
n

y1, · · · , yK

)
py1

1 · · · pyK

K .

With particular specifications, from the Pólya urn model
a hand of extensively discussed models can be induced. For
example, for K = 2, the values c = 0,−1 and 1 correspond
to binomial, hyper-geometric and beta-binomial distribution
respectively, whereas, for K > 2, c = 0 and 1 correspond to
multinomial and Dirichlet-multinomial distribution, respec-
tively. In addition, by (3), a1 = a2 = · · · = aK = c leads to

Pr(Yn = y) =

(
n

y1, · · · , yK

)
(y1)!c

y1 , · · · , (yK)!cyK

K [n]cn

=
1(

K+n−1
K−1

) ,
which is the uniform distribution on {0, 1, · · · , n} when
K = 2.

A few useful properties of Pólya urn model are collected
here for later reference:

1. For every pair of positive integers i, j ∈ N
+, it is easy

to see

E(Xi) = p

and

Cov(Xi,Xj) =

{
diag(p)− pp′ i = j
1

α+1 [diag(p)− pp′] i �= j
.

Hence, the means and variances of the numbers of balls
of the K colors picked from the urn in the first n stages
are accordingly

E(Yn) = np

and

Cov(Yn) = n(1 +
n− 1

α+ 1
)[diag(p)− pp′].

2. The sequence of vectors

Zn
Δ
= (Z1n, · · · , ZKn)

′ = a+ cYn, n ≥ 1,

i.e., the numbers of balls in the urn after the
nth drawing, is a homogeneous Markov chain. Let

ρn
Δ
= (ρ1n, ρ2n, · · · , ρKn)

′ = Zn∑K
k=1 ak+cn

be the pro-

portions of balls of every color after the nth drawing.
Define Fn = σ{X1,X2, . . . ,Xn}. Then (ρn)n≥1 is an
Fn-martingale.
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3. Let

Mn =
Yn

n
.

Then Mn
d→ Dir(a1

c , · · · ,
aK

c ) and ρn
d→

Dir(a1

c , · · · ,
aK

c ), where Dir () indicates a Dirich-
let distribution.

Clearly, Equation (2) simply states that, for every n, the
random vectors in X are exchangeable, but not independent
and identically distributed (i.i.d.) and, hence, allow for an
interpretation in term of Bayesian model. Let Mul(θ) be a
multinoulli distribution with probabilities θ = (θ1, · · · , θK)′

and θ in turn a random vector follows a Dirichlet distri-
bution Dir(a1

c , · · · ,
aK

c ). Then the Pólya urn model can be
generated by the procedure

(4) X1, · · · ,Xn|θ i.i.d.∼ Mul(θ),θ ∼ Dir(αp),

where α is the precision parameter indicating the uncer-
tainty on the random proportion of the balls of all colors and
p the expected proportions of balls, satisfying α ∈ (0,∞)

and
∑K

k=1 pk = 1, pk ≥ 0. The marginal distribution of
(X1,X2, · · · ,Xn) under model (4) is the same as (2) and
the posterior distribution Pr(θ|X1,X2, · · · ,Xn) is a Dirich-
let distribution with parameters αp+Yn. Also, the predic-
tion rule of Pólya urn model is

Pr(Xn+1 = ek|X1, · · · ,Xn) =
αpk + yk
α+ n

=
n

α+ n

yk
n

+
α

α+ n
pk, k = 1, 2, . . . ,K.

(5)

This equivalence states that a Pólya urn model with n
rounds of ball drawing can be considered a two step model:
first draw a K-vector θ from Dir(αp) and then draw n balls
from an urn with replacement in which the proportions of
balls are defined by the vector θ.

The correspondence between the unknown parameters a
in the former way and (α,p) is presented in Equation (1).

3. PARAMETER ESTIMATION

In practice such as text mining, information retrieval and
bioinformatics, observations are frequently organized in a
number,say M , of groups so as to reflect different features
of objects, of which each (with possibly unbalanced size) is
subject to a Pólya urn model. In mathematical language,
the statistical model of the dataset is:

Xi1,Xi2 · · · ,Xini

i.i.d.∼ Mul(θi),

θi
i.i.d∼ Dir(αp), i = 1, · · · ,M.

(6)

Denote by Xi = (Xi1,Xi2 · · · ,Xini), X = (Xi, i =
1, 2, . . . ,M) and Yi = (Yi1, Yi2, . . . , YiK)′ =

∑ni

j=1 Xij , i =
1, 2, · · · ,M , implying that Yi are independent but non-
identically distributed random variables.

3.1 The maximum likelihood estimates

By (2) and (6), with the observations X , up to a constant
independent of the unknown parameters, the log-likelihood
function for p and α is

�(p, α) =
M∑
i=1

[
K∑

k=1

yik−1∑
j=0

log(αpk + j)

−
ni−1∑
j=0

log(α+ j) +

(
ni

yi1, · · · , yiK

)
],

(7)

where the sum
∑−1

j=0 · is treated as zero. For every k,
there exist two extreme cases: the case y1k = · · · = yMk = 0
implies that the MLE is p̂k = 0 and the case yik = ni, i =
1, 2, · · · ,M implies that p̂k = 1. Generally, the likelihood
equations are

(8)

⎧⎪⎨
⎪⎩

∂�(p,α)
∂pk

:=
∑M

i=1

∑yik−1
j=0

α
αpk+j = λ,

∂�(p,α)
∂α :=∑M
i=1

[∑K
k=1

∑yik−1
j=0

pk

αpk+j −
∑ni−1

j=0
1

α+j

]
= 0,

where λ is the Lagrange multiplier. By some algebraic com-
putation, (8) is equivalent to the equations

(9)

M∑
i=1

yik−1∑
j=0

1

αpk + j
=

M∑
i=1

ni−1∑
j=0

1

α+ j
,

where k = 1, · · · ,K and
∑K

k=1 pk = 1. The following lemma
gives the uniqueness of its solution.

Lemma 3.1. Equation (9) has a unique solution.

Proof. We use the contradiction argument. Suppose there
exist two solutions (p, α) and (p′, α′) to Equation (9) such
that, without loss of generality, α > α′.

By equation (8), we have
∑M

i=1

∑yik−1
j=0

α
αpk+j = λ =∑M

i=1

∑yik−1
j=0

α′

α′p′
k+j , then,

M∑
i=1

yik−1∑
j=0

αα′(p′k − pk) + j(α− α′)

(αpk + j)(α′p′k + j)
= 0.

Then p′k < pk because α > α′. The same logic gives rise
to the inequality p′1 < p1, p

′
2 < p2, · · · , p′K < pK . Then

1 =
∑K

i=1 p
′
k <

∑K
i=1 pk = 1, which contradicts the basic

fact. The case α < α′ can be similarly discussed. Thus,
α = α′ and p = p′.

The Hessian matrix H is negative definite under these
unique solutions, so that the maximum likelihood estimates
of (p, α) are denoted by (p̂mle, α̂mle). Note that the Hessian
matrix is

H(p1, p2, · · · , pK−1, α) =

(
H1 C
C ′ �αα

)
,
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where

� H1 = diag(h1, · · · , hK−1) + b1K−11
′
K−1 with hk =

−
∑M

i=1(
∑yik−1

j=0
α2

(αpk+j)2 ), k = 1, 2, . . . ,K − 1 and b =

−
∑M

i=1

∑yiK−1
j=0

α2

(α(1−
∑K−1

k=1 pk)+j)2
,

� C = (�αp1 , �αp2 , · · · , �αpK−1
)′ with �αpk

= −
∑M

i=1 ×
[
∑K−1

k=1

∑yik−1
j=0

αpk

(αpk+j)2 −
∑yiK−1

j=0
α(1−p1−···−pK−1)
(α(1−···−pK−1)+j)2 ], and

� �αα = −
∑M

i=1[
∑K

k=1

∑yik−1
j=0

p2
k

(αpk+j)2 −
∑ni−1

j=0
1

(α+j)2 ].

Clearly, the Hessian matrix H is negative definite if and
only if

�αα − C ′H−1
1 C = �αα −

K−1∑
k=1

h−1
k �2αpk

+
1

b−1 +
∑K−1

k=1 h−1
k

∑
i,j

(h−1
i �αpi)(h

−1
j �αpj ) < 0,

(10)

because H1 is negative definite.

3.2 A new computation algorithm

Obviously, there exists no closed-form solution to the log-
likelihood equations (8) or (9). Hence, we need to numeri-
cally solve them. There exist a few methods, e.g., Newton’s
iteration method and the MM [26] that numerically com-
pute the solution to (8) or (9). The disadvantage of Newton’s
method is the computation of Hessian matrices in each it-
eration, which can be prohibitively expensive for large scale
problems, whereas the MMmethod may require a huge num-
ber of iterations, and higher dimension can dramatically de-
crease the convergence in computation.

We in this paper propose a new MM algorithm that will
be referred to as the N-MM algorithm.

Rewrite log�(p, α) in (7) as

log�(p, α) =

M∑
i=1

[

K∑
k=1

log
Γ(αpk + yik)

Γ(αpk)
+ log

Γ(α)

Γ(α+ ni)

+

(
n

y1, · · · , yK

)
],

of which the key element is the function logΓ(n+x)
Γ(x) of x. The

following lemma provides a lower bound of this function.

Lemma 3.2. For any x, y ≥ 0,

log
Γ(n+ x)

Γ(x)
≥ log

Γ(n+ y)

Γ(y)
+ y[ψ(n+ y)− ψ(y)]log

x

y
,

where ψ(x) = Γ′(x)
Γ(x) .

Proof. For any fixed y, denote by

f(x) = log
Γ(n+ x)

Γ(x)
− y[ψ(n+ y)− ψ(y)]logx, x ∈ (0,∞).

Then the derivative of f(x) is

f ′(x) = [ψ(n+ x)− ψ(x)]− [ψ(n+ y)− ψ(y)]
y

x

=

⎧⎨
⎩

< 0 if x < y,
0 if x = y,
> 0 if x > y.

Hence y is the minimum point of f(x), i.e., for any x ∈
(0,∞), f(x) ≥ f(y). This proves the lemma.

Because −log(·) is a convex function, so is log Γ(α)
Γ(α+ni)

=

−
∑ni

j=1 log(α+ j− 1) of α. Then, for any α(n), supposed to
be obtained in iteration n of certain iteration algorithm, it
follows that

log
Γ(α)

Γ(α+ ni)
≥ log

Γ(α(n))

Γ(α(n) + ni)

+(ψ(α(n) + ni)− ψ(α(n))(α(n) − α).

(11)

In addition, by Lemma 3.2,

log
Γ(αpk + yik)

Γ(αpk)
≥ log

Γ(α(n)pk + yik)

Γ(α(n)pk)

+ α(n)pk[ψ(α
(n)pk + yik)− ψ(α(n)pk)]log

α

α(n)

(12)

and

log
Γ(αpk + yik)

Γ(αpk)
≥ log

Γ(αp
(n)
k + yik)

Γ(αp
(n)
k )

+ αp
(n)
k [ψ(αp

(n)
k + yik)− ψ(αp

(n)
k )]log

pk

p
(n)
k

.

(13)

With the preparations above, in what follows we describe
the N-MM (means new minorization-maximization) algo-
rithm for computing α and p.

Firstly, for given p = p(n), define g(α, α(n)) =∑M
i=1{

∑K
k=1(log

Γ(α(n)pk+yik)
Γ(α(n)pk)

+ α(n)pk[ψ(α
(n)pk + yik) −

ψ(α(n)pk)]log
α

α(n) ) + logΓ(α(n)+ni)
Γ(α(n))

+ (ψ(α(n) + ni) −
ψ(α(n))(α(n) − α) +

(
n

y1,··· ,yK

)
}. Then g(α, α(n)) is a sur-

rogate function for log�(p(n), α) for any α ∈ (0,∞) in the
sense that

log�(p(n), α(n)) = g(α(n), α(n))

and

log�(p(n), α) ≥ g(α, α(n)) for α �= α(n).

The construction of the surrogate function g(α, α(n)) reflects
the first M of the MM algorithm. The second M of the al-
gorithm maximizes g(α, α(n)) rather than log�(p(n), α) to
produce
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α(n+1) =∑M
i=1

∑K
k=1 α

(n)p
(n)
k [ψ(α(n)p

(n)
k + yik)− ψ(α(n)p

(n)
k )]∑M

i=1[ψ(α
(n)) + ni)− ψ(α(n))]

.

(14)

It is thus readily seen that log�(p(n), α(n+1)) ≥
g(α(n+1), α(n)) ≥ g(α(n), α(n)) = log�(p(n), α(n)). Hence the
N-MM iteration never decreases the log-likelihood. A con-
vergence theory of MM algorithms can be found in, e.g.,
Hunter and Lange [6]. Note that Minka [16] derived this
update from a different perspective.

Next, for given α = α(n) and the value p(n) ob-
tained from the previous iteration, define h(p,p(n)) =∑M

i=1{
∑K

k=1[log
Γ(αp

(n)
k +yik)

Γ(αp
(n)
k )

+ αp
(n)
k (ψ(αp

(n)
k + yik) −

ψ(αp
(n)
k ))log pk

p
(n)
k

] + logΓ(α(n)pk+yik)
Γ(α(n)pk)

+ (ψ(α(n)) + ni) −
ψ(α(n))(α(n) − α) +

(
n

y1,··· ,yK

)
}, which plays the role of

a surrogate function for log�(p, α(n)). An application of
Lagrange multiplier to the maximization of h(p,p(n)) under

constraint
∑K

k=1 pk = 1 generates the update rule of the
probability vector p, which is expressed as

p
(n+1)
k

=

∑M
i=1 p

(n)
k [ψ(α(n)p

(n)
k + yik)− ψ(α(n)p

(n)
k )]∑M

i=1

∑K
k=1 p

(n)
k [ψ(α(n)p

(n)
k + yik)− ψ(α(n)p

(n)
k )]

.
(15)

To summarize, with (14) and (15), we have the following
N-MM algorithm.

Algorithm 3.1.

Step 1. Set initial value (p(0), α(0)); the moment estimate
of (p, α) is a general choice of (p(0), α(0)).

Step 2. Update (p(n), α(n)) obtained from the n-th iteration
with (p(n+1), α(n+1)) by (14) and (15).

Step 3. Stop when |log(p(n+1),α(n+1))−log(p(n),α(n))|
|log(p(n),α(n))|+1

< ε.

The required moment estimates of the parameters, which
are used in the algorithm as initial values, can be deduced
by property (a) in Section 2. To verify the convergence of
Algorithm 3.1, one only needs to check the conditions R1-R6
but R4 and C2 in Vaida [20]. Therefore, by Theorem 3 of
Vaida [20], we have the following theorem, of which a proof
is given in Appendix A.

Theorem 3.1. From any initial value (p(0), α(0)),
(p(n), α(n)) → (p(�), α(�)) as n → ∞, for some station-
ary point (p(�), α(�)). Moreover, M(p(�), α(�)) = (p(�), α(�)),
and, for every n, if (p(n), α(n)) �= (p(�), α(�)), then the value
of the likelihood strictly increases.

3.3 Asymptotic normality of the MLE

First note that the treatment of the asymptotic theory
for maximum likelihood estimates with independent but
non-identically distributed random variables can be found

in Leroy et al. [7]. Let φ = (p, α), φ0 be the true value

of the parameter and φ̂ = φ̂(Y1, · · · , YM ) the solution to

likelihood equations (8). Suppose that φ̂ is a consistent
estimator of φ0.

Theorem 3.2. The random vector
√
n(φ̂ − φ0) is asymp-

totically normal with zero mean and covariance matrix
I−1(φ0).

The proof is given in Appendix B.

4. SIMULATION STUDY

In this section, we report a simulation study for Pólya Urn
Model which was conducted to compare the performance
of five different algorithms: N-MM, Newton’s method, gen-
eral MM algorithm and two accelerated MM algorithms:
SqMPE1 (minimal polynomial extrapolation) and SqRRE1
(reduced rank extrapolation) (all can be found in Zhou and
Lang, 2010). The simulation was proceeded under the fol-
lowing setting:

• Every group had the same sample sizes ni = 500 and
1000 and parameter values α = 0.01, 0.1, 1;

• M took two levels M = 100 and M = 1000;
• K took three levels K = 5, 10, 50;
• p’s were generated by random sampling;
• ε = 10−6.

The average running times in seconds and mean squared
errors of estimates (MSE) for each algorithm are reported in
Table 1, where, the boldfaced numbers indicate that the av-
erage computation time of N-MM algorithm is much shorter
than other algorithms for the most cases. For low dimen-
sions, the MSE of N-MM algorithm did not show obvious
advantage over other algorithms, whereas the MSE of N-
MM algorithm had huge advantage over other algorithms
when the dimension is high.

The difference of the convergence rate between N-MM
and other other algorithms are depicted in Figure 1 for a
set of simulated data under the setting α = 0.1, K = 5,
M = 100 and ni = 1000. The curves in the figure show
that N-MM converges more quickly than MM and the other
three methods.

5. AN APPLICATION TO TEXT
CLASSIFICATION

Text categorization that assigns a document to a text cat-
egory is quite important in retrieving information from text.
Commonly employed classifiers include Naive Bayes (NB),
k-Nearest Neighbor (k-NN) and support vector machine
(SVM). In this section, we report an experiment in which the
Pólya urn model was applied to text categorization of the 20
Newsgroups dataset (available at http://www.qwone.com/
∼jason/20Newsgroups/) and the performance was compared
with the classifiers naive Bayes, k-NN and SVM, using pre-
cision, recall and F-score as performance measures.

Pólya urn model and its application to text categorization 231

http://www.qwone.com/~jason/20Newsgroups/
http://www.qwone.com/~jason/20Newsgroups/


Table 1. The average running times in seconds (mean squared error of estimates are in parentheses), averaged over 500 runs

K=5 K=10 K=50
Methods (n, α) M = 102 M = 103 M = 102 M = 103 M = 102 M = 103

Newton’s Method 0.061 (0.014) 0.041 (0.003) 0.035 (0.017) 0.049 (0.009) 0.069 (0.18) 0.088 (0.173)
MM 0.027 (0.016) 0.048 (0.003) 0.629 (0.015) 0.594 (0.008) 0.239 (0.175) 0.751 (0.158)

SqMPE1 (500,0.01) 0.039 (0.015) 0.033 (0.003) 0.077 (0.016) 0.731 (0.008) 0.264 (0.176) 0.812 (0.163)
SqMPE2 0.032 (0.013) 0.032 (0.003) 0.769 (0.016) 0.730 (0.008) 0.262 (0.176) 0.806 (0.162)
N-MM 0.012 (0.013) 0.021 (0.003) 0.014 (0.017) 0.025 (0.009) 0.008 (0.172) 0.039 (0.153)

Newton’s Method 0.074 (0.007) 0.083 (0.004) 0.095 (0.011) 0.101 (0.011) 0.115 (0.184) 0.184 (0.225)
MM 0.593 (0.008) 0.742 (0.004) 0.861 (0.010) 0.961 (0.010) 2.109 (0.167) 2.224 (0.200)

SqMPE1 (1000, 0.01) 0.406 (0.008) 0.589 (0.004) 1.157 (0.010) 1.284 (0.010) 2.309 (0.168) 2.320 ( 0.207)
SqMPE2 0.389 (0.008) 0.485 (0.004) 1.068 (0.010) 1.289 (0.010) 2.321 (0.168) 2.356 (0.207
N-MM 0.013 (0.007) 0.025 (0.004) 0.027 (0.011) 0.029 (0.011) 0.034 (0.163) 0.048 (0.185)

Newton’s Method 0.026 (0.135) 0.037 (0.132) 0.033 (0.959) 0.044 (0.829) 0.071 (32.329) 0.088 (34.926)
MM 0.124 (0.153) 0.135 (0.150) 0.138 (0.943) 0.174 (0.765) 0.184 (31.358) 0.190 (33.885)

SqMPE1 (500, 0.1) 0.138 (0.144) 0.148 (0.144) 0.141 (0.948) 0.179 (0.783) 0.179 (31.649) 0.185 (34.245)
SqMPE2 0.006 (0.134) 0.140 (0.144) 0.141 (0.948) 0.178 (0.783) 0.178 (31.649) 0.182 (34.206)
N-MM 0.012 (0.131) 0.133 (0.136) 0.014 (0.958) 0.025 (0.826) 0.027 (31.235) 0.052 (34.817)

Newton’s Method 0.032 (0.143) 0.041 (0.135) 0.059 (1.039) 0.065 (1.100) 0.086 (35.882) 0.108 (44.126)
MM 0.329 (0.171) 0.327 (0.161) 0.379 (0.951) 0.365 (0.984) 0.608 (34.376) 0.608 (42.307)

SqMPE1 (1000, 0.1) 0.407 (0.162) 0.401 (0.153) 0.385 (0.986) 0.419 (1.018) 0.617 (34.883) 0.693 (43.216)
SqMPE2 0.408 (0.162) 0.393 (0.153) 0.382 (0.976) 0.384 (1.018) 0.635 (34.834) 0.677 (42.864)
N-MM 0.019 (0.144) 0.023 (0.136) 0.024 (1.035) 0.027 (1.094) 0.033 (33.779) 0.067 (42.968)

Newton’s Method 0.026 (36.235) 0.036 (21.583) 0.039 (198.281) 0.045 (195.178) 0.067 (401.471) 0.049 (434.337)
MM 0.087 (38.133) 0.088 (24.232) 0.101 (184.037) 0.119 (181.361) 0.117 (391.368) 0.141 (423.128)

SqMPE1 (500, 0.5) 0.114 (37.531) 0.108 (23.447) 0.120 (188.475) 0.114 (185.383) 0.113 (394.593) 0.126 (426.752)
SqMPE2 0.114 (37.531) 0.102 (23.449) 0.121 (188.179) 0.135 (185.383) 0.176 (395.647) 0.192 (427.695)
N-MM 0.022 (36.676) 0.029 (22.130) 0.013 (187.179) 0.033 (190.784) 0.040 (385.335) 0.139 (421.850)

Newton’s Method 0.037 (30.668) 0.041 (32.437) 0.066 (108.808) 0.053 (228.878) 0.009 (754.356) 0.064 (681.823)
MM 0.294 (30.586) 0.319 (35.010) 0.295 (154.702) 0.293 (254.120) 0.536 (647.361) 0.377 (653.377)

SqMPE1 (1000, 0.5) 0.393 (33.306) 0.390 (33.306) 0.282 (256.478) 0.352 (253.492) 0.436 (670.577) 0.392 (647.091)
SqMPE2 0.369 (37.770) 0.390 (33.356) 0.343 (170.517) 0.347 (264.245) 0.456 (670.647) 0.389 (651.467)
N-MM 0.035 (32.784) 0.042 (30.346) 0.043 (191.243) 0.052 (159.229) 0.09 (604.465) 0.194 (627.590)

Figure 1. Algorithmic iterates for five methods.

5.1 Data description

Consisting of approximately 20,000 newsgroup docu-
ments, the 20 Newsgroups Text dataset is a publicly acces-
sible and well-known dataset that is maintained by UCI’s
Knowledge Discovery in Database Archive for public use
in testing text mining methodologies. The data, as the
name indicates, are organized in 20 different newsgroups,
with each corresponding to a different topic, as listed in
the following Table 2. Some of the newsgroups are very
closely related to each other, while others are highly un-
related.

We conducted three experiments, of which every ana-
lyzed a particular subset from the 20 Newsgroups Text.
The first was carried out for two categories: sci.electronics
and sci.med, the second dealt with three subgroups:
talk.religion.misc, alt.atheism and soc.religion.christian,
and in the last, the subgroups selected for analysis were
five categories: comp.graphics, comp.os.ms windows.misc,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware and
comp.windows.x.
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Table 2. Groups for 20 newsgroups

Group Group

alt.atheism rec.sport.hockey
comp.graphics sci.crypt

comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med
comp.sys.mac.hardware sci.space

comp.windows.x soc.religion.christian
misc.forsale talk.politics.guns
rec.autos talk.politics.mideast

rec.motorcycles talk.politics.misc
rec.sport.baseball talk.religion.misc

5.2 Preprocessing and representation of the
text

The main aim of preprocessing the text is to reduce the
problem’s dimensionality by controlling the size of vocabu-
lary. Four commonly used preprocessing steps of text classi-
fication were tokenization, normalization, stop word removal
and stemming. Tokenization splits a text into words or other
meaningful parts. Normalization includes lowercase conver-
sion, words discard for those shorter than 3 or longer than 20
characters, and numbers and non-letter characters removal.
Stop words were the words that are commonly encountered
in texts with no importance in analysis. Stemming is used
to identify the root/stem of a word.

After preprocessing of the datasets, we conducted a
feature selection by the simple baseline method variance
threshold that removed all features whose variance didn’t
meet some threshold. Then, we got the document vectors
by “bag-of-words” assumptions [1]. The bag-of-words was
a simplified representation, under which, a document was
represented by the bag of its words, disregarding grammar
and even word order.

5.3 Categorization methods and evaluation
measures

In this subsection, some categorization methods and eval-
uation measures on text classification are concisely recalled.

5.3.1 Pólya urn classifier

Madsen et.al. [10] proposed to use Pólya urn to model
documents. First fix a vocabulary of size K. Every docu-
ment in the corpus is simply represented as a sequence of
words without any consideration of such language aspects
as grammar, paragraph structure and word order, etc. With
the vocabulary, every word can be expressed as a vector from
the set {e1, e2, . . . , eK}. To be specific, we are dealing with
M documents di = (wi1, · · · , wini), i = 1, · · · ,M , in which
wij takes a value from {e1, e2, . . . , eK} so as to indicate the
position of a word in the vocabulary and ni indicates the
length of the document: If the jth word of di is identical to
the kth of the vocabulary, then wij = ek.

Figure 2. Graphical model representation of Pólya urn model
for classification.

For those corpora, in which documents are all short es-
says talking about a single topic, the order of words in a
document is, at least approximately, irrelevant and a doc-
ument di can be thought of as an iid sample of ni words
from an multinomial distribution over the vocabulary. The
distribution varies over documents according to a Dirich-
let distribution. Each class is talking about one topic and a
topic is a distribution on the vocabulary according to a la-
tent Dirichlet allocation [3], each document choosing a class
with probability P (ci = c) = qc, where c = 1, · · ·C and∑C

c=1 qc = 1. Note that P (wij = ek|ci = c) = θck is the
weight for word k of class c. Denote by θj = (θj1, · · · , θjK),
q = (q1, q2, · · · , qC), p = (p1, · · · , pK). The document gen-
erating model can be characterized by

(1). Draw θj , j = 1, 2, · · · i.i.d.∼ Dir(αp),

(2). Draw ci
i.i.d.∼ Mul(q), i = 1, 2, · · · ,M ,

(3). Draw wi1, · · · , wini |ci, {θj}∞j=1
i.i.d.∼ Mul(θci).

Parameter vector αp can be interpreted as the initial num-
ber of balls of each color in the urn. According to the equa-
tions (2) and (6), the document is modeled as:

Pr(di, ci = c|α,p) = qc

(
ni

yi1, · · · , yiK

)
(αp1)

[yi1] · · · (αpK)[yiK ]

α[n]
,

where yi = (yi1, · · · , yiK) denotes the frequencies of words
appeared in document i. The Pólya urn classifier model is
represented as a probabilistic graphical model in figure 2.
As the figure makes clear, there are three levels to the Pólya
urn classifier model representation. The parameters α and
p are corpus-level parameters, assumed to be sampled once
in the process of generating a corpus. The variables θj are
document-level variables, sampled once per document. Fi-
nally, the variables ci are observed category variables and
the variables wdn are observed word-level variables deter-
mined by the category variables and document-level vari-
ables. For a document d in the test set, Rennie [18] proposed
three classifiers: normal (N), complement (C) and mixed
(M), all of which assign the document to the class with the
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Table 3. Evaluation Measures

True Classification False Classification

Predicted True Classification TP (true positive) FP (false positive)
Predicted false Classification FN (false negative) TN (true negative)

Table 4. Performance of classification algorithms

Data Set

Two categories Three categories Five categories
PU BN KNN SVM PU BN KNN SVM PU BN KNN SVM

Percision 0.945 0.903 0.612 0.783 0.790 0.658 0.529 0.587 0.664 0.557 0.318 0.439

Recall 0.831 0.727 0.588 0.564 0.773 0.645 0.490 0.564 0.587 0.527 0.279 0.428

F score 0.884 0.806 0.600 0.557 0.776 0.649 0.426 0.557 0.586 0.530 0.272 0.429

highest posterior probability. We choose the normal as the
classifier, i.e. argmaxc[log q̂c +

∑K
k=1 fk log θ̂ck], where fk is

the word frequency in the document d.
The weight for each class is estimated as a function of α

and p coefficients by

θ̂ck =
Tck + α̂mlep̂mle

k

Tc + α̂mle
,

where Tck is the frequency word k appears in the documents
of class c and Tc is the total number of words occurrences in
class c in the test set. p̂mle

k and α̂mle denote the maximum
likelihood estimates of pk and α in Pólya urn model, respec-
tively. Nc is the total number of documents occurrences in
class c and M is the number of the documents in the train
test. The estimate q̂c is

Nc

M , which is the maximum likelihood
estimate.

5.3.2 Contrast methods

Naive Bayes classifier has been widely used for text cat-
egorization [12]. The best class in NB classification is the
most likely or maximum a posteriori, k-Nearest Neighbor is
one of the most popular algorithms for text categorization
[13]. In the classification process, k nearest documents to
the test one in the training set are determined firstly. Then,
the predication can be made according to the category dis-
tribution among these k nearest neighbors. Support vector
machine is the supervised machine learning technique [23]
and was first applied to text categorization by Joachims [8].
If the training data are linearly separable, SVM is trained
via the optimization problem.

5.3.3 Evaluation measures

For a classification task, the precision and recall can be
defined by the following contingency table 3. The Table
should be signed clearly. Precision and recall are then de-
fined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

A measure that combines precision and recall is the har-
monic mean of precision and recall, the F-score

F = 2
Precision ∗ Recall
Precision + Recall

.

5.4 Results comparisons

The results of the classification algorithms and their per-
formance are listed in Table 4, in which the boldfaced num-
bers indicate the best among the experiments under the cer-
tain measures. It is shown that Pólya’s urn classifier is better
than naive Bayes classifier, k-Nearest Neighbor and support
vector machine under the performance measures precision,
recall and F-score.

6. DISCUSSION

This paper addressed Pólya’s urn model and its applica-
tion in text classification for parameter estimation. Because
of the absence of a closed-form solution for the MLE, one
needs to find MLE by means of numerical methods. To this
end, based on the convexity of the functions, a new MM
method is proposed which does not need to compute Hes-
sian matrices as Newton’s iteration method did and con-
struct complex inequalities as the existing MM did [26]. We
proved the convergence of the new MM method and the
asymptotic normality of MLE. To examine the performance
of this new MM algorithm, comparisons were made to New-
ton’s method and a few other MM algorithms. The N-MM
algorithm for Pólya Urn Model can not only have compu-
tational efficiency but also preserve accuracy from simula-
tion studies. In experimental analysis, we reported applica-
tions in text categorization of 20 newsgroup data set by the
Pólya’s urn model, comparing to naive Bayes classifier, k-
Nearest Neighbor and Support Vector Machine. We found
that Pólya’s urn classifier are better than naive Bayes clas-
sifier, k-Nearest Neighbor and support vector machine.

APPENDIX A

A.1 Proof of Theorem 3.1

Let Si = {0, 1, · · · , ni} be the support of the probability
distribution function Pi = Pr(Yi = yi) which is defined in
(3) and independent of the vector of unknown φ.
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We verify conditions R1-R6 except R4 and C2 in Vaida
[20] as what follows:

R1. Since
∑

k=1 pk = 1, 0 < pk < 1 and α ∈ (0,∞), then
(0, 1)K−1 × (0,∞) ∈ R

K .
R2. It is obviously that log�(p, α) is differentiable with con-

tinuous derivative.
R5. The surrogate functions g(α, α(n)) and h(p,p(n)) are

differentiable with continuous derivative.
C2. We only verify C2 because R3 and R6 can easily be

established by C2.
By lemma 1, Equation (9) has a unique solution. Since
the MM iteration never decreases the log-likelihood
function, there exists a unique global maximum of
the log-likelihood. Then Ω = {(p′, α′) ∈ (0, 1)K−1 ×
(0,∞) ∈ R

K : log�(p′, α′) > log�(p, α)} is compact.
Because there only exists one stationary point, then
the set S is isolated.

A.2 Proof of Theorem 3.2

It suffices to verify Assumptions 3-11 in Leroy et al.
(2016) one by one as what follows.

1. Assumption 3. The all partial derivatives exist by direct
calculations.

2. Assumption 4 and Assumption 5. Note that ∂Pi

∂pk
=

αPi[
∑yik

j=1
1

αpk+j−1−
∑n−yik

j=1
1

α(1−p1−···−pK−1)+j ], where

k = 1, 2, · · · ,K − 1 and i = 1, · · · ,M . By the method
of induction in ni,

(1). For ni = 1, it is readily seen that
∑

yi

∂Pi

∂pk
= 0.

(2). Suppose the desired result holds for every ni =
m,i.e.,

∑
yi

∂Pi

∂pk
=

∑
yi

αPi[
∑yik

j=1
1

αpk+j−1 −∑m−yik

j=1
1

α(1−p1−···−pK−1)+j ] = 0.

(3). For ni = m + 1, there are three possibilities:
y′ik = yik + 1, y′iK = yiK + 1 and one of
yi1, · · · , yik−1, yik+1, · · · , yiK−1 increases by 1.

Therefore,
∑

y′
i

∂P ′
i

∂pk
= (m + 1)αpk+y

α+n

∑
yi
( ∂Pi

∂pk
+

Pi
α

αpk+y ) + (m + 1)α(1−pk)+y
α+n

∑
yi
( ∂Pi

∂pk
−

Pi
α

α(1−pk)+y ) + (m + 1)αp�+yi�

α+n

∑
yi

∂Pi

∂pk
=

0, where � = 1, · · · , k − 1, k + 1, · · · , k − 1.

Then we have
∑

yi

∂Pi

∂pk
= 1

∂pk
(
∑

yi
Pi). By simi-

lar method,
∑

yi

∂Pi

∂α = 1
∂α (

∑
yi

Pi).
∑

yi

∂Pi

∂pj∂α
=

1
∂pj∂α

(
∑

yi
Pi),

∑
yi

∂Pi

∂pk∂pj
= 1

∂pk∂pj
(
∑

yi
Pi) and∑

yi

∂Pi

∂α∂α = 1
∂α∂α (

∑
yi

Pi), j, k = 1, · · · ,K − 1.
3. Assumption 6-8. The convergence in probability in

Assumptions 6, 7 and 8 are ensured by the weak
law of large numbers. Note that E(∂logPi

∂pk
) =

αE[
∑yik

j=1
1

αpk+j−1 −
∑ni−yik

j=1
1

α(1−p1−···−pK−1)+j ] =

∂Pi

∂pk
= 0. Then, limM→∞

∑M
i=1 E(

∂logPi
∂pk

)

M = 0. Similarly,

we also have limM→∞
∑M

i=1 E(
∂logPi

∂α )

M = 0.

In addition,

E(
∂logPi

∂pk∂p�
)

= −α2E(

yiK−1∑
j=0

1

α(1− p1 − · · · − pK−1) + j)2
)

+

{
−α2E[

∑yik−1
j=0

1
(αpk+j)2 , k = �

0, k �= �

E[

yik−1∑
j=0

1

(αpk + j)2
]

=
∑
yi

Pi

yik−1∑
j=0

1

(αpk + j)2

=

ni∑
j=0

Pi(Yi1 = yi1, · · · , Yik > j, · · · , YiK = yiK)

(αpk + j)2
.

Let si =
∑ni−1

j=0
1

(α+j)2 and tik =∑ni−1
j=0

P (Yi1=yi1 ,··· ,Yik>j,··· ,YiK=yiK)

(αpk+j)2 .

Then, we have that

E(
∂logPi

∂pk∂p�
) =

{
−α2[tik + tiK ] k = �
−α2tiK k �= �

.

Similarly, E(∂logPi

∂pk∂α
) = −α[

∑K−1
k=1 tikpk − tiKpK ] and

E(∂logPi

∂α∂α ) = −[
∑K

k=1 tikp
2
k − si]. Next, we show

that limM→∞
∑M

i=1 E(
∂logPi
∂αα )

M exists and other cases are
similar. Since smax

M
√
r1r2 · rM = M

√
s1s2 · · · sM ≤∑M

i=1 si
M ≤ smax, where smax = max{s1, s2, · · · , sM} and

ri =
si

smax
, i = 1, · · · ,M . By limM→∞ M

√
r1r2 · rM = 1

and squeeze theorem, limM→∞
∑M

i=1 si
M = smax. By sim-

ilar method, limM→∞
∑M

i=1 tik
M = tmax,k, k = 1, · · · ,K,

where tmaxk = max{t1k, t2k, · · · , tMk}. And

E(
∂logPi

∂pk∂p�∂pq
)

= −2α3E(

yiK−1∑
j=0

1

(α(1− p1 − · · · − pK−1) + j)3
)

+

{
−2α3E[

∑yik−1
j=0

1
(αpk+j)3 ], k = � = q

0, others

It is easy to show that limM→∞
1
M

∑M
i=1 E( ∂logPi

∂pk∂p�∂pq
)

exists.
4. Assumption 9. It is easy to derive it by Assumption 8.
5. Assumption 10. First note that I(pk, p�) =

limM→∞
1
M

∑M
i=1 E(− ∂logPi

∂pk∂p�
), I(pk, α) = limM→∞

1
M ×∑M

i=1 E(−∂logPi

∂pk∂α
) and I(α, α) = limM→∞

1
M

∑M
i=1 =
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E(−∂logPi

∂α∂α ). This gives the Fisher information matrix

I(p1, · · · , pK−1, α) =

(
I(p1, · · · , pK−1) D

D
′

I(αα)

)
,

where I(p1, · · ·, pK−1)=α2[diag{tmax1, · · ·, tmaxK−1}+
tmaxK11′], Di = α[

∑K−1
k=1 tmaxkpk − tmaxKpK ]1

and I(αα) =
∑K

k=1(tmaxkp
2
k − smax). Therefore,

I−1(p1, · · · , pK−1) =
diag{ 1

tmax1
,··· , 1

tmaxK−1
}

α2 [1 −
1∑K

k=1
1

tmaxk

11′diag{ 1
tmax1

, · · · , 1
tmaxK−1

}]. Next we show

that the Fisher information matrix is positive definite.
Because I(p1, · · · , pK−1) is a positive definite matrix,
I(p1, · · · , pK−1, α) is positive definite if and only if
I(αα) − D

′
I−1(p1, p2, · · · , pK−1)D > 0. For K = 2,

let p1 = p, then p2 = 1 − p, I(αα) − D
′
I−1(p)D =

[tmax1p
2 + tmax2(1− p)2 − smax]− 1

tmax1+tmax2
[tmax1p−

tmax2(1 − p)]2 = 1
tmax1+tmax2

[tmax1tmax2 − (tmax1 +
tmax2)smax]. Because α + j > αp + j, it fol-
lows that 1

α+j < 1
αp+j . We need to show

tmax1tmax2− (tmax1+ tmax2)smax > 0. On the one hand,
tmax1

2 −smax =
∑nmax−1

j=0
P (Ymax1>j)
2(αp+j)2 −

∑nmax−1
j=0

1
(α+j)2 >∑nmax−1

j=0
P (Ymax1>j)
2(αp+j)2 −

∑nmax−1
j=0

P (Ymax1>j)
2(α+j)2 >∑nmax−1

j=0 P (Ymax1 > j)[ 1
2(αp+j)2 − 1

2(α+j)2 ] > 0.

On the other hand, by similar computation, we have
tmax2

2 − smax > 0. Thus, I(p, α) is a positive definite
matrix. For K > 2, by the similar method, I(φ)
is a positive definite matrix. This completes the
examination of Assumption 10.

6. Assumption 11. According to Assumption 4, let Bik =
∂Pi

∂pk
and Bi = ∂Pi

∂α , then Ai =
∑K

k=1 B
2
ik + B2

i are

bounded. For M enough large, E[AiI{Ai > ε
√
M}] = 0,

where I{A} is the indicator of set A.
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