
Statistics and Its Interface Volume 12 (2019) 355–363

Optimal treatment assignment of multiple
treatments with analysis of variance
decomposition
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∗
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Personalized medicine to identify individualized treat-
ment assignment rules has received increasing interest.
When there are more than two treatments, the outcome
weighted learning framework builds an optimal assignment
rule via the skill of reproducing kernel Hilbert space. One
main challenge is that the interpretation of covariates is diffi-
cult since the solution is a black-box classifier. Consequently,
we establish a structured optimal treatment assignment rule
with the functional analysis of variance decomposition. The
method promotes the sparsity of the final solution by using
structured kernel function and an l1 penalty term. Mean-
while, we propose an easy-handling iterative procedure to
overcome the calculation problem. Convergence of the risk
function for resulting estimator is shown in the paper. The
finite sample performance of the proposed method is demon-
strated by simulation studies and a real data analysis.

Keywords and phrases: Personalized medicine, Treat-
ment assignment rule, Analysis of variance decomposition,
Structured multi-category support vector machine.

1. INTRODUCTION

Personalized medicine means providing the right patient
with the right drug at the right dose at the right time using
individual patient characteristics, including patient demo-
graphics, genomic information, treatment and outcome his-
tory and so on. The significant heterogeneity across patients
in response to treatments is the reason why we should con-
sider personalized medicine. A drug that works for a major-
ity of individuals may not work for a subset of patients with
certain characteristics. For example, molecularly targeted
cancer drugs are only effective for patients with tumors ex-
pressing targets [3], and significant heterogeneity exists in
responses among patients with different levels of psychiatric
symptoms [14]. At recent, this topic is becoming an increas-
ingly popular research topic among clinical and intervention
scientists [15, 8] who try to find an individualized treatment
assignment rule to optimize patient responses.

The classical approach to search for an optimal treatment
assignment rule involves assuming a parametric or semi-
parametric model. However, the model assumptions may not
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be valid due to the complex disease mechanism and individ-
ual heterogeneity [6, 20, 12, 18], while these methods em-
phasize prediction accuracy of response model rather than
directly constructing an optimal treatment assignment rule.
An alternative approach for the binary treatments tries to
construct an treatment assignment rule by maximizing the
expected clinical outcome within a weighted classification
framework [25, 24, 23, 5], called outcome weighted learning.
For the case of multiple treatments, [13] proposed an ex-
tended outcome weighted learning framework to construct
the treatment assignment rule under equal or unequal loss,
together with the Fisher consistency and some asymptotic
properties. This approach spares modeling of the covariate
main effects and covariate-treatment interactions.

The motivation for this article is the interpretability of
covariates. The flexibility of support vector machines [21, 16]
in outcome weighted learning is to transform the covariates
into the high-dimensional feature space, and the hyperplane
in the high-dimensional space can distinguish the different
classes well. Recent applications often involve a large num-
ber of covariates. However, this kind of transformation is
hard to clearly indicated in the applications. The solution
of the treatment assignment rule is usually expressed as a
linear combination of representers which resulting in a black-
box classifier, while identifying important predictors is often
crucial in practical applications.

In this article, we propose a method to estimate the opti-
mal treatment rule with clear interpretability of covariates
for the case of multiple treatments. In Section 2, we first
turn the optimal treatment assignment rule that maximiz-
ing the expected clinical outcome into minimizing a risk re-
lated with a convex vector hinge loss weighted by clinical
outcomes. Furthermore, motivated by the COSSO method
[11] that produces sparse solutions, we use structured ker-
nel function [9] and an additional l1 penalty term to enhance
the interpretability of covariates and promote the sparsity of
the final solution. Similar to the LASSO method proposed
by [19], the l1 penalty term achieves the effect of variable
selection by shrinking the weight of less relevant variables to
zero. We then follow the idea in [10] that applies the tech-
nique of Reproducing Kernel Hilbert Space (RKHS) to turn
the problem into quadratic programming problems for easy
computation. To overcome the calculation shortcoming, we
propose an easyhandling iterative procedure which guaran-
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tees convergence under given tuning parameters. In Section
3, our proposed method is compared with some other recent
methods through simulation studies. The proposed method
is also applied to a breast cancer behavioral study with four
treatment arms in Section 4. We conclude with a discussion
of our proposed method and future work in Section 5.

2. METHODOLOGY

2.1 Outcome weighted learning for
estimating optimal treatment rule

Assume data are collected from a randomized trial with
k different treatments indexed by A ∈ {1, . . . , k}. Let X
be a p-dimensional covariate vector associated with a clin-
ical outcome. Let Y (j) be the clinical outcome when treat-
ment A = j, j = 1, ..., k. Since each patient receives one
and only one treatment, the observed clinical outcome is
Y =

∑k
j=1 I{A=j}Y

(j), where I is the indicator function.
We observe (Yi, Xi, Ai), i = 1, ..., n in a given randomized
trial, which are independent and identically distributed as
(Y,X,A). From the definition, we can see that the treatment
assignment A is related with Y , but A is independent of X
and Y (1), ..., Y (k). And we assume that a large value of the
clinical outcome is preferred.

Based on the observed data, our statistical goal is to
construct an treatment assignment rule D(X) ∈ {1, . . . , k}.
Thus a future patient with collected covariate information
X will receive the personalized treatment D(X) that leads
to a larger clinical outcome Y (D). Since we assume the larger
Y (D) the better, D should be constructed to maximize the
expected outcome E(Y (D)), where E is the expectation with
respect to the distribution of (Y,X,A). Using the indepen-
dence between A and (X,Y (1), ..., Y (k)), we can find that

E(Y (D)) = E

⎧⎨⎩
k∑

j=1

I{D(X)=j}Y
(j)

⎫⎬⎭
= E

⎧⎨⎩
k∑

j=1

I{D(X)=j}Y
(j)

∣∣∣∣A = j

⎫⎬⎭
=

k∑
j=1

E

{
I{D(X)=j}Y

π(j)

∣∣∣∣A = j

}
P (A = j)

= E

[
E

{
I{D(X)=A}Y

π(T )

∣∣∣∣A}]
= E

{
I{T=D(X)}Y

π(A)

}
= E

{
Y

π(A)

}
− E

{
I{A �=D(X)}Y

π(A)

}
= E

{
Y

π(A)

}
−

k∑
j=1

E{I{D(X) �=j}E(Y |A = j,X)},

where π(A) is a function of A with π(j) = P (A = j). The
optimal treatment assignment rule D∗(X) is defined as the

rule that maximizes E(Y (D)), i.e.,

(1)

D∗ = argmin
D

E

{
I{A �=D(X)}Y

π(A)

}
= argmin

D

k∑
j=1

E{I{D(X) �=j}E(Y |A = j,X)}.

We can see that D∗(X) = argmaxj≤kE(Y |A = j,X). That
is the reason why traditional regression based approaches to
estimate the optimal rule try to construct a good estimator
of E(Y |A = j,X), j = 1, ..., k. To avoid the estimation of
conditional expectations as we discussed in the introduction,
we focus on finding the optimal assignment rule by directly
solving the minimization problem (1) via outcome weighted
learning method.

Note that the optimal rule D∗(X) does not change if we
replace Y by Y −c(X) for any function c(X). Consequently,
we can assume that E(Y |A = j,X) ≥ 0 for all j = 1, ..., k.
Since each treatment assignment ruleD(X) ∈ {1, . . . , k} can
be represented by argmaxj≤k fj(X) for functions f1, ..., fk
on X with the sum-to-zero constraint

∑k
j=1 fj(X) = 0, we

can use the observed data (Yi, Xi, Ai), i = 1, ..., n to estimate
the risk function in (1) by

(2)

1

n

n∑
i=1

Yi

π(Ai)
I{Ai �=D(Xi)} =

1

n

n∑
i=1

Yi

π(Ai)
I{Ai �=argmaxj≤k fj(Xi)}

where
∑k

j=1 fj(Xi) = 0. However, it is difficult to solve the
minimization problem over f = (f1, ..., fk) due to the dis-
continuity and nonconvexity. To alleviate these difficulties,
we use the vector hinge loss [13] and apply the technique
of Reproducing Kernel Hilbert Space to estimate the treat-
ment assignment rule.

Consider f = (f1, . . . , fk) with fj(x) = hj(x) + bj , x ∈
X , where bj ’s are constants and hj ’s are in the RKHS HK

associated with a positive definite kernel function K on X ×
X , the closure of linear span of the set of functions {K(y, ·) :
y ∈ X}. Then the minimization problem in (2) turns into

(3)
1

n

n∑
i=1

Yi

π(Ai)

k∑
j=1

{
fj(Xi) +

1

k − 1

}
+

+
λ

2

k∑
j=1

‖hj‖2HK

over f with fj(x) = hj(x) + bj , x ∈ X , hj ∈ HK , and∑k
j=1 fj(x) = 0, where ‖ · ‖2HK

is the squared norm in HK

generated by the inner product 〈Kx,Ky〉K = K(x, y), Kx =
K(x, ·), and λ is a tuning parameter.

2.2 Optimal treatment assignment rule via
the functional analysis of variance
decomposition

Unfortunately, the solution of (3) is a black-box function.
We adopt the functional analysis of variance decomposition
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to enhance the interpretability of covariates. First we re-
view the functional analysis of variance decomposition as a
structured representation of a multivariate function for de-
scribing a relationship f between covariates x = (x1, ..., xp)
and the response y, where x ∈ X = X1 × . . . × Xp with
Xα ∈ Xα. The analysis of variance decomposition of f is

(4) f(X) = b+

p∑
α=1

fα(xα) +
∑
α<β

fαβ(xα, xβ) + · · · ,

where b is a constant, and the functional components fS
for S ⊆ {1, ..., p} satisfy side conditions for identifiability.
The component fα can be viewed as the main effect of xα,
fαβ as the two-factor interaction of xα and xβ , and so on.
For simplicity and estimation accuracy of f , the analysis of
variance decomposition is truncated after lower-order inter-
action terms in practice.

The smooth function space that facilitates the analysis of
variance decomposition in (4) is briefly described as below.
Assume that the function f is in H, a reproducing kernel
Hilbert space of functions defined on X . Details about repro-
ducing kernel Hilbert spaces and the general properties can
be found in [2]. Then the space H is constructed as a ten-
sor product of functional subspace Hα, a reproducing kernel
Hilbert space of functions on Hα for α = 1, . . . , p, which can
be further decomposed as {1} ⊕ H̄α, where H̄α is the sub-
space of Hα orthogonal to {1}. The space H is given by

(5)

H = ⊗p
α=1({1} ⊕ H̄α)

= {1} ⊕
p∑

α=1

H̄α ⊕
∑
α<β

(H̄α ⊗ H̄β)⊕ . . .

Then the corresponding simplification of f ∈ H is yield by
truncating for higher-order interactions. Relabel the remain-
ing truncated subspaces as Fv, for v = 1, . . . , d, and let the
resulting reproducing kernel Hilbert space be F = {1} ⊕ F̄ ,
where F̄ = ⊕d

v=1Fv. If f ∈ F , then f is represented as a sum
of functional components. Using F , the general regulariza-
tion approach turns into finding f̂ ∈ F so as to minimize

1

n

n∑
i=1

L(Yi, f(Xi)) + λ
∑
v

θ−1
v ‖P vf‖2,

where L is the loss function and ‖.‖ is the norm defined on
the reproducing kernel Hilbert space F , P v is the orthogonal
projection operator on to Fv, and θv ≥ 0. The minimizer is
taken to satisfy ‖P vf‖2 = 0 when θv = 0. The penalty
term

∑
v θ

−1
v ‖P vf‖2 with rescaling parameters θv entails

the following reproducing kernel for F̄ :

(6) K(s, t) =

d∑
v=1

θvKv(s, t)

for s, t ∈ X , where Kv is the reproducing kernel for Fv. The
tuning parameter θv amounts to rescale of the component

spaces Fv, and both the set of θv values and λ affect the
model complexity.

For structured representation of f , we consider the anal-
ysis of variance decomposition corresponding to functional
subspaces in (5). Suppose that fj = bj + hj(x) ∈ {1} ⊕ F̄ ,

j = 1, . . . , k. Then hj can be expressed as hj =
∑d

v=1 hvj

with hvj ∈ Fv. Similar to the LASSO method in linear mod-
els that produces sparse solutions, we impose an additional
l1 penalty on the sum of the parameters that can further
force those covariates with negligible weights to be zero.
The rescaling parameter θv for Fv allows a systematic way
of selecting the most relevant components to Y . Thus, the
regularization method tries to find the optimal rule so as to
minimize

(7)

1

n

n∑
i=1

Yi

π(Ai)

k∑
j=1

{
fj(Xi) +

1

k − 1

}
+

+
λ

2

k∑
j=1

(
d∑

v=1

θ−1
v ‖hvj‖2HKv

)
+ λθ

d∑
v=1

θv

s.t.,

θv ≥ 0, v = 1, . . . , d.

By the representer theorem, its solution admits a finite-
dimensional representation. For fixed θ = (θ1, . . . , θd)

T , sub-
stituting the rescaled reproducing kernel in (6) into the

finite-dimensional representation, each coordinate of f̂ is
given by

(8) f̂j(x) = bj +

n∑
i=1

cij

d∑
v=1

θvKv(xi, x),

with ĥvj = θv
∑n

i=1 cijKv(xi, x) as the vth functional com-
ponent.

Let Kv be a n×n matrix with (l,m)th entry Kv(xl, xm)
and set b = (b1, . . . , bk)

T , c = (c1, . . . , ck) with cj =
(c1j , . . . , cnj)

T . By the reproducing property and (8),∑d
v=1 θ

−1
v ‖ĥvj‖2HKv

= cTj (
∑d

v=1 θvKv)cj . Given θ, let Kθ =∑v
d=1 θvKv. Then the risk function in (7) can be rewritten

as a finite-dimensional problem of finding θ and (b, c) that
minimizes

(9)

L(θ, b, c) =
1

n

n∑
i=1

Yi

π(Ai)

k∑
j=1

{
fj(Xi) +

1

k − 1

}
+

+
λ

2

k∑
j=1

cTj Kθcj + λθ

d∑
v=1

θv

s.t.,

(10)

θv ≥ 0, v = 1, ..., d,

k∑
j=1

(bj1+Kθcj) = 0,
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where 1 is a vector whose components are all equal to one
and 0 is a vector whose components are all equal to zero,
for two vectors a and b, a = b means that all components of
a − b are all zero. This finite-dimensional problem involves
θ and (b, c) jointly. We use the iterative scheme in terms of
two well-defined convex optimization problems referred to
below as the c-step and θ-step for finding f̂ . First, initialize
θ(0) = (1, . . . , 1)T and (b(0), c(0)) = argminL(θ(0), b, c). At
the mth stage (m = 1, 2, . . .), carry out the following two
steps:

• θ-step: find θ(m) to minimize L(θ, b(m−1), c(m−1)) with
(b(m−1), c(m−1)) fixed;

• c-step: find (b(m), c(m)) to minimize L(θ(m), b, c) with
θ(m) fixed.

Note that the optimization problem in c-step reduces to
the support vector machine with the reproducing kernel Kθ

which is clearly explained in [13]. For the optimization prob-
lem in θ-step, let ξj = (ξ1j , . . . , ξnj)

T be the non-negative
slack variables, j = 1, . . . , k. Set ξ = (ξ1, . . . , ξk) and let W
be the n × n diagonal matrix whose ith diagonal entry is
Yi/π(Ai). For fixed b and c, θ-step turns into an easy han-
dling linear programming problem to find θ that minimizes

(11) L(θ, ξ) =
1

n

k∑
j=1

Wξj +

d∑
v=1

θv

⎧⎨⎩λ

2

k∑
j=1

cTj Kvcj + λθ

⎫⎬⎭ ,

s.t.,

(12)

bj1+

d∑
v=1

θvKvcj + (k − 1)−11 ≤ ξj , j = 1, ..., k,

ξj ≥ 0, j = 1, ..., k,

θv ≥ 0, v = 1, ..., d.

Let f̂ (m) denote the minimizer at the mth step.We can
see that f̂ (0) is solution of the support vector machine with
θ(0). We now show the asymptotic property of the risk corre-
sponding to f̂ (m) as generated by the alternating algorithm.

Theorem 1. Given λ and λθ, the algorithm yields
a sequence of f̂ (m) with feasible (θ(m), b(m), c(m))
and nonincreasing L(θ(m), b(m), c(m)); that is,
L(θ(m+1), b(m+1), c(m+1)) ≤ L(θ(m), b(m), c(m)).

Corollary 1. Given λ and λθ, the sequence of
L(θ(m), b(m), c(m)) generated by the algorithm converges as
m → ∞.

Actually, the original minimization problem (1) amounts
to compare the magnitude of E(Y |A = j,X) with differ-
ent treatments, i.e., treating different treatments equally.
Nowadays we always need to consider weighted versions of
the conditional expectations in some medical problems. For
example, if treatment j is more expensive, toxic, or labori-
ous than treatment l, then we may only prefer A = j when

E(Y |A = j,X) is larger than E(Y |A = l, X) to a certain
factor. We can extend our approach to weighted version via
the 0−q loss. More details can be found in [13]. Although the
outcome weighted learning method in our approach shares
that in [13], the recognized contribution of our work is the
functional variance decomposition to produce sparse solu-
tions, which improves the interpretability of prediction.

3. SIMULATION RESULTS

Some simulation studies were conducted to evaluate the
finite sample performance of the proposed method and com-
pare the proposed method with the following two meth-
ods. The first method, called one versus others, applies the
method for two treatments in [25] to compare treatment
j versus all others, j = 1, ..., k, and then picks the best
in these k comparisons as the optimal solution. The sec-
ond method is the outcome weighted learning framework
for multiple treatments proposed by [13] that shares good
theoretical properties for the case of k ≥ 2. To evaluate
the performance of these three methods, we generated a in-
dependent validation data set following exactly the same
procedure as the training data set except that the sample
size is 1,000. The performances are assessed by two criteria:
the misclassification error rate of the estimated optimal rule
compared with the true optimal rule and the magnitude of
the excess risk R(f̂)−R∗ of rule f̂ . We consider the follow-
ing eight scenarios. The training dataset was generated as
follows.

Scenario 1:
X = (X(1), X(2)) and X(1) and X(2) were indepen-
dently generated from uniform distribution U(0, 1);
the treatment A was generated from {1, 2, 3} inde-
pendently of covariates with equal probability 1/3.
The true optimal treatment A∗ is 1 if X(1) ≤ 1/3, 3
if X(1) ≥ 2/3, and 2; otherwise, the outcome variable
Y (A) = 2I{A∗=A} +X(2).

Scenario 2:
X = (X(1), ..., X(4)) and X(ν)’s were generated
independently from U(0, 1); the actual treat-
ment and the optimal treatment were generated
the same as in the first scenario; the outcome
Y (A) = 2I{A∗=A} + (X(1))2 + exp{−X(3) − X(4) + ε},
where ε is a noise term generated independently with
X from U(0, 1).

Scenario 3:
It is the same as scenario 1 except that
Y = I{A∗=A} +X(2).

Scenario 4:
It is the same as the second scenario except that X(3) is
binary from a Bernoulli distribution with success proba-
bility 0.5 and the outcome Y = I{A∗=A}+1+(0.2X(1)+

0.25X(2))2 −X(3).
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Table 1. Two-dimensional three-treatments example in Scenario 1, n = 200. Vector hinge loss minimizing values of λθ at the
θ-step and λ at the c-step

Iteration log2(λ̂θ) (CV: hinge) log2(λ̂θ) (CV: hinge) θ̂1 θ̂2

0 -16 (1.8329) 1 1
1 -2 (1.8212) -16 (1.8172) 1 0
2 -2 (1.8516) -16 (1.8190) 1 0
3 -2 (1.8649) -16 (1.8210) 1 0

Scenario 5:
It is the same as scenario 1 except that the true optimal
treatment A∗ is 1 if 0.5(X(2) − 0.5)2 −X(1) +0.65 < 0,
3 if 0.5(X(2) − 0.5)2 +X(1) − 0.4 > 0, and 2 otherwise.

Scenario 6:
It is the same as scenario 1 except that the true optimal
treatment is the same as scenario 1 with probability
0.9 and randomly assigned to the other treatments
with probability 0.1.

Scenario 7:
The covariate and outcome were generated the same
as in scenario 1; the treatment A was generated from
{1, 2, 3, 4} independently of covariates with equal
probability 1/4; the true optimal treatment A∗ is 1 if
X(1) ≤ 1/4, 2 if 1/4 < X(1) ≤ 2/4, 3 or 4 similarly.

Scenario 8:
It is the same as scenario 7 except that the true optimal
treatment A∗ is 1 if 0.5(X(2)−0.5)2−X(1)+0.7 < 0, 3
if 0.3 < 0.5(X(2) − 0.5)2 +X(1) ≤ 0.55, 4 if 0.5(X(2) −
0.5)2 +X(1) ≤ 0.3, and 2 otherwise.

There are three treatments in scenarios 1-6, but with
various optimal treatment structures and different outcome
structures. In particular, Scenario 1 considers a simple lin-
ear boundary with one covariate for the optimal treatment.
Scenario 2 involves a more complex main effect structure
compared to Scenario 1. Thus we can examine the impact of
the main effect when the optimal treatment structure is the
same as that in Scenario 1. Scenario 3 examines the effect of
reduced treatment interaction. Scenario 4 is the same as Sce-
nario 2 but a binary covariate is used instead of all contin-
uous covariate. Scenario 5 has a nonlinear boundary in the
optimal rule with two covariates. We apply a non-zero Bayes
error, 0.1, in Scenario 6. The training data sample sizes are
100, 150, and 200 in all these six scenarios. The remaining
scenarios 7-8 involves four treatments. In particular, Sce-
nario 7 has a linear boundary similar to Scenario 1 and Sce-
nario 8 has a nonlinear boundary similar to Scenario 5. For
scenarios 7-8, we consider sample sizes 200, 300, and 400.

Although any positive definite function K can be cho-
sen as a reproducing kernel in the proposed method, we
consider only flexible and structured kernels that facili-
tate the analysis of variance decomposition. Since reproduc-
ing kernels are closed under tensor summation and mul-

tiplication, we only define a univariate kernel function.
For example, the spline kernel on the unit interval [0, 1],
K(s, t) = k1(s)k1(t) + k2(s)k2(t) − k4(|s − t|) for s and
t ∈ [0, 1], where k1(t) = t − 1

2 , k2(t) = (k21(t) − 1
12 )/2 and

k4(t) = (k41(t)−k21(t)/2+
7

240 )/24; more details can be found
in [22]. For any covariate, we can do transformation so that
it lies in [0, 1] via

x̃α =
xα −min(xα)

max(xα)−min(xα)
,

where min(xα) and max(xα) are the minimum and the max-
imum values of the covariate in the training data set.

The tuning parameters λ and λθ are chosen by cross val-
idation so as to minimize the prediction error determined
by a loss function. We applied a five fold cross-validation
procedure to tune the parameters. We adopted a one-step
update procedure that alternates tuning of λ at the c-step
and of λθ at the θ-step which is summarised as follows. Let
Ê denote a generic estimate of prediction error as a function
of λ and λθ. The procedure consists of the following steps.

• Step 1. Initialize:

– θ-step: initialize θ̂(0);

– c-step: find the initial multicategory support vec-
tor machine solution (̂b(0), ĉ(0)) that minimizes

L(θ̂(0), b, c) in (9) at λ̂(0), which is a minimizer

of Ê(λ).

• Step 2. Update:

– θ-step: find the rescaling parameters θ(1) to mini-

mize L(θ, b(0), c(0)) at λ̂
(1)
θ , a minimizer of Ê(λθ);

– c-step: find the one-step updated solution
(b(1), c(1)) to minimize L(θ(1), b, c) at λ̂(1), a new

minimizer of Ê(λ).

To show the reasonability of the one-step update proce-
dure, we carried out a few more iterations in Scenario 1 and
found that there is no noticeable change to the θ estimates,
and the solutions from further iterations were virtually the
same. Table 1 shows how the optimal pairs (λ̂θ, λ̂) changed
and stabilized as we tuned λ at each c-step and λθ at each
θ-step in the subsequent iterations. At the first θ-step, we
have eliminated the irrelevant components and have cor-
rectly chosen the relevant components. This would result in
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Figure 1. Two-dimensional three-treatments example in
Scenario 1, n = 200. The trajectory for θ̂1 corresponding to
X1 is denoted by circle, that for θ̂2 corresponding to X2 by
triangle. The value of (θ̂1, θ̂2) = (1, 0) at vector hinge loss

largest minimizer λ̂
(1)
θ = 2−5 is indicated by dashed line.

change of λ at the first c-step that completes the first iter-
ation. Thus, the second θ-step might change little from θ̂(1)

because the second θ-step just reapplies the covariate se-
lection procedure with relevant features only, which results
in almost redundant subsequent iterations. This empirically
justifies the one-step update procedure with sequential tun-
ing as described in Section 2.

In order to explain the optimal treatment assignment
rule based on the structured multi-class support vector ma-
chines, we use Figure 1 to show how the importance of co-
variates is reflected in Scenario 1. We first generate the train-
ing data set as described in Scenario 1 with sample size 200,
including the randomized treatment A, covariates X and
the corresponding outcome Y . Applying the proposed struc-
tured optimal treatment assignment rule to Scenario 1, we
can draw the pathplot for the scaling parameters θ1 and θ2
as shown in Figure 1 along with the change of λθ. The larger
of λθ, the smaller the scale of parameters θ1 and θ2, i.e., the

smaller the number of non-zero parameters. At λ̂
(1)
θ = 2−5,

the largest minimizer of vector hinge loss, (θ̂1, θ̂2) = (1, 0)

with θ̂1 being the only non-zero parameter. This indicates
that the covariate X1 indeed is an important factor affecting
the optimal treatment assignment rule while the covariate
X2 does not play any role in estimating the optimal assign-
ment rule. By using the structured support vector machine,
we can have intuitive grasp of the importance of the covari-
ates which is necessary in practical applications.

We finally get the optimal treatment assignment rule as
shown in Figure 2. The two black lines are the obtained
estimated optimal treatment rule that corresponds to dif-
ferent treatments on each side of the two lines. The color of
dashed lines represents the corresponding estimated treat-
ment assignment and the color of each circle represents the
theoretical optimal treatment. The dashed lines and circles
sharing the same color indicates accurate assignment esti-
mation, while the different color represents the misclassifica-
tion. Obviously, the overall assignment is quite good. Almost

Figure 2. Two-dimensional three-treatments example of
Scenario 1, n = 200. The two black lines are the obtained
estimated optimal treatment rule corresponding to different

treatments on each side of the two lines.

all the samples can be allocated to the theoretical optimal
treatment. Similarly, the estimated optimal treatment as-
signment rule can be found for each scenario. But it is diffi-
cult to visualize intuitively as Figure 2 when the dimension
of covariates is more than 2.

For each scenario, the number of simulation runs is 500.
The results of misclassification rates and excess risk val-
ues can be found in Table 2 and Table 3. Some main con-
clusions are as follows: our proposed structured approach
performs better than the other two methods in terms of
smaller misclassification rate, excess risk, and lower stan-
dard deviation for each scenario; the improvement by using
the proposed method may be substantial, e.g., the sample
size n = 100 for the case in Scenario 2; the performance of
the proposed method increases significantly as the sample
size increases and the misclassification error rate and ex-
cess risk are quite small when the sample size is 200, which
means that our method does not require a large number of
samples to achieve high accuracy.

4. ANALYSIS OF A BREAST CANCER
SCREENING STUDY

The breast cancer mammography screening for women on
a regular manner is a common medical screening in attempt
to achieve an earlier stage diagnosis and thus can signifi-
cantly reduce mortality [1]. The women in the United States
at normal risk for breast cancer is recommended to perform
the mammography screening every two years in women be-
tween the ages of 50 and 74 [17]. The percentage of women
in the U.S. who have had at least one mammogram is in-
creasing; however, the rate for routine repeat screening is
poor. The data are from a National Institute of Nursing
Research (NINR) randomized controlled trial that included
female subjects who were non-adherent to mammography
screening guidelines at baseline, i.e., no mammogram in the
year prior to baseline. One primary interest of the study was
to test the efficacy of four tailored interventions to promote
mammography screening at different post-baseline. The four
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Table 2. Misclassification rates approximated by validation data set of size 1,000, averaged over 500 simulation runs; the
numbers in parenthesis are standard deviations over 500 simulation runs

k = 3 treatments

Scenario Method n = 100 n = 150 n = 200

1: linear boundary Proposed 0.07 (0.06) 0.05 (0.04) 0.04 (0.02)
Lou 0.10 (0.08) 0.06 (0.04) 0.04 (0.03)
One vs others 0.13 (0.07) 0.09 (0.05) 0.06 (0.04)

2: complex main effect Proposed 0.15 (0.15) 0.09 (0.07) 0.07 (0.06)
Lou 0.25 (0.14) 0.15 (0.11) 0.10 (0.09)
One vs others 0.34 (0.11) 0.24 (0.10) 0.18 (0.09)

3: reduced interaction effect Proposed 0.14 (0.13) 0.08 (0.07) 0.06 (0.05)
Lou 0.19 (0.13) 0.10 (0.08) 0.07 (0.06)
One vs others 0.21 (0.10) 0.14 (0.08) 0.10 (0.07)

4: binary covariate Proposed 0.21 (0.17) 0.12 (0.11) 0.08 (0.06)
Lou 0.24 (0.15) 0.16 (0.13) 0.10 (0.09)
One vs others 0.28 (0.11) 0.22 (0.10) 0.16 (0.08)

5: nonlinear boundary Proposed 0.11 (0.05) 0.08 (0.03) 0.07 (0.02)
Lou 0.13 (0.07) 0.09 (0.04) 0.08 (0.02)
One vs others 0.15 (0.07) 0.11 (0.05) 0.09 (0.03)

6: positive Bayes error Proposed 0.16 (0.08) 0.12 (0.04) 0.11 (0.03)
Lou 0.18 (0.09) 0.13 (0.06) 0.11 (0.04)
One vs others 0.21 (0.08) 0.17 (0.06) 0.14 (0.04)

k = 4 treatments

Scenario Method n = 200 n = 300 n = 400

7: linear boundary Proposed 0.07 (0.04) 0.05 (0.03) 0.04 (0.03)
Lou 0.08 (0.06) 0.05 (0.03) 0.04 (0.02)
One vs others 0.18 (0.08) 0.11 (0.05) 0.07 (0.04)

8: nonlinear boundary Proposed 0.14 (0.05) 0.11 (0.03) 0.11 (0.02)
Lou 0.14 (0.06) 0.11 (0.02) 0.11 (0.02)
One vs others 0.21 (0.07) 0.14 (0.05) 0.12 (0.03)

interventions are (i) usual care (control), (ii) phone tailor-
ing, (iii) mail tailoring, and (iv) mail and phone tailoring.
These four interventions were based on sound theoretical
models of behavior change (e.g., Health Belief Model). Vari-
ables in these theoretical models that promote mammogra-
phy screening are measures of unobserved psychological con-
structs or beliefs. Specifically, psychological beliefs such as
perceived benefits, barriers, self-efficacy, fear, susceptibility,
and fatalism are outcomes in this study. And the tailoring
interventions for women who are non-adherent to mammog-
raphy screening guidelines at baseline have been shown to
significantly increase mammography screening [4].

This data set has 1,244 women who had no mammogram
in the year prior to baseline. After excluding some women
with missing observations, we finally use a subset with 870
women for analysis. Among them, 253, 200, 237, and 180
women were assigned to usual care, phone tailoring, mail
tailoring, and mail and phone tailoring, respectively. We use
the 8 baseline variables, age (Age), race (Race), married or
living with partner (Married), number of years had mammo-
gram in last 5 years (Yearmam), doctor/nurse ever said to
have a mammogram (Docspoke), currently working (Work),
family history of breast cancer (Famhist) and whether more

than high school (Educ) as predictors. These eight predic-
tors are all collected in this trial and we want to use pro-
posed method to identify important covariates and improve
the interpretability. Since subjects were surveyed once pre-
intervention and three times post-intervention about their
mammography screening behavior, we independently treat
the differences between average at three post baseline time
points and the corresponding baseline values as outcomes.

To illustrate the application of our proposed optimal
treatment assignment rule, we consider the mentioned NINR
data set, which actually motivates our study. Based on our
simulation experience, the sample size does not need to be
too large. Hence we randomly select 400 observations to con-
struct the treatment rule and use the remaining for valida-
tion. We repeat this procedure independently 500 replica-
tions to evaluate our method and identify important predic-
tors. The results are presented in Table 4, which provides
the screening rate for collected covariates under different
outcomes over the 500 splits. We find that the number of
years had mammogram in last 5 years (Yearmam) and age
(Age) show great importance than others. The percentage
of screening by using proposed method is more than 60%
for Yearman and Age, which is consistent with the screen-
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Table 3. Excess risk values approximated by validation data set of size 1,000, averaged over 500 simulation runs; the numbers
in parenthesis are standard deviations over 500 simulation runs

k = 3 treatments

Scenario Method n = 100 n = 150 n = 200

1: linear boundary Proposed 0.15 (0.13) 0.11 (0.08) 0.08 (0.05)
Lou 0.20 (0.16) 0.12 (0.09) 0.09 (0.07)
One vs others 0.26 (0.15) 0.18 (0.10) 0.13 (0.09)

2: complex main effect Proposed 0.29 (0.30) 0.17 (0.14) 0.13 (0.12)
Lou 0.50 (0.29) 0.30 (0.23) 0.19 (0.18)
One vs others 0.67 (0.23) 0.48 (0.20) 0.36 (0.18)

3: reduced interaction effect Proposed 0.15 (0.13) 0.08 (0.07) 0.06 (0.05)
Lou 0.19 (0.13) 0.10 (0.09) 0.07 (0.06)
One vs others 0.21 (0.11) 0.14 (0.08) 0.10 (0.07)

4: binary covariate Proposed 0.21 (0.17) 0.12 (0.12) 0.07 (0.07)
Lou 0.18 (0.15) 0.10 (0.14) 0.04 (0.09)
One vs others 0.22 (0.11) 0.16 (0.11) 0.10 (0.09)

5: nonlinear boundary Proposed 0.21 (0.11) 0.17 (0.06) 0.15 (0.05)
Lou 0.26 (0.15) 0.19 (0.09) 0.16 (0.06)
One vs others 0.30 (0.15) 0.22 (0.10) 0.17 (0.08)

6: positive Bayes error Proposed 0.31 (0.15) 0.24 (0.09) 0.22 (0.06)
Lou 0.35 (0.18) 0.26 (0.12) 0.23 (0.08)
One vs others 0.42 (0.16) 0.34 (0.13) 0.29 (0.09)

k = 4 treatments

Scenario Method n = 200 n = 300 n = 400

7: linear boundary Proposed 0.14 (0.09) 0.11 (0.07) 0.09 (0.06)
Lou 0.17 (0.13) 0.10 (0.06) 0.08 (0.05)
One vs others 0.37 (0.16) 0.22 (0.12) 0.14 (0.08)

8: nonlinear boundary Proposed 0.27 (0.11) 0.23 (0.07) 0.22 (0.05)
Lou 0.29 (0.13) 0.22 (0.06) 0.22 (0.06)
One vs others 0.43 (0.14) 0.28 (0.11) 0.23 (0.08)

Table 4. The screening rate for collected covariates under different outcomes

Outcome Yearmam Age Famhist Work Race Married Educ Docspoke

Fear 0.79 0.66 0.46 0.37 0.37 0.39 0.32 0.34
Self efficacy 0.79 0.65 0.52 0.38 0.39 0.30 0.33 0.28
Barriers 0.75 0.70 0.48 0.41 0.37 0.29 0.28 0.32
Susceptibility 0.70 0.53 0.43 0.35 0.34 0.31 0.30 0.27
Benefits 0.69 0.63 0.42 0.35 0.32 0.30 0.29 0.29
Fatalism 0.68 0.60 0.45 0.40 0.34 0.34 0.32 0.32

ing results in [13]. The advantage of proposed method with
the l1 penalty is that we can have a intuitive judgment of
the ranking for every covariates.

5. DISCUSSION

In this paper, we propose a structured outcome weighted
learning procedure to provide a sparse nonparametric ap-
proach to search the optimal individualized treatment rule
with multiple treatments, which shows superiority over
other existing methods in the simulation studies. By using
the structured kernel function and the l1 penalty term, the
structured approach has strong interpretation of covariates
and shows which prognostic variables dominate in the as-

signment rule. To overcome the calculation shortcoming, we
use a iterative scheme in terms of two well-defined convex
optimization problems and we show that the resulting esti-
mator shares the risk convergence. In practice, we adopt a
one-step update procedure with reasonability shown in the
simulation.

We can find in the simulation results that a large main
effect of covariates may have negative impact on searching
the optimal treatment assignment rule. If we try to modify
the outcome weight, for example, [26] and [7] considered
replacing Yi by some type of residual which does not change
consistency properties, then the finite sample performance
of the rule may be better. The corresponding disadvantage is
the model fitting to obtain residuals. We need to balance the
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accuracy and model assumption in such a case. Furthermore,
a dynamic treatment regime is a set of decision rules that
determines the next treatment based on each individual’s
available characteristics and treatment history up to that
point. Extension to dynamic treatment assignment rule can
be an interesting direction for further research.
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