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Network systems are commonly encountered and investi-
gated in various disciplines, and network dynamics that re-
fer to collective node state changes over time are one area of
particular interests of many researchers. Recently, dynamic
structural equation model (DSEM) has been introduced into
the field of network dynamics as a powerful statistical in-
ference tool. In this study, in recognition that parameter
identifiability is the prerequisite of reliable parameter infer-
ence, a general and efficient approach is proposed for the
first time to address the structural parameter identifiabil-
ity problem of linear DSEMs for cyclic networks. The key
idea is to transform a DSEM to an equivalent frequency do-
main representation, then Mason’s gain is employed to deal
with feedback loops in cyclic networks when generating iden-
tifiability equations. The identifiability result of every un-
known parameter is obtained with the identifiability matrix
method. The proposed approach is computationally efficient
because no symbolic or expensive numerical computations
are involved, and can be applicable to a broad range of linear
DSEMs. Finally, selected benchmark examples of brain net-
works, social networks and molecular interaction networks
are given to illustrate the potential application of the pro-
posed method, and we compare the results from DSEMs,
state-transition models and ordinary differential equation
models.
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1. INTRODUCTION

Network systems are common in a variety of research
fields, including chemistry, physics, economics, computer
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science, sociology and biology [1, 2]. One particularly inter-
esting research question on network systems is to quantita-
tively understand network dynamics, where network status
evolves over time [3, 4]. The evolution of network status may
refer to the temporal changes in network structures (e.g.,
edge connection), node states, or both. In this study, net-
work structures are assumed remaining the same for simplic-
ity so the dynamics here only refer to the collective changes
of node statuses [1, 5]. Considering that accurate and reli-
able estimation of key parameter values is critical to quanti-
tatively characterizing network dynamics [1, 5], it has been
repeatedly stressed in many previous studies [6] that pa-
rameter identifiability analyses should be performed before
any statistical inference techniques are applied to obtain pa-
rameter estimates. However, to the best knowledge of our
authors, structural identifiability analysis (SIA) of complex
dynamic systems like cyclic networks is a largely underex-
plored problem, and this study makes an attempt to fill the
methodological gap.

Graphical models have long been used to mathemati-
cally describe networks and associated characteristics. Since
graphical models refer to a broad range of mathematical for-
mulations [6, 7, 8], limited by resources, here we focus on
the structural equation model (SEM) representation of net-
works. SEM is a powerful statistical tool employed in many
research fields such as economics [9, 10], environmental sci-
ence [11], multivariate statistics [12, 13], social science [14]
and biomedical engineering [15, 16]. While many previous
studies considered static SEMs, lots of real systems are dy-
namic in nature such that dynamic SEM (DSEM) has been
necessarily proposed to, e.g., accommodate time course ob-
servations [11, 14, 17, 18]. Different from ordinary differen-
tial equation (ODE) models [1, 5, 6], DSEMs are discrete;
also, DSEMs are more general than state-transition mod-
els [19, 20] since dynamic SEMs can accommodate both
concurrent effects and memory effects [9, 12, 14]. There-
fore, DSEMs are deemed as a powerful and flexible math-
ematic language for describing complex dynamic network
systems.

The purpose of SIA is to verify whether unknown model
parameters can be unambiguously determined for a given
model structure and observation strategy. The importance
of SIA has been increasingly recognized because it is the
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prerequisite of obtaining reliable parameter estimates from
complex dynamic models and likely to occur due to model
misspecification and/or lack of information (e.g., latent vari-
ables or unobserved local structures) [6, 21]. Particularly
for DSEMs, while the parameter estimation techniques have
drawn significant attention of certain researchers [10, 22], to
the best knowledge of our authors, this is the first study that
makes an attempt to address the SIA problem of DSEMs.
With that said, there exist a number of previous studies on
the SIA problem for static SEMs, but many of them are
for recursive static SEMs that contain no feedback loops.
For example, several theoretical criteria or computational
methods have been established for examining model struc-
tural identifiability, such as Brito and Pearl’s conditions for
bow-free models [23], Pearl’s back door and front door crite-
ria [24], Tian’s accessory set approach [25], Brito and Pearl’s
auxiliary sets condition [26], Tian’s partial regression analy-
sis technique [27], and Wang’s identifiability matrix method
[28, 29, 30]. For static SEMs with feedback loops (i.e., non-
recursive SEMs), only a few previous studies are publically
available, including the computer algebra approach that is
computationally inhibitive [31] and the cycle simplification
method that treats a cycle as two connected paths in a
directed acyclic graph [28, 32]. Since none of the existing
works above is particularly for DSEMs, it necessarily calls
for the development of novel SIA techniques applicable to
such models.

DSEMs refer to a broad range of models that differ in
assumptions and structures, and it is impossible to explore
all such models in one study. Therefore, here we only fo-
cus on DSEMs that are: 1) linear; 2) with time-invariant
parameters; 3) with equal time intervals between observa-
tions; and 4) with short-term memory (i.e., a finite-order
Markov chain). In this study, a general and efficient ap-
proach is proposed to determine the structural identifia-
bility of DSEMs with (or without) latent variables, feed-
back loops, and an arbitrary-order Markov property. The
basic idea is to transform a DSEM to its frequency do-
main representation via z-transform, then employ Mason’s
gain [33] to handle cyclic networks and generate identifia-
bility equations. Then the identifiability of each unknown
parameter is determined with Wang’s identifiability matrix
method [28]. The proposed method involves no symbolical
or expensive numerical computation, and is thus efficient. A
theoretical result is obtained for a special class of DSEMs
that contain only self-loops but no latent variables. Also,
we have selected three benchmark models from brain net-
works, social networks and biological networks to illustrate
the application of the proposed method in practice, and dis-
cussed the differences in the identifiability analysis results
between DSEMs and ordinary differential equation (ODE)
models.

This article is organized as follows. The SIA problem of
DSEMs is defined in Section 2. We then introduce the iden-

Figure 1. A simple DSEM example. An orange edge
represents the interaction between two nodes at the same

time point, and a light blue edge represents the node variable
dependence at two consecutive time points.

tifiability equation generation method that incorporates z-
transform and Mason’s gain in Section 3. How to determine
the identifiability of every single model parameter based on
the generated identifiability equations is described in Sec-
tion 4. We also compare DSEMs and ODE models and
present some benchmark models and applications in Sec-
tion 5. Conclusions and discussions are presented in Sec-
tion 6.

2. PROBLEM DEFINITION

Let Y t
i denote the observed value of variable Yi at time

t. Without distinguishing endogenous from exogenous vari-
ables, a linear DSEM can be given as follows

(1) Y t
i =

∑
j �=i

cijY
t
j +

∑
j

(
o∑

k=1

bkijY
t−k
j

)
+ εti, i, j = 1, · · · , n,

where cij denotes the concurrent effect of variable Yj on Yi

at time t, bkij denotes the delayed effect of variable Yj on Yi

after k time intervals, and εti is a homoscedastic Gaussian
white noise process with zero-mean. In this model specifica-
tion, only historical self-dependence is allowed (i.e., j �= i at
time t); also, the constant o specifies the order of the Markov
property. Eq. (1) has a corresponding directed cyclic graph
(DCG) representation G = (V,E) = ({Vi} , {Eij}), where
node Vi represents variable Yi and a directed edge Eij from
node Vj to node Vi represents the effect cij (or bkij ) of Y t

j

(or Y t−k
j ) on Y t

i . For illustration, a DSEM example with

the first-order Markov property is given in Eq. (2), and its
corresponding DCG representation is shown in Fig. 1.

(2)

⎧⎪⎨
⎪⎩

yt
1 = εt1

yt
2 = c21y

t
1 + c23y

t
3 + b121y

t−1
1 + b122y

t−1
2 +b123y

t−1
3 + εt2

yt
3 = c32y

t
2 + b132y

t−1
2 + b133y

t−1
3 + εt3

.

Introduce the matrix notations C = [cij ] and Bk =
[
bkij

]
(k = 1, ..., o ), then it is straightforward to tell that there
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are o + 1 coefficient matrices in total for a DSEM with a
oth-order Markov property. In SIA, the model structure and
observation strategy are pre-specified; therefore, it is known
which parameters are zero or non-zero in C and Bk, and
which node variables are observed or unobserved (i.e., la-
tent variables). For a DSEM, the goal of SIA is to deter-
mine whether the non-zero parameters in C and Bk can
be unambiguously determined given the observed variables.
For this purpose, a set of identifiability equations will be
generated to symbolically solve for the unknown non-zero
parameters, as described in the next section. If there exists
only one solution to an unknown parameter, this parameter
is called globally identifiable; if there exist a finite number
of solutions, an unknown parameter is called locally identi-
fiable; and if there exist an infinite number of solutions, an
unknown parameter is called unidentifiable. For instance, in
Fig. 1, the coefficient matrices of the DSEM are

(3) C =

⎡
⎢⎣

0 0 0

c21 0 c23

0 c32 0

⎤
⎥⎦ and B1 =

⎡
⎢⎣

0 0 0

b121 b122 b123

0 b132 b133

⎤
⎥⎦ ,

and we assume all the variables are observed. The corre-
sponding SIA problem is to determine the number of solu-
tions to each non-zero parameter in matrices C and B1 (i.e.,
c21, c23, c32, b

1
21, b

1
22, b

1
23, b

1
32 and b133).

3. IDENTIFIABILITY EQUATION
GENERATION

For static SEMs, identifiability equations are usually gen-
erated using the covariance between two observed variables
[28, 32]. However, this idea is not directly applicable to
DSEMs since the measurements of a variable in DESM are
now time series and one has to consider the time dependence
between the measurements of the same variable and between
the measurements of different variables. In addition, DSEMs
for cyclic networks inevitably involve feedback loops such
that it is necessary to consider the feedback loop effects
on parameter identifiability. To handle the aforementioned
technical difficulties, a new method based on z-transform
[34, 35] is described in this section to generate identifia-
bility equations for linear DSEMs. The method consists of
three key steps: 1) employ z-transform to get the frequency
domain representation of a DSEM; 2) obtain the z-transfer
function between each pair of observed variables based on
Mason’s gain; 3) derive identifiability equations from the
z-transfer functions.

Specifically, consider the model in Eq. (1), we can get the
following equation after z-transform

(4) Yi (z) =
∑
j �=i

cijYj (z)+
∑
j

[
o∑

k=1

bkij · z−k · Yj (z)

]
+σ2,

where z is a complex number [34, 35] and σ2 is the known
constant variance of εi. The equation above can be rear-

Figure 2. The equivalent frequency domain representation of
the dynamic SEM in Fig. 1, where ξ1 (z), ξ2 (z) and ξ3 (z) in
Eq. (7) are not shown since they are not involved in node

interactions.

ranged as follows

(5) (1−
o∑

k=1

bkii · z−k)Yi(z) =
∑
j �=i

(cij +
o∑

k=1

bkij · z−kYj (z) + σ2,

(6) ⇒ Yi (z) =
∑
j �=i

cij +
o∑

k=1

bkij · z−k

1−
o∑

k=1

bkii · z−k

Yj (z)+
σ2

1−
o∑

k=1

bkii · z−k

.

Let Gij (z) =
cij+

o∑
k=1

bkij ·z−k

1−
o∑

k=1

bkii·z−k
and ξi (z) = σ2

1−
o∑

k=1

bkii·z−k
, and

substitute them into Eq. (6) to obtain

(7) Yi (z) =
∑
j �=i

[Gij (z) · Yj (z)] + ξi (z) ,

where Gij denotes the effect of variable Yj on variable Yi

in the frequency domain. Eq. (7) is thus the frequency do-
main representation of Eq. (1), which also has a correspond-
ing graphical representation. For example, the frequency do-
main representation of the DSEM in Fig. 1 is visualized in
Fig. 2 as a DCG.

Based on the frequency domain representation of a
DSEM, we can get the z-transfer function between any two
observed nodes. For this purpose, Mason’s gain is considered
here, which is applicable to directed cyclic networks for find-
ing the input-output relationship between two nodes. Actu-
ally, it turns out that Mason’s gain in the frequency domain
representation of a DSEM is equivalent to the z-transfer
function of the DSEM. Specifically, consider a sub-graph of
the frequency domain representation, consisting of an input
node Vj , an output node Vi, and all the paths and loops
between Vi and Vj . Let GLLt denote the gain of loop Lt in
the frequency domain (i.e., GLLt =

∏
l

Gl and Gl is the l -th

edge coefficient on loop Lt in the frequency domain) and
let r denote the maximum number of non-overlapping loops
in the sub-graph, then the system determinant SD of the
sub-graph is defined as follows

(8) SD = 1 +

r∑
s=1

(
(−1)

s ·
∑
m

Hm

)
,
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where Hm =
s∏

t=1
GLLt is the m-th gain product of s non-

overlapping loops. Similarly, let GPPk
denote the gain as-

sociated with the forward path Pk in the frequency domain
(i.e., GPPk

=
∏
l

Gl and Gl is the l -th edge coefficient on path

Pk in the frequency domain), then the path determinant of
Pk is calculated in the same way as SD after excluding all
feedback loops that intersect with Pk. The z-transfer func-
tion (i.e., the Mason’s gain) between two observed nodes Vi

and Vj is thus given as follows [33]

(9) MGij =
Yout

Yin
=

Yi

Yj
=

q∑
k=1

GPPk
· SDPk

SD
,

where q is the total number of forward paths from Vj to Vi.
When two observed nodes Vi and Vj are in the same strongly
connected component (SCC), MGij and MGji are depen-

dent because MGij ·MGji=
Yj

Yi
· Yi

Yj
= 1. For this reason, we

only need to keep one of the two gains. Note that the use
of Mason’s gain assumes that feedback cycling is infinite;
for the finite feedback cycling case, the interested reader
is referred to Hayduk [36]. For illustration, three z-transfer
functions can be obtained from Fig. 2 as below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MG12 = G21
1−G23·G32

=
c21+(b121−c21b

1
33)z

−1−b121b
1
33z

−2

1−c23c32−(b122+b133+c23b
1
32+c32b

1
23)z

−1+(b122b
1
33−b123b

1
32)z

−2

MG23 = G32
1−G23·G32

=
c32+(b132−c32b

1
22)z

−1−b122b
1
32z

−2

1−c23c32−(b122+b133+c23b
1
32+c32b

1
23)z−1+(b122b133−b123b

1
32)z−2

MG13 = G21·G32
1−G23·G32

=
c21c32+(c21b132+c32b

1
21)z

−1+b121b
1
32z

−2

1−c23c32−(b122+b133+c23b
1
32+c32b

1
23)z−1+(b122b133−b123b

1
32)z−2

(10)

Now we can derive the identifiability equations from the
z-transfer functions. In a z-transfer function, the coefficients
in front of z−k (k = 0, 1, · · · , p) form a polynomial f( cij , b

k
ij)

of unknown model parameters. If two variables Yi and Yj

are observed in a DSEM, then the corresponding z-transfer
function MGij can be uniquely determined through their
observation values [34, 35], i.e., MGij is known, because
their observation values are time series rather than a single
value. Thus all the coefficients f( cij , b

k
ij) in front of z−k

of MGij are also known, i.e., f( cij , b
k
ij) = C, where C is a

known constant, although its exact value may not be given.
This fact allows us to obtain one identifiability equation
from each z−k term. Obviously, from one z-transfer function,
we can get multiple identifiability equations as suggested
in Eq. (10) and shown in Fig. 3(a). In the case that there
exist some duplicate identifiability equations, we keep only
one identifiability equation. For example, in Eq. (10), three
z-transfer functions have the same denominator, then we
only keep one denominator and ignore the other two when
generating identifiability equations.

4. STRUCTURAL IDENTIFIABILITY
DETERMINATION

Since each identifiability equation is a symbolic polyno-
mial equation and the order of each unknown parameter is
at most one in all the identifiability equations, we can deter-
mine the structural identifiability of each parameter using
the previously proposed identifiability-matrix method [28].
Briefly, this method consists of two steps: conversion of iden-
tifiability equations to identifiability matrices and determi-
nation of parameter identifiability by matrix reduction and
grouping. Here we illustrate this method using the exam-
ple in Fig. 3(a). First, we convert each identifiability equa-
tion in Fig. 3(a) to an identifiability matrix, as showed in
Fig. 3(b). Then we reduce all the identifiability matrices
by simplifying and removing dependent rows. The reduc-
tion results of the identifiability matrices in Fig. 3(b) are
shown in Fig. 3(c), and we can tell from the identifiability
matrices IE1, IE4, IE7 and IE10 that the unknown param-
eters c21, c23 and c32 are globally identifiable because each of
these four matrices has only one row and there is only one
“1” element in this row. We then find locally identifiable
and unidentifiable parameters by grouping the remaining
matrices. In Fig. 3(c), after excluding IE1, IE4, IE7 and
IE10, the remaining identifiability matrices are found to be
in the same group because each matrix has more than one
“1” elements and these matrices directly or indirectly cou-
ple with each other in the sense that the j -th columns of
the two matrices both have at least one “1” element. There
are 5 unknown parameters and 8 identifiability matrices in
the group, then all the remaining parameters, i.e., b121, b

1
22,

b123, b
1
32 and b133, are locally identifiable. It is worth noting

that structural identifiability is determined with the number
of symbolic solutions in the identifiability-matrix method
[37], since structural identifiability analysis does not use real
data.

As illustrated in Fig. 3, the proposed method is applica-
ble to general linear DSEMs; however, for specific DSEMs,
we can directly determine structural identifiability of every
unknown parameter according to the following theorem (see
Appendix for proof).

Theorem 1. In a DSEM with only observed variables and
self-feedback loops (i.e., bkij �= 0), an edge parameter is glob-
ally identifiable if the corresponding edge is not on any self-
loops or if the corresponding edge is on a self-loop of a node
and this node has at least one first-order neighbor node that
has no self-loops; otherwise, the parameter is locally identi-
fiable.

5. RESULTS

5.1 Comparisons

While the focus of this study is DSEM identifiability,
it is worth mentioning other mainstream dynamic mod-
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Figure 3. Illustration of identifiability equations, identifiability matrices and the reduction results for the DSEM in Fig. 1.

els like ODEs and state-transition models. DSEMs, ODEs
and state-transition models all can describe dynamic sys-
tems; however, ODEs are typically continuous and deter-
ministic while DSEMs and state-transition models are dis-
crete and stochastic. More importantly, DSEMs consider
both concurrent effects and memory effects but ODEs only
consider concurrent interactions and state-transition mod-
els only consider memory effects. Therefore, state-transition
models may be deemed as a special case of DSEMs. For illus-
tration, consider a dynamic system that contains 3 observed
nodes and 1 unobserved node, with node V1 having an input
u. The three different models of this system are given in Eq.
(11), (12) and (13), and their graphic representations are
shown in Fig. 4(a), (b) and (c), respectively.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ1 = u

ẏ2 = c21y1 + c23y3

ẏ3 = c32y2

ẏ4 = c41y1+c43y3

,(11)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt1 = b111y
t−1
1 +εt1

yt2 = b122y
t−1
2 +b123y

t−1
3 + εt2

yt3 = b131y
t−1
1 + εt3

yt4 = b143y
t−1
3 + b144y

t−1
4 + εt4

,(12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yt1 = b111y
t−1
1 +εt1

yt2 = c21y
t
1 + c23y

t
3 + b122y

t−1
2 +b123y

t−1
3 + εt2

yt3 = c32y
t
2 + b131y

t−1
1 + εt3

yt4 = c41y
t
1+c43y

t
3 + b143y

t−1
3 + b144y

t−1
4 + εt4

.(13)

DAISY [38] is a widely-used software package for struc-
tural identifiability analysis of ODE systems. It is based on
differential algebra methods and can handle both linear and
non-linear systems. For the ODE model in Fig. 4(a), we can
analyze this example with DAISY and the identifiability re-
sult is shown in Fig. 5(a). To the best knowledge of our
authors, there are not existing methods or tools that can
determine parameter identifiability of state-transition mod-
els or DSEMs; therefore, we seek to the proposed method
in this study. We obtain the identifiability results of the
two models in Fig. 4(b) and (c), as shown in Fig. 5(b) and
(c), respectively. Although the DSEM in Fig. 5(c) has more
unknown model parameters than the other two models, all
its edges are at least locally identifiable while in Fig. 5(a)
and (b) all the edges connected with the unobserved node V3

are unidentifiable. The particular reason for this case is that
here the DSEM model corresponds to a more complex net-
work structure (i.e., there are more paths between two ob-
served nodes), and we can generate a larger number of iden-
tifiability equations to verify the identifiability of unknown
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Figure 4. Three different models of a dynamic system. Green nodes are observed and gray nodes are unobserved, orange edges
indicate concurrent effects and light blue edges indicate memory effects.

parameters. More specifically, for three parameters c23, c32
and c43 of Fig. 5(a), we can generate only two identifiability
equations: C1=c23c32 and C2=c32c43. Also, for three parame-
ters b123, b

1
31 and b143 of Fig. 5(b), we can get only two identifi-

ability equations: C1=b123b
1
31 and C2=b131b

1
43. For these six pa-

rameters of Fig. 5(c), however, we can obtain seven reduced
identifiability equations C1=c23c32, C2=c23b

1
31, C3=b123b

1
31,

C4=c32c43, C5=b143c32, C6=b131c43, C6=b131c43 and C7=b131b
1
43.

5.2 Application

To illustrate the application of the proposed method, we
select three benchmark models in different disciplines from
public literature. The first benchmark model is for inves-
tigating the neural correlation of speech [39]. The original
graph contains 8 observed nodes and 8 directed edges, in
which each node represents a region of interest (ROI) and
each directed edge represents a theoretically plausible neural
activation path. We assume that the corresponding DSEM
has a first-order Markov property, and randomly add 3 new
edges between two successive time points to get a DSEM
as shown in Fig. 6(a). With the proposed method in this
study, we can determine that all the parameters including
the original 8 edge parameters and 3 new added parameters
are globally identifiable. This is consistent with the conclu-
sion drawn based on Theorem 1, that is, all the edge param-
eters are globally identifiable for a DSEM without feedback
loops and latent variables.

The second bench model is about social networks, se-
lected from the well-known “karate club” study of Zachary
[40]. Zachary tracked the club members for over two years,
and a total of 34 members were divided into two groups: the
club administrator’s group and the instructor’s group. Here
we choose the sub-network among the first six members. Dif-
ferent from Zachary’s study, we consider the sub-network as
a directed graph by randomly setting edge directions. To

introduce a 2nd-order Markov property to the model, we
add three new edges between two successive time points,
and two new edges between time point t and t+2. Then
we derive a DSEM as shown in Fig. 6(b) from Zachary’s
“karate club” study. We can determine that every parame-
ter is also globally identifiable with the proposed method,
although this model has a higher order Markov property.
Since the model contains feedback loops at the same time
point (i.e., V t

1 → V t
3 → V t

4 → V t
1 ) and between different

time points (i.e., V t
1 → V t

6 → V t+1
1 , V t−2

1 → V t
6 → V t+1

1 and
V t−1
1 → V t−1

5 → V t
6 → V t+1

1 ) in addition to self-feedback
loops (i.e., V t-1

2 → V t
2 ), Theorem 1 is not applicable to this

model.
The third benchmark model is about biological net-

works, and is derived from the replication subnetwork of
the within-host influenza virus life cycle [41]. Influenza
A virus replication is a complex process, involving the
interactions among many different biomolecules. It is
therefore usually infeasible for one single experimental
study to observe all the components and their interactions
simultaneously, leading to the existence of latent variables.
This subnetwork has 7 nodes, and we select one node
as unobserved; also, we assume that this system has a
first-order Markov property. With three new edges added
between two successive time points, we get a DSEM
as showed in Fig. 7(a). Different from the previous two
benchmark models, this model contains one latent variable
VUAP56 and one loop that consists of the edges between
different time points, i.e., V t−1

vRNPs → V t
UAP56 → V t+1

vRNPs.
Because of the existence of feedback loops, Theorem 1 is
also not applicable to this model. Then the identifiabil-
ity results can be obtained using the proposed method,
as in Fig. 7(b), which shows that all the edges associ-
ated with the latent variables are unidentifiable and the
other edges are globally identifiable. More specifically,
for the four unknown edge parameters associated with
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Figure 5. The identifiability analysis results of the three models in Fig. 4. Green edges are globally identifiable, purple edges
are locally identifiable and red edges are unidentifiable.

Figure 6. Two benchmark models without latent variables. Orange edges indicate concurrent effects and light blue edges
indicate memory effects.

node VUAP56, we can only get three identifiability equa-
tions after reduction: C1=b1vRNPs→UAP56b

1
UAP56→vRNPs,

C2=cRNPcomplex→UAP56b
1
UAP56→vRNPs and

C3=b1UAP56→vRNPsb
1
viralRNA→UAP56.

6. CONCLUSIONS AND DISCUSSIONS

The SIA of DSEMs is a previously untouched topic in
existing investigations. In this study, we systematically in-

vestigated DSEMs and their structural identifiability prob-
lem. A general and computerizable solution is proposed for
the first time. More specifically, the proposed approach can
handle a broad range of DSEMs (e.g., with latent variables,
a finite-order Markov property and feedback loops). Similar
to the identifiability matrix method, the proposed method
can determine the structural identifiability of every single
parameter. Because of no symbolic or expensive numerical
computations, the proposed method is computationally effi-
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Figure 7. One benchmark model with latent variables. Observed nodes are colored green and unobserved nodes are colored
gray. Orange edges and light blue edges of the original model represent interactions at the same time point and between two
successive time points, respectively. Green edges are globally identifiable and red edges are unidentifiable in the identifiability

results.

cient. A theoretical result is also obtained for a special class
of DSEMs that contain only self-loops but no latent vari-
ables. Finally, we compare DSEMs and other dynamic mod-
els to illustrate the difference of these model structures and
their identifiability results, and three selected benchmark
DSEMs from different disciplines are given to illustrate the
application of the proposed method.

It is worth mentioning that in addition to explicit latent
variables, the proposed method can also handle implicit la-
tent variables, i.e., the case of disturbance correlation. Sim-
ilar to the work of Wang et al. [28], disturbance correlation
can be handled by adding new dummy variables. That is,
if two disturbance terms εi and εj are dependent, there ex-
ists an implicit latent variable or structure that affects both
Vi and Vj . A dummy unobserved variable Vk can be added,
and it will introduce additional edges such as Vk → Vi and
Vk → Vj at the current time point as well as edges between
different time points.

It should be stressed that the SIA of dynamic SEMs
is quite different from the SIA of static SEMs. Firstly, a
dynamic SEM contains both concurrent effects and mem-
ory effects between variables while a static SEM cannot
account for memory effects. The difference of study fo-

cus leads to different generation methods of identifiability
equations. Wright’s path coefficient method or its varia-
tions are adopted for static SEMs to generate identifiabil-
ity equations [28]. In comparison, z-transfer functions are
used for dynamic SEMs to generate identifiability equations.
Wright’s path coefficient method considers the common an-
cestor node effects in addition to path effects. Nevertheless,
z-transfer function deals with only path effects. For exam-
ple, given a graph with 3 edges, Vi → Vj , Vk → Vi and
Vk → Vj , the z-transfer function MGij contains only the
effect of the path Vi → Vj , but the Wright’s path coef-
ficient Covij includes the effect of Vk on both Vi and Vj

(i.e., two paths Vk → Vi and Vk → Vj) in addition to the
effect of the path Vi → Vj . Since the generation methods
of identifiability equations are different, unsurprisingly, the
identifiability results are also different. Given a static SEM
Gs, we can generate a dynamic SEM Gd by some new edges
between different time points (i.e., adding some memory ef-
fects between variables). Then, generally speaking, the iden-
tifiability results of Gd is better than the results of Gs due
to the introduction of temporal observations. That is, some
unidentifiable edge parameters of Gs may become identifi-
able in graph Gd. One can verify this conclusion with the
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example in Fig. 6(b).
This work also has some limitations. For instance, to use

z-transform, all the observations are assumed to be equally
spaced, which may not be the case in practice. And real
dynamic systems may contain both discrete and continu-
ous variables, or involve nonlinear interactions, to which the
proposed method is not applicable. In addition, the compu-
tation complexity of the proposed method is O(N2

o ·N3),
where No is the number of observed variables and N is the
total number of variables. The proposed method cannot di-
rectly be applicable to high-dimensional systems until it has
been specially optimized for high-dimensional systems. How-
ever, we expect to tackle the more complex SIA problems for
DSEMs in the future, and this study provides a foundation
for such future investigations.

APPENDIX A. PROOF OF THEOREM 1

Theorem 1. In a DSEM with only observed variables and
self-feedback loops (i.e., bkij �= 0), an edge parameter is glob-
ally identifiable if the corresponding edge is not on any self-
loops or if the corresponding edge is on a self-loop of a node
and this node has at least one first-order neighbor node that
has no self-loops; otherwise, the parameter is locally identi-
fiable.

Proof. Consider a DSEM G without any feedback loops
and latent variables first. After z-transform, let G′ denote
the frequency domain representation of G. In this case, the
coefficient associated with each edge in G′ is the Mason’s
gain between two end nodes of the corresponding edge, and
the denominator of the Mason’s gain is 1 because there are
not feedback loops. Since every node of G′ is observed and
G′ is a DAG, all edge coefficients of G′ are globally iden-
tifiable according to Kline’s work [42]. More specifically,
for any two observed nodes Vi and Vj , the Mason’s gain

MGij = cij +
o∑

k=1

bkij · z−k is known, and thus we can get

o+ 1 identifiability equations

(A-1)

IE1: C1 = cij
IE2: C2 = b1ij
IE3: C3 = b2ij
...
IEo+1: Co+1 = boij

.

Since each identifiability equation in Eq. (A-1) contains only
one monomial that has only one unknown parameter of or-
der 1, then every unknown parameter has a unique solution
and is therefore globally identifiable.

Now consider a DSEM G with only self-loops but no la-
tent variables. Without loss of generality, assume node Vj

has a self-loop (multiple self-loops are not allowed). There
are two different cases to consider: 1) at least one of the first-
order neighbor nodes of Vj has no self-loops, and 2) every
one of the first-order neighbor nodes of Vj has a self-loop.

For the first case, assume that node Vi is the first-order
in-neighbor node of Vj and Vi has no self-loops. Because the
path from Vi to Vj does not pass any other loops except for
the self-loop of Vj , the Mason’s gain between Vi and Vj is

MGij =
cij+

o∑
k=1

bkij ·z−k

1−
o∑

k=1

bkii·z−k
. Since both Vi and Vj are observed,

MGij is a known constant. Then we can generate 2o + 1
identifiability equations from MGij . Besides the same o +
1 equations in Eq. (A-1), o more identifiability equations
are now generated on parameters bkii (k = 1, · · · , o). Same as
Eq. (A-1), each of these o identifiability equation contains
only one monomial that has only one unknown parameter
of order 1. Therefore, bkij and bkii are all globally identifiable.

For the second case, every one of the first-order neighbor
nodes of Vj has a self-loop. Without loss of generality, let
node Vi be one in-neighbor node of Vj and it has a self-loop.
Different from the previous case, the Mason’s gain between
Vi and Vj is

MGij =

cij +
o∑

k=1

bkij · z−k

(
1−

o∑
k=1

bkii · z−k

)
·
(
1−

o∑
k=1

bkjj · z−k

)

=

cij +
o∑

k=1

bkij · z−k

1+
2o∑
l=1

SPl · z−l

,(A-2)

with SPl being a symbolic polynomial as follows

(A-3) SP l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(
b1ii + b1jj

)
l = 1

l−1∑
m=1

bmii · bl−m
jj −

(
blii + bljj

)
1 < l ≤ o

o∑
m=�l/2�

bmii · bl−m
jj o < l ≤ 2o

,

where �l/2� is the floor integer of l/2. We can generate 2o
new identifiability equations from Eq. (A-3) besides the o+1
equations as in Eq. (A-1). Same as the case without any
feedback loops and latent variables, we can conclude from
these o+1 equations that parameters cij and bkij are globally
identifiable. It is known from Eq. (A-3) that these 2o new
equations contain only 2o unknown parameters, i.e., bkii and
bkjj (k = 1, · · · , o), but these equations are not always linear.
We can determine the structural identifiability of parame-
ters bkii and bkjj (k = 1, · · · , o) using the Jacobian matrix. It
can be found that none of the equations can be represented
as a linear combination of other equations; that is, the rank
of the corresponding Jacobian matrix is 2o. However, since
the highest order of many equations is greater than 1, there
exist a finite number of solutions to these equations. There-
fore, the parameters associated with self-loops (i.e., bkii) are
locally identifiable in this case.

In summary, the theorem holds.
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