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Accelerate training of restricted Boltzmann
machines via iterative conditional maximum
likelihood estimation
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Restricted Boltzmann machines (RBMs) have become a
popular tool of feature coding or extraction for unsupervised
learning in recent years. However, there still lacks an efficient
algorithm for training the RBM due to that its likelihood
function contains an intractable normalizing constant. The
existing algorithms, such as contrastive divergence and its
variants, approximate the gradient of the likelihood function
using Markov chain Monte Carlo. However, the approxima-
tion is time consuming and, moreover, the approximation er-
ror often impedes the convergence of the training algorithm.
This paper proposes a fast algorithm for training RBMs by
treating the hidden states as missing data and then estimat-
ing the parameters of the RBM via an iterative conditional
maximum likelihood estimation approach, which avoids the
issue of intractable normalizing constants. The numerical
results indicate that the proposed algorithm can provide a
drastic improvement over the contrastive divergence algo-
rithm in RBM training. This paper also presents an exten-
sion of the proposed algorithm for how to cope with missing
data in RBM training and illustrates its application using
an example about drug-target interaction prediction.
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1. INTRODUCTION

During the past decade, the restricted Boltzmann ma-
chine (RBM) has received much attention as a feature cod-
ing or extraction tool for unsupervised learning, and a basic
building block for deep belief networks as well. [1, 2]. The
variants and extensions of the RBM have been applied in a
wide range of pattern recognition problems, such as hand-
writing recognition [1], document processing [3, 5], and col-
laborative filtering [6]. Despite great successes, there still
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lacks an efficient algorithm for training RBMs. The exist-
ing algorithms aim to maximize the log-likelihood function
of the RBM using a gradient-based method, while the true
gradient of the log-likelihood function is not available as the
likelihood function contains an intractable normalizing con-
stant. In [7], the Contrastive Divergence (CD) algorithm was
proposed to train RBMs, where the log-likelihood gradient
is approximated using Markov chain Monte Carlo (MCMC)
at each iteration. Due to the approximation errors, the CD
algorithm does not necessarily converge to the maximum
likelihood estimate (MLE) of the parameters as noted in
[8] and [9]. Other authors, such as [10], observed that the
approximation errors can even lead to a distortion of the
learning process; that is, after some iterations the likelihood
can start to diverge in the sense that the model systemati-
cally get worse if the run of MCMC is not long enough. To
address the issue of convergence, some variants of the CD
algorithm have been proposed with a general strategy to ob-
tain better approximation of the log-likelihood gradient by
sampling from a Markov chain with a greater mixing rate.
These variants include persistent CD [11], fast persistent
CD [12], tempered transitions [13], and parallel tempering
[14, 15]. However, as pointed out by [16], most of these vari-
ants come with a variety of hyperparameters in addition
to the more common heuristics of weight-decay, momentum
and learning rate schedules, and it is unclear how to set the
hyperparameters and which heuristic to choose because ex-
act evaluation of the log-likelihood function is infeasible for
even a middle-sized RBM.

In this paper, we propose a fast algorithm for training
RBMs by treating the hidden states as missing data and
then estimating the parameters of the RBM via an itera-
tive conditional maximum likelihood estimation approach,
which avoids the issue of intractable normalizing constants.
The proposed algorithm works under the framework of the
imputation-regularized optimization (IRO) algorithm [29].
The IRO algorithm, as an extension of the stochastic EM
algorithm [17, 18], was originally proposed for dealing with
high-dimensional missing data problems. It works by iter-
ating between an imputation step and a regularized opti-
mization step. At the imputation step, the missing data are
imputed conditional on the observed data and the current
estimate of parameters; and at the regularized optimiza-
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tion step, a pseudo-consistent estimate of parameters is ob-
tained by maximizing a penalized log-likelihood function of
the pseudo-complete data. Under quite general conditions,
it is shown that the average of the pseudo-consistent esti-
mates is consistent to the true parameter when the number
of iterations is sufficiently large and the data sample size
is sufficiently large. However, the IRO algorithm cannot be
directly applied to train RBMs, as for which the likelihood
function of the pseudo-complete data contains an intractable
normalizing constant.

To get around this issue, we propose to estimate the
parameters of the RBM using the conditional maximum
likelihood estimation approach [19] at each iteration of the
IRO algorithm, observing that the RBM belongs to an ex-
ponential family and the conditional maximum likelihood
estimator converges to the respective true parameters al-
most surely. For the RBM, finding the conditional maxi-
mum likelihood estimate for the connection weights can be
reduced to solving a sequence of logistic regressions. To fur-
ther accelerate computation, we propose to solve the lo-
gistic regressions using the coordinate descent algorithm
[20, 21]. By employing an appropriate penalty term for
the logistic regressions, such as those encouraging model
sparsity, the proposed algorithm provides a simple way to
“drop out” redundant connections for the RBM. The nu-
merical results indicate that the proposed algorithm can
make a drastic improvement over the CD algorithm in RBM
training. We also present an extension of the proposed al-
gorithm for how to accommodate missing visible data in
RBM training, and apply the extended algorithm to drug-
target interaction predictions. The numerical results indi-
cate a great success of the extended algorithm over the tra-
ditional single value decomposition (SVD) method for this
problem.

2. ITERATIVE CONDITIONAL MAXIMUM
LIKELIHOOD ESTIMATION FOR RBM

TRAINING

In this section, we first give a brief review for RBMs and
the IRO algorithm, and then describe the proposed algo-
rithm.

2.1 Restricted Boltzmann machine

A RBM is a bipartite undirected graphical model, as
shown in Figure 1, which can be used to learn a prob-
ability distribution over its set of inputs. Suppose that
it has M visible units v = (v1, v2, . . . , vM ) and N hid-
den units h = (h1, h2, . . . , hN ), and consists of a N × M -
matrix of weights W = (wij) associated with the connec-
tions between the hidden and visible units, as well as the
bias weights b = (b1, b2, . . . , bM ) for the visible units and
c = (c1, c2, . . . , cN ) for the hidden units. For the time being,

we assume that the RBM is binary-binary, i.e., both the vis-
ible and hidden units take binary values. Extension of the
proposed algorithm to other types of RBMs will be discussed
later. For the binary-binary RBM, the joint distribution of
(v,h) is given by the Gibbs distribution

(1) Pθ(v,h) =
1

Z(θ)
e−Eθ(v,h),

where θ = {W , b, c} denotes the set of parameters, Z(θ)
is the normalizing constant function defined as the sum
of e−Eθ(v,h) over all possible configurations of (v,h), and
Eθ(v,h) is the energy function given by

Eθ(v,h) = −
N∑
i=1

M∑
j=1

wijhivj −
M∑
j=1

bjvj −
N∑
i=1

cihi.

Since there are no intra-layer connections in the RBM, the
vj ’s are mutually independent conditional on h and con-
versely, the hi’s are mutually independent conditional on v.
That is,

(2) Pθ(v|h) =
M∏
j=1

fθj (vj |h), Pθ(h|v) =
N∏
i=1

fθ̃i
(hi|v),

where θj = {bj , wij : i = 1, . . . , N} and θ̃i = {ci, wij : j =
1, . . . ,M} denote the subsets of parameters of respective
conditional distributions, and

fθj (vj = 1|h) = σ(bj +

N∑
i=1

wijhi),

fθ̃i
(hi = 1|v) = σ(ci +

M∑
j=1

wijvj),

(3)

where σ(·) denotes the logistic sigmoid, i.e., σ(z) = 1/(1 +
e−z).

Figure 1. An illustrative graph of RBM with M visible units
(bottom row) and N hidden units (upper row).
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2.2 The imputation-regularized optimization
algorithm

Missing data are ubiquitous throughout almost all fields
of science and technology. An inappropriate treatment of
missing data can lead to a significant loss of data information
and/or a biased statistical inference. For low-dimensional
problems, the MLE of the parameters can be searched using
the EM algorithm [22] or its variants, such as Monte Carlo
EM [23], ECM [24], and stochastic EM [17, 18]. However,
for high-dimensional problems, where the data dimension
is greater than the sample size, the EM algorithm and its
variants often fail to work. Although some problem-specific
algorithms have been developed, see e.g. [25, 26, 27], there
still lacks a general algorithm. The IRO algorithm [29] fills
this gap: In principle, it can be applied to any missing data
problems, regardless of dimension and distribution of the
data. The IRO algorithm can be described as follows.

Let X1, . . . , Xn denote a set of independent and identi-
cally distributed samples drawn from the distribution fθ(x),
where n is the sample size, and θ is a vector of parameters.
Let Xi = (Xobs

i , Xmis
i ), where Xobs

i is observed and Xmis
i

is missed. Let X = (X1, . . . , Xn), X
obs = (Xobs

1 , . . . , Xobs
n ),

and Xmis = (Xmis
1 , . . . , Xmis

n ). To indicate the dependence
of the dimension of θ on the sample size n, we write θ as θn

and denote by θ(t)
n the estimate of θ obtained at the tth iter-

ation of the IC algorithm. The IRO algorithm starts with an
initial guess θ(0)

n and then iterates between the imputation
and the regularized optimization steps:

• I-step: Draw X̃
mis

from the predictive distribution
h(xmis|Xobs,θ(t)

n ) conditioned on Xobs and θ(t)
n .

• RO-step: Based on the pseudo-complete data X̃ =

(Xobs, X̃
mis

), find an updated estimate θ(t+1)
n which

forms a consistent estimate of

(4) θ(t)
∗ = argmax

θ
E

θ
(t)
n

log fθ(x̃),

where E
θ
(t)
n

log fθ(x̃) =
∫
log fθ(x̃)f(x

obs|θ∗)

h(x̃mis|xobs,θ(t)
n )dxobsdx̃mis, θ∗ denotes the true

value of the parameters, and f(xobs|θ∗) denotes the
marginal density function of xobs.

To compute θ(t+1)
n , [29] suggested a regularization ap-

proach, i.e., setting

(5) θ(t+1)
n = argmax

θ

[
n∑

i=1

fθ(x̃)− λP (θ)

]
,

where P (θ) denotes a penalty function, and λ is the reg-
ularization parameter. As discussed in [29], the regulariza-
tion in (5) should be interpreted in a general sense. For
low-dimensional problems, one can simply set λ = 0. For
high-dimensional problems, one can choose an appropriate
penalty function that enforces the sparsity of θ. It is in-
teresting to point out that such a regularization estimator

also includes the sure screening estimator [30, 31] as a spe-
cial case for which the penalty function is of binary type,
taking a value of zero in the desired subspace and infinity
otherwise.

Based on the theory of empirical process [32], [29] showed

that θ(t+1)
n obtained through the regularization approach

is a consistent estimate of θ(t)
∗ under some regularity con-

ditions, such as n is sufficiently large, the dimension of θ
grows at a rate of O(nα) for some constant 0 < α < ∞,
appropriate metric entropy conditions, and log fθ(x̃) is well
behaved with | log fθ(x̃)| being uniformly bounded by an
integrable function and the distribution of [log fθ(x̃) −∫
log fθ(x̃)h(x̃

mis|xobs,θ(t)
n )dx̃mis] having a sub-exponential

tail. The later is related to the conditions for imputed data,
while the metric entropy conditions are related to the spar-
sity conditions imposed on θ for high-dimensional problems.
Refer to Theorem 1 of [29] for the detail. Similar to the

stochastic EM algorithm, {θ(t)
n } produced by the IRO algo-

rithm forms a Markov chain which converges to a station-
ary distribution. Further, by assuming that the mapping
M(θ) = argmaxθ′ Eθg(θ

′, x̃) satisfies a contraction condi-

tion, [29] proved that θ(t+1)
n will converge to the true param-

eter θ∗ in probability when both the sample size n → ∞ and
the iteration number t → ∞, and that the average of {θ(t)

n }
over t also converges to θ∗ in probability. Refer to Theorem
4 of [29] for the detail.

The IRO algorithm is attractive only when the consistent
estimate of θ(t)

∗ can be easily obtained at each RO-step. For

many problems, similar to the ECM algorithm [24], θ(t)
n can

be easily obtained with a number of conditional consistency
steps. That is, one can partition θ into a number of blocks
and then find a consistent estimate for each block condi-
tional on the current estimates of other blocks. Suppose that
θ = (θ(1), . . . ,θ(k)) has been partitioned into k blocks. The
RO-step of the IRO algorithm can be replaced by the fol-
lowing conditional regularized-optimization (CRO) step:

• CRO-step. Based on the pseudo-complete data X̃ =

(Xobs, X̃
mis

), do the following:

(1) Fixed on (θ(t,2)
n , . . . ,θ(t,k)

n ), find θ(t+1,1)
n which

forms a consistent estimate of

θ(t,1)
∗ = arg max

θ(t,1)′
E

θ
(t,1)
n ,...,θ

(t,k)
n

log f(x̃|θ(t,1)′

n ,

θ(t,2)
n , . . . ,θ(t,k)

n ),

where the expectation E(·) is taken with respect
to the joint distribution of x̃ = (xobs,xmis) and
its subscript indicates the current estimate of θ.

(2) Fixed on (θ(t+1,1)
n ,θ(t,3)

n , . . . ,θ(t,k)
n ), find θ(t+1,2)

n

which forms a consistent estimate of

θ(t,2)
∗ =arg max

θ(t,2)′
E

θ
(t+1,1)
n ,θ

(t,2)
n ,θ

(t,3)
n ,...,θ

(t,k)
n

log f(x̃|

θ(t+1,1)
n ,θ(t,2)′

n ,θ(t,3)
n , . . . ,θ(t,k)

n ).
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. . . . . .

(k) Fixed on (θ(t+1,1)
n , . . . ,θ(t+1,k−1)

n ), find θ(t+1,k)
n

which forms a consistent estimate of

θ(t,k)
∗ =arg max

θ(t,k)′
E

θ
(t+1,1)
n ,...,θ

(t+1,k−1)
n ,θ

(t,k)
n

logf(x̃|

θ(t+1,1)
n , . . . ,θ(t+1,k−1)

n ,θ(t,k)′

n ).

It is easy to see that the estimate sequence θ(t)
n =

{(θ(t,1)
n , . . . ,θ(t,k)

n )} forms a Markov chain. Under similar
conditions, [29] proved that the ICRO algorithm shares the
same theoretical properties with the IRO algorithm; that is,
both θ(t)

n and its path average form a consistent estimate of
θ∗ when both t and n are sufficiently large.

2.3 Iterative conditional maximum likelihood
estimation for RBM training

For the RBM, with a slight abuse of notation, we let v =
(v1, v2, . . . , vM ) denote a generic observation on the visible
units, and let h = (h1, h2, . . . , hN ) denote the hidden values
corresponding to v. Further, we let vk = (v1k, v2k, . . . , vMk)
denote the kth observation on the visible units, let n denote
the sample size, and assume that the samples v1,v2, . . . ,vn

are independent and identically distributed. The task of
RBM training is to find a set of estimates for the param-
eters θ in (1) given the samples v1,v2, . . . ,vn. By treat-
ing v as observed data and h as missing data, it is natural
to apply the IRO/ICRO algorithm to estimate θ. However,
since the normalizing constant function Z(θ) is intractable,
it is hard to find an estimate for θ or a component of θ
by directly maximizing a regularized log-likelihood function
of the pseudo-complete data. To address this issue, we pro-
pose an iterative conditional maximum likelihood estimation
(ICMLE) algorithm, which can be described as follows.

Since the joint distribution of v and h belongs to the
exponential family, {(hivj),v,h} forms a complete statis-
tic for θ = (W , b, c), where (hivj) denotes a matrix with
i = 1, . . . , N and j = 1, . . . ,M . In addition, the joint distri-
bution of v and h can be factored as

(6) Pθ(v,h) = Pc(v|W , b,h)Pr(h|W , b, c),

where Pc stands for the conditional likelihood function of v
given h and it is free from c, and Pr stands for the resid-
ual likelihood for h. Traditionally, in the factorization of
(6), (W , b) is called structural parameters and c is called
nuisance or incidental parameters. According to the theory
developed in [19], for which the conditions are satisfied by
the exponential family, the structural parameters can be es-
timated by maximizing the conditional likelihood function
and such an estimator converges almost surely to the true
value of the structural parameters. By (3), the conditional
likelihood function can be further factored as the product

of a sequence of sigmoid functions, i.e.,

Pc(v|W , b,h) =

M∏
j=1

σ(bj +

N∑
i=1

wijhi).

Therefore, conditioned on h, (W , b) can be estimated by
solving a sequence of logistic regressions in parallel. Given
the estimate of (W , b), c can be further estimated via a con-
ditional maximization step under the framework provided
by the ICRO algorithm.

To have a more precise description for the ICMLE al-
gorithm, we let (θ1,θ2, . . . ,θM , c) denote a partition of
θ = (W , b, c), where θi’s and c are as defined in Section

2.1. Let h(t+1) denote the imputed values of h given θ(t)

and v, where t indexes the iteration of the ICRO algorithm.

Then, each θ
(t+1)
j can be calculated by solving a logistic re-

gression, for which vj works as the response variable and

h(t+1) works as the predictors. To enforce the sparsity for
each θj , we further suggest a regularization approach which
is to set

(7) θ
(t+1)
j = argmax

θj

[
n∑

k=1

log fθj (vjk|h
(t+1)
k )− λP (θj)

]
,

where vjk denotes the kth observation of the visible unit j,

and h
(t+1)
k denotes the subset of the elements of h(t+1) cor-

responding to the kth observation. This provides a simple
way to drop out redundant connections and is expected to
improve the generalization ability of the RBM. Refer to [4]
for more discussions on “dropout” methods. For (7), a vari-
ety of penalty functions can be used, such as those used in
Lasso [33], elastic net [34], SCAD [35] and MCP [36], while
ensuring the consistency of the resulting estimator. In this
paper, we used the L1-penalty in all simulations and set the
regularization parameter λ ≡ 10−5. Practically, the value of
λ can be determined using a cross-validation approach. For
a given value of λ, (7) can be solved using the coordinate
descent algorithm [20].

Conditioned on the updated estimatesW (t+1) and b(t+1),

i.e., the collection of θ
(t+1)
j ’s, the parameters in c can be es-

timated by maximizing the following conditional likelihood
function, i.e., setting

(8) c
(t+1)
i = argmax

ci

n∑
k=1

log fθ̃i
(hik|vk, ), i = 1, . . . , N,

under the framework provided by the ICRO algorithm. Each
optimization problem in (8) is one-dimensional and can be
easily solved by a root-finding algorithm, say, Brent’s algo-
rithm [37, 38] based on its gradient. The rationale underly-
ing (8) can be explained based on an alternative factoriza-
tion for the joint distribution of v and h:

(9) Pθ(v,h) = P ′
c(h|W , c,v)P ′

r(v|W , b, c),
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where P ′
c stands for the conditional likelihood function of h

given v and it is free from b, and P ′
r stands for the residual

likelihood for v. Following from the theory by [19], c can be
estimated via (8) when the estimate of W are given.

In summary, we have the following algorithm for RBM
training:

• I-step. Draw h(t+1) from the distribution Pθ(h|v) as
defined in (2) and (3), conditioned on v and the current

estimate θ(t) = (θ
(t)
1 , . . . ,θ

(t)
M , c(t)).

• CMLE-step. Based on the pseudo-complete data
(h(t+1),v), do the following:

(i) For j = 1, 2, . . . ,M (in parallel), calculate θ
(t+1)
j

according to (7) by solving a penalized logistic re-
gression using the coordinate descent algorithm.

(ii) Fixed on {θ(t+1)
1 , . . . ,θ

(t+1)
M }, for i = 1, 2, . . . , N

(in parallel), calculate c
(t+1)
i according to (8) using

a one-dimensional root-finding algorithm.

For the coordinate descent algorithm, we suggest to pass

on the current estimate θ
(t)
j to the next iteration as the ini-

tial guess in calculating θ
(t+1)
j , and this can substantially

accelerate the convergence of the algorithm. In addition,

θ
(t+1)
j ’s can be calculated in parallel (with respect to j),

and c
(t+1)
i ’s can also be calculated in parallel (with respect

to i). The validity of the algorithm follows from the standard
theory of the ICRO algorithm and the conditional maximum
likelihood estimation: θ(t)

n will converge to θ∗ in probability
as the sample size n → ∞ and the iteration number t → ∞.
Through working on conditional likelihood functions, the
proposed algorithm gets around the intractable normalizing
constant problem in parameter estimation for RBMs.

For the RBM, however, as pointed out in [28], it suffers
from the parameter identifiability issue; not only it is possi-
ble to approximate any distribution on the visibles arbitrar-
ily well, but quite different parameter settings can induce
the same essential RBM model. Therefore, in general, the
ICMLE algorithm will converge to a solution close to the
starting point given the iterative nature of the coordinate
descent algorithm we employed and the parameter identifi-
ability issue of the RBM.

3. NUMERICAL STUDIES

3.0.0.1. Example 1 This example, taken from the R pack-
age deepnet [39], is used to test the validity of the ICMLE
algorithm for RBM training. For this example, the RBM is
used as a feature coding tool for unsupervised learning. The
RBM consists of M = 4 visible units and N = 2 hidden
units. The input data consists of 200 observations, with 50
observations for each of the four patterns (1,0,1,0), (0,1,1,0),
(1,0,0,1), and (0,1,0,1). We are interested in this example as
for which it is known that the input patterns can be coded
as (1,1), (0,1), (1,0) and (0,0) (up to permutations) on the

two hidden units when the RBM is well trained. Therefore,
it provides a simple test for the validity of the proposed
training algorithm.

The ICMLE algorithm was applied to this example, with
each component of θ initialized by a random variable drawn
from the Gaussian distribution N(0, 0.12). To measure the
convergence of the algorithm, we calculated the reconstruc-
tion error, which is defined as the sum of the squared dif-
ference between the visible values and their “reconstructed
values”, i.e.,

n∑
k=1

M∑
j=1

[
vjk − σ

(
bj +

N∑
i=1

wijσ
(
ci +

M∑
l=1

wilvlk

))]2

,

(10)

where σ(z) = 1/(1 + e−z) denotes the logistic sigmoid. As
mentioned previously, the RBM model suffers from the pa-
rameter identifiability issue. Therefore, for a RBM model,
we are usually not interested in the accuracy of parameter
estimation but the reconstruction error which measures the
quality of the RBM in feature coding or extraction. Issues
on convergence diagnostic for the ICMLE algorithm will be
further discussed at the end of the paper.

Figure 2 shows the convergence paths of the reconstruc-
tion error in 10 independent runs of ICMLE. Each run con-
sisted of 20 iterations and cost about 3.4 seconds CPU time
on a T7610 workstation of 3.6GHz. All computations re-
ported in this paper were done on the same computer. If the
code was executed in parallel on the workstation (under the
OpenMP platform with 45 thresholds), the real time cost by
each run was only about 0.2 seconds. We have checked the
values of the hidden units obtained in each run, they all con-
verged to one permutation of the four patterns (1,1), (0,1),
(1,0) and (0,0). This indicates the validity of the ICMLE
algorithm for RBM training. As shown by Figure 2, the al-
gorithm can converge very fast. In some runs, it can converge
within less than 10 iterations.

Figure 2. Example 1: Convergence paths (10 independent
runs) of the ICMLE algorithm for learning a RBM with 2

hidden units.
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3.0.0.2. Example 2 This example is to train a RBM for a
wheat line dataset. The dataset consists of n = 599 wheat
lines, which are treated as independent and identically dis-
tributed samples, and each line is genotyped with 1279
DArT markers (Diversity Array Technology). The DArT
markers take binary values, denoted by their presence or
absence. In the dataset, the overall mean frequency of the
allele coded as ‘1’ is 0.561, with a minimum of 0.008 and
a maximum of 0.987. The dataset originally came from the
International Maize and Wheat improvement center, and it
can be downloaded from R package BLR [40].

This is a very difficult example for RBMs, as the data
does not contain obvious patterns. We fitted the data by
a RBM with 300 hidden units, which consists of 385,279
(=1279*300+1279+300) parameters. Training a RBM with
such a large number of parameters is a challenging task for
any gradient-based methods, including the contrastive di-
vergence (CD) algorithm. However, the ICMLE algorithm
works extremely well for this example. Figure 3 shows the
convergence path of the algorithm. Only after 5 iterations,
the reconstruction error has been reduced to nearly zero.
This implies that for this example, the 1279 DArT mark-
ers can be coded on 300 hidden units and thus the RBM
provides a good feature coding or dimension reduction tool
(reduced from 1279 to 300). The entire run consisted of 20
iterations and cost about 12 minutes in real time on the
T7610 workstation with 45 threads running in parallel. The
total CPU time was about 467 minutes. Multiple runs have
been tried and the convergence path of each run is very
similar to that shown in Figure 3.

For comparison, we also applied the CD-10 algorithm to
this example, where 10 is the number of Gibbs iterations
performed at each iteration of the CD algorithm for evalu-
ating the likelihood gradient. The CD algorithm has been
implemented in the R package deepnet [39]. In our run, we
have adjusted the number of iterations such that the algo-
rithm also cost about 467 CPU minutes at the end of the
run on the same T7610 workstation. The convergence path
of the algorithm is shown in Figure 3. The comparison in-
dicates that ICMLE has made a drastic improvement over
the CD algorithm in RBM training. For this example, CD-10
might fail to converge to a global optimal solution or it will
take extremely long time to reach the level of reconstruction
error achieved by ICMLE in just a few iterations.

4. PREDICTION OF DRUG-TARGET
INTERACTIONS

Drug development is known to be expensive and time
consuming. Moreover, the success rate is extremely low. Mo-
tivated by the polypharmacology property that individual
drugs can interact with multiple targets, drug developers
often actively seek new uses for existing drugs, where each
target refers to a different protein. This is the so-called drug
repositioning strategy. Toward prediction of drug-target in-
teractions, numerous work have been published in recent

Figure 3. Convergence paths of the ICMLE and CD-10
algorithms for learning a RBM with 300 hidden units for the

wheat line dataset.

years, see e.g., [41, 42, 43], and [44]. Among these work,
[43] is of particular interest to us, where they formulated
the problem as a collaborative filtering problem and applied
the RBM to make the prediction. Collaborative filtering has
become an important application of RBMs since the publi-
cation of the seminal work [6]. To deal with the high pro-
portion of missing values that are often encountered in the
rating data, e.g., user’s ratings of movies, [6] proposed a
population RBM model, which consists of a large number
of RBMs. Each RBM has the same number of hidden units,
but it can have different numbers of visible units depend-
ing on how many ratings the user has made. The weights
and biases of the RBMs are tied together; if two users have
rated the same movies, the two RBMs must use the same
weights between the hidden units and the visible unit for
that movie. [6] showed that the population RBM model can
be used to handle very large datasets, and it slightly out-
performs carefully-tuned SVD models.

[43] adopted the population RBM model to predict drug-
target interactions, where each target corresponds to a user
and each drug corresponds to a “movie”. In this paper we
provide a different view to the problem: we view the drug-
target interactions to be predicted as missing data. There-
fore, only a single RBM is used where each target works as
an independent sample, and the missing drug-target interac-
tions can be imputed iteratively in training the RBM. Com-
pared to the population RBM model, this model is much
simpler. Let vmis and vobs denote the missing and observed
parts of the visible data, respectively. Let vmis

(t) denote the

imputed value of vmis at iteration t. In summary, we have
the following extended ICMLE algorithm to train RBMs
with missing data:

• I-step. Impute missing data and hidden units:

(i) Draw vmis
(t+1) conditioned on h(t) and the current

parameter estimate θ(t).

(ii) Draw h(t+1) from the distribution Pθ(h|v) as de-
fined in (2) and (3), conditioned on θ(t) and vmis

(t+1).
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• CMLE-step. Based on the pseudo-complete data
(h(t+1),vobs,vmis

(t+1)), do the following:

(i) For j = 1, 2, . . . ,M (in parallel), calculate θ
(t+1)
j

according to (7) by solving a penalized logistic re-
gression using the coordinate descent algorithm.

(ii) Fixed on {θ(t+1)
1 , . . . ,θ

(t+1)
M }, for i = 1, 2, . . . , N

(in parallel), calculate c
(t+1)
i according to (8) using

a one-dimensional root-finding algorithm.

We tested the proposed algorithm on MATADOR [45].
which is a manually curated online database of drug-target
interactions. The dataset contains 2860 protein targets, 790
drugs, and 14,964 interactions including both direct and in-
direct ones. We arranged the dataset into a 2860×790 binary
matrix; that is, for this example, we trained a RBM with
790 visible units using n = 2860 independent samples. The
training dataset is very sparse with the proportion of 1’s,
indicating presence of interactions, being only 0.66%. With
such sparse signals, accurate prediction of the drug-target
interactions is extremely difficult.

To test the proposed algorithm, we first randomly se-
lected 360 rows (protein targets) and then randomly deleted
100 elements (drugs) from each of the selected 360 rows as
missing data. Through this process, we generated 10 dif-
ferent training datasets. Our goal is to predict the missing
36,000 elements for each of the datasets. We tried a RBM
with 75 hidden units for this problem. For each dataset,
the proposed algorithm was run for 70 iterations, where the
first 20 iterations were discarded for the burn-in process.
The expected values of the missing visible units in the re-
maining 50 iterations were averaged as the predicted val-
ues. Each run cost about 35.5 minutes of real time on the
T7610 workstation with 45 thresholds running in parallel.
The total CPU time is about 897 minutes. To measure the
performance of the proposed method, we calculated the area
under the precision-recall curve with the precision and recall
being defined as

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

where TP, FP and FN are defined in Table 1 for out-
comes of binary decision. Since the drug-target interactions
in the dataset are rare, i.e., two classes are imbalanced, the
precision-recall curve can therefore provide a better measure
than the ROC curve for the performance of different pre-
diction algorithms [46]. As conventional, we summarize the
information of the precision-recall curve by a single number,
the area under the precision-recall curve (AUPR). The re-
sults are summarized in Table 2, which reports the averaged
AUPRs over the 10 datasets.

For comparison, we applied the singular value decompo-
sition (SVD) method to this problem. SVD has been pop-
ularly used in collaborative filtering, which decomposes a
matrix (with missing values) into two components U and

Table 1. Outcome table of binary decision.

Decision True False

Positive True Positive(TP) False Positive(FP)
Negative False Negative(FN) True Negative(TN)

Table 2. Comparison of RBM-ICMLE (with 75 hidden units)
and SVD for prediction of drug-target interactions: the results
are averaged over 10 datasets. For SVD, the default number
of singular values is k = 10 and it allows existence of missing

data. “AUPR” refers to the averaged area under the
precision-recall curve, and “SD” refers to the standard

deviation of the averaged area.

SVD
ICMLE k=2 k=5 K=10∗ K=50

AUPR 0.787 0.148 0.171 0.095 0.073
SD (0.006) (0.015) (0.017) (0.006) (0.004)

V . The singular values have been folded into these matri-
ces. A low-rank approximation for the original matrix can
then be obtained based on the decomposition with a speci-
fied number of singular values. The SVD method has been
implemented in the R package recommenderlab [47], which
allows the existence of missing values in the matrix decom-
position. For this example, we have tried different numbers
of singular values with the results summarized in Table 2.
The comparison indicates that the RBM-ICMLE method
performs much better than the SVD method. The outper-
formance of the RBM-ICMLE method may be due to the
non-linearity of the RBM model. Extension of the RBM-
ICMLE method to general collaborative filtering problems
is of great interest.

For this example, we have formulated the problem as
a missing data problem and employed the RBM model to
tackle the associated prediction problem. We have tried to
compare the proposed ICMLE algorithm with the CD algo-
rithm on this example. Unfortunately, it is unclear how the
CD algorithm can be applied to the problems with missing
data. At least, to the best of our knowledge, there is no a
public package where the CD algorithm can be run with
missing data.

5. DISCUSSION

We have proposed an innovative and fast algorithm for
training RBMs by incorporating conditional maximum like-
lihood estimation into the ICRO algorithm, which gets
around the intractable normalizing constant problem en-
countered by the existing CD algorithm. The numerical re-
sults indicate that the proposed algorithm can provide a
drastic improvement over the CD algorithm in RBM train-
ing. In addition, the proposed algorithm has an automatic
mechanism to drop out redundant connections for the RBM.
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We also gave an extension of the proposed algorithm for how
to cope with missing visible data in RBM training, and il-
lustrated its application using an example on drug-target
interaction predictions.

The proposed ICMLE algorithm induces two interleaved
Markov chains, one for the parameters of the RBM and the
other for the imputed hidden variables. The convergence
of the algorithm can then be diagnosed using the methods
developed for Markov chains, such as the Gelman-Rubin
statistic [48], which is essentially the same as what we did in
Figure 2. That is, we can run the algorithm multiple times
and diagnose the convergence of these runs by comparing
the paths of a summary statistic resulted from each run.
The summary statistic can be reconstruction error, which
is very easy to compute for RBMs, or some other summary
statistics. [49] pointed out that for the CD algorithm, the
reconstruction error is a poor measure of training progress
as it is not the function that the CD algorithm aims to opti-
mize. However, for the proposed ICMLE algorithm, the re-
construction error can still work as a good summary statistic
for assessing the convergence of the algorithm. This is due
to that the convergence of the ICML algorithm should be
assessed based on multiple runs due to its Markov property,
while the convergence of the CD algorithm is assessed based
on a single run. In addition, the reconstruction error mea-
sures the performance of the RBM model in feature coding
and extraction, the major goal of the RBM model.

Regarding computation, we note that the proposed
ICMLE algorithm can be further accelerated by working
with only a random subset of the full dataset at each itera-
tion, similar to the stochastic gradient algorithm employed
in deep learning. The reason why this strategy works is that
the ICRO algorithm requires only an estimate of θ(t)

∗ ob-
tained at each iteration instead of the exact maximizer of
the pseudo-complete data likelihood. However, as expected,
this strategy works at a price of high variation of the Markov
chains for both the parameter estimates and imputed hidden
variables.

In this paper, we considered only the RBMs with the
visible units restricted to binary variables. Extension to the
cases where the visible units are multinomial or Gaussian
is straightforward. For the former, each parameter block θj

can be estimated by solving a multiclass logistic regression;
and for the latter, each parameter block θj can be estimated
by solving a linear regression.
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