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Robust variable selection of varying coefficient
partially nonlinear model based on quantile
regression
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Quantile regression has been a popular topic for robust
inference in semi-parametric models. However, there does
not exist related literature for the varying coefficient par-
tially nonlinear model (VCPNLM), which is the focus of
this paper. Let alone on the quantile variable selection of
VCPNLM. Specifically, via iteratively minimizing an aver-
age check loss estimation procedure based on quantile loss
function, we propose a profile-type nonlinear quantile re-
gression method for the VCPNLM, and further establish
the asymptotic properties of the resulting estimators un-
der some mild regularity conditions. In addition, to achieve
sparsity when there exist irrelevant variables, we develop a
variable selection procedure for high-dimensional VCPNLM
by using the idea of shrinkage, and then demonstrate its
oracle property. Two most important parameters including
the smoothing parameter and the tuning parameter are also
discussed, respectively. Finally, extensive numerical simu-
lations with various errors are conducted to evaluate the
finite sample performance of estimation and variable selec-
tion, and a real data analysis is further presented to illus-
trate the application of the proposed methods.
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1. INTRODUCTION

Varying coefficient partially linear model (VCPLM), an
important extension of partially linear model and varying-
coefficient model, plays a crucial role among the semipara-
metric modeling. Due to its merits of interpretability of
parametric model and flexibility of nonparametric model,
extensive statistical inference on the estimation and vari-
able selection methods about this model have been re-
searched. Related literature include but not be restricted to
[4, 10, 26, 3, 2, 17]. Recently, to capture some more compli-
cated potential relationship between the response variable
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and the covariates, Li and Mei [16] proposed the so-called
varying coefficient partially nonlinear model (VCPNLM)
by replacing the linear component of VCPLM with a
known nonlinear function of the covariates. Specifically, the
VCPNLM has the form of

(1) Y = g(X,β0) + ZTα(U) + ε,

where “T” denotes the transpose of a vector or matrix
throughout this paper, Y is the response variable, X ∈ Rr,
Z ∈ Rq and U ∈ R are the associated covariates, β0 =
(β01, . . . , β0p)

T is a vector of unknown coefficients that do
not necessarily have the same dimension with X, g(·, ·) is a
pre-specified nonlinear function, α(·) = (α1(·), . . . , αq(·))T
is a q-dimensional vector of unknown coefficient functions,
ε is the random error. We assume the first component of Z
is 1 and thus no separate intercept is explicitly written.

Obviously, model (1) is flexible enough to contain some
classical models as its special cases, for instance, linear
model, partially linear model, nonlinear model, partially
nonlinear model, varying coefficient model and VCPLM.
Then, it is necessary and meaningful to do some research
on VCPNLM, but the relevant literature is relatively less so
far. Li and Mei [16] proposed a profile nonlinear least squares
estimation approach for the parametric vector β0 and coef-
ficient function vector α(·), and established the asymptotic
properties of the resulting estimators. Yang and Yang [34]
presented a new estimation procedure for β0 based on an
orthogonality-projection method, and further studied the
variable selection of α(·) via smooth-threshold estimating
equations. Qian and Huang [21] and Xiao and Chen [32] de-
veloped a corrected profile least-squared estimation proce-
dure for the VCPNLM with measurement errors, and then
did some statistical tests by using of the likelihood ratio
test approach. Jiang et al. [9] proposed a robust estimation
procedure based on exponential squared loss function. Zhou
et al. [37] investigated the empirical likelihood inferences of
model (1).

Note that, nearly all the existing estimation approaches
for VCPNLM immerse in mean regression, based on either
least squares or likelihood method. Although the mean esti-
mate performs the best in the case of normally distributed
error which is a standard assumption in mean regression, its
performance can be highly influenced by the data set that
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contains some outliers or a thick tail. Worse still, the mean
estimate will break down under the error of Cauchy distri-
bution and is not a consistent estimate any more. Therefore,
considering on the uncertain distributions of the data sets
encountered in many practical problems, it is of interest and
desirable to develop some robust inference on VCPNLM. As
one of the most popular alternative ways to overcome the
drawback of mean regression method, the quantile regres-
sion proposed by Koenker and Bassett [14] has been widely
used as a robust statistical tool to explore the underlying
relationship between the covariates and the response. Later
on, this method has been quickly extended to the semipara-
metric models for the sake of robust inference, the recent
literatures include but are not restricted to [36, 30] for the
varying coefficient model, [28, 10] for the VCPLM, [8, 19]
for the single-index model, [33, 18] for the partially linear
single-index model, and a comprehensive book by Koenker
[13] for an in-depth discussion about quantile method. How-
ever, even though the quantile regression has been well de-
veloped in various semiparametric models, there exists no
research on the VCPNLM as far as we know.

Motivated by these observations, we extend the quantile
methodology to model (1) and propose a variable selection
procedure for the parametric vector in this paper. To the
best of our knowledge, this is the first attempt at provid-
ing robust estimate and the first considering variable selec-
tion for the VCPNLM via quantile regression. More specif-
ically, we first propose a profile nonlinear quantile regres-
sion approach for the parametric vector and the coefficient
function vector based on an average check loss estimation
procedure, and then consider a variable selection procedure
by combining the proposed estimation approach with adap-
tive LASSO penalty. Theoretical properties including the
asymptotic normalities of estimation and the oracle prop-
erty of variable selection are established. It is worth noting
that, here we employ the profile quantile technique to avoid
undersmoothing, which should be a necessary condition in
the frequently used backfitting approach for semiparametric
models. Thus, our proposed method provides an easy way
to get the optimal bandwidth for quantile regression, while
brings some difficulty in proving the theoretical properties
since one can not write the expressions of the solutions. Ac-
cordingly, the results derived in Theorem 2.1 plays a key
role throughout our theoretical proofs. Some simulations
with various distributed errors are conducted to evaluate
the finite sample performance of estimation and variable
selection, and a real data analysis is presented to further
illustrate the application of our proposed methods.

The rest of this paper is organized as follows. In Section 2,
we first present the detailed profile nonlinear quantile regres-
sion methodology and its calculation procedure, then the
asymptotic properties of the resulting estimators are estab-
lished. In Section 3, we employ the adaptive LASSO penalty
to the parametric components for a sparse estimate, and the
oracle property of the penalized estimate is also derived. In

Section 4, we conduct some numerical simulations and ap-
ply the proposed methods to analyze the Boston housing
price data. A short conclusion is summarized in Section 5.
Regularity conditions and all technical proofs are collected
in the Appendix.

2. A PROFILE-TYPE QUANTILE
REGRESSION

2.1 Estimation methodology

Let ρτ (t) = t[τ − I(t < 0)] be the check loss function for
τ ∈ (0, 1). Quantile regression (QR) is often used to estimate
the conditional quantile of the response variable Y , which
has the following definition

Qτ (x, z, u) = argmin
a

E{ρτ (Y − a) | (X,Z,U) = (x, z, u)}.

The VCPNLM assumes that the τ -th conditional quantile
function of Y can be expressed as Qτ (x, z, u) = g(x, βτ ) +
zTατ (u). Thus, for any given τ , quantile regression can be
applied to estimate the parametric vector βτ and the coef-
ficient function vector ατ (·).

Suppose that {Xi, Yi, Zi, Ui}ni=1 are independent identi-
cally distributed (i.i.d.) random samples generated from

(2) Y = g(X,βτ ) + ZTατ (U) + ετ ,

where ετ is the random error with its τ -th quantile equaling
to zero when given (X,Z,U). For the convenience of nota-
tion, we omit τ from βτ , ατ (·) and ετ in model (2) wherever
clear from the context, but we should keep in mind that
those quantities are τ -specific.

From the idea of [14], the τ -th QR estimate of β and
α(·) can be obtained by minimizing the following nonlinear
quantile loss function

(3)

n∑
i=1

ρτ{Yi − g(Xi, β)− ZT
i α(Ui)}.

Obviously, the objective function (3) involves both the non-
parametric and parametric components, which should be
estimated with different rates of convergence, so we propose
the following two-step procedure to estimate α(·) and β.

In the first step, for given β, model (2) can be rewrite as

Y − g(X,β) = ZTα(U) + ε.

When U is closed to u, the coefficient functions αk(U) can
be locally linearly approximated as

αk(U) ≈ αk(u) + α′
k(u)(U − u), k = 1, . . . , q.

So the coefficient function vector α(u) and its derivative
α′(u) can be estimated by minimizing

(4)

n∑
i=1

ρτ{Yi − g(Xi, β)− ZT
i [α(u) + α′(u)Ui0]}Kh(Ui0),
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where Ui0 = Ui − u, Kh(·) = K(./h)/h with K(·) being a
kernel weight function and h being the bandwidth. Taking
u0 in (4) be U1, . . . , Un, the estimates of α(Uj) and α′(Uj)
for j = 1, . . . , n are obtained, which are denoted by α̃(Uj)
and α̃′(Uj), respectively.

It is worthy pointing out here that α̃(Uj) and α̃′(Uj) de-
pend on β, so write them as α̃(Uj , β) and α̃′(Uj , β) should
be more accurate. However, considering this is just a no-
tation issue and the latter expression is somewhat tiring,
we abbreviate α̃(Uj , β) and α̃′(Uj , β) as α̃(Uj) and α̃′(Uj)
whenever no confusion is caused hereafter, but we should
keep in mind that the dependence is truly existed.

In the second step, we update the estimate of β based
on {α̃(Uj), α̃

′(Uj)}nj=1. In details, the parameter β can be
estimated via minimizing

n∑
j=1

n∑
i=1

ρτ{Yi − g(Xi, β)− ZT
i [α̃(Uj) + α̃′(Uj)Uij ]}wij ,

where Uij = Ui − Uj , wij = Kh(Uij)/
∑n

l=1 Kh(Ulj) satisfy∑n
i=1 wij = 1 for ∀j = 1, . . . , n.
Let aj = α(Uj) = (α1(Uj), . . . , αq(Uj))

T , bj = α′(Uj) =

(α′
1(Uj), . . . , α

′
q(Uj))

T , ãj = α̃(Uj) and b̃j = α̃′(Uj) for
j = 1, . . . , n. Consequently, a profile estimation algorithm
for estimating β0 can be summarized as follows.
Step 1. Given the current estimator of β0 by β̃(t), then aj
and bj can be estimated by

(ãj , b̃j) = arg min
aj ,bj

n∑
i=1

ρτ{Yi − g(Xi, β̃
(t))

−ZT
i [aj + bjUij ]}wij

for j = 1, . . . , n.
Step 2. Based on {ãj , b̃j}nj=1, we update the estimator β̃(t)

by

β̃(t+1) = argmin
β

n∑
j=1

n∑
i=1

ρτ{Yi − g(Xi, β)

−ZT
i [ãj + b̃jUij ]}wij .

Step 3. Iterate Step 1-Step 2 until convergence. Denote the
final estimate of β0 by β̂.

Note that, the idea for estimate β0 is somewhat like the
profile least squares (PLS) of Fan and Huang [4] and Li and
Mei [16] for the VCPLM and VCPNLM except for the fol-
lowing small difference: The PLS approach has a explicit
expression of the solutions due to its quadratic loss function
but quantile do not have, thus here we use an iterative pro-
cedure. Meanwhile, this procedure enables us to take use of
the estimates of α′(·) in addition to the estimates of α(·),
which could avoid the requirement of under-smoothing in
the estimation of semi-parametric models (see the discus-
sions on Page 1166 of Xia and Härdle [31]). Therefore, we

call our proposed methodology the profile-type nonlinear
quantile regression (PQR) method.

With the estimate β̂ of β0, for any inner point u in the
support of U , the estimators of α(u) and α′(u) will be â =

α̂(u, β̂) and b̂ = α̂′(u, β̂), where â and b̂ are obtained from

(â, b̂) = argmin
a,b

n∑
i=1

ρτ{Yi − g(Xi, β̂)(5)

−ZT
i [a+ bUi0]}Kh(Ui0).

2.2 Theoretical properties

This subsection aims at to establish the asymptotic prop-
erties of the resulting estimators. We first introduce some
notations and definitions. Denote by fY (· | (X,Z,U)) and
FY (· | (X,Z,U)) the conditional density function and cu-
mulative distribution function of Y on (X,Z,U), respec-
tively. Let g′(x, β) = ∂g(x, β)/∂β ∈ Rp×1 and g′′(x, β) =
∂2g(x, β)/∂β∂βT ∈ Rp×p be the first and second order
derivatives of g(x, β) with respect to β. Let fU (·) be the
marginal density function of U and

μj =

∫
ujK(u)du, νj =

∫
ujK2(u)du, j = 0, 1, 2, . . .

Theorem 2.1. Suppose that the regularity conditions (C1)-
(C6) given in the Appendix hold. If h = O(n−δ) with δ ∈
(1/6, 1/4), then we have

α̂(u, β) = α(u) +
1

2
μ2h

2α′′(u)− E(ZZT | U = u)−1·

E(Zg′(X,β)T | U =u)dβ +Qn1(u) +O(h4 + δ2β),

α̂′(u, β) = α′(u) +
1

h
Qn2(u) +O(h2 + δβ),

where

Qn1(u) =
{
nfU (u)E

[
fY (Qτ (X,Z,U))ZZT | U =u

]}−1 ·
n∑

i=1

Ki,hZiψτ (εi),

Qn2(u) =
{
nhμ2fU (u)E

[
fY (Qτ (X,Z,U))ZZT | U =u

]}−1 ·
n∑

i=1

Ki,hZiUi0ψτ (εi),

dβ = β − β0, δβ = |β − β0|, Ki,h = Kh(Ui0), Ui0 = Ui − u
and ψτ (t) = τ − I(t < 0).

It is worth pointing out that the results derived in Theo-
rem 2.1 always act as a key role throughout our theoretical
proofs. From now on, we assume in the following context
that the initial value β lies in a small neighborhood of β0:
Θn = {‖β−β0‖ ≤ C0n

−1/2+c0}, where C0 and c0 < 1/20 are
some positive constants. These assumptions are feasible be-
cause such an initial estimator can be obtained directly from
the PLS approach of Li and Mei [16] or the orthogonality-
projection method of Yang and Yang [34].
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Theorem 2.2. Suppose that the regularity conditions (C1)-
(C6) given in the Appendix hold. If h = O(n−δ) with δ ∈
(1/6, 1/4), then we have

(6) ‖β̂ − β0‖ = Op(1/
√
n).

Theorem 2.3. Under the same conditions assumed in The-
orem 2.2, we have

(7)
√
n(β̂ − β0)

d→ N
(
0, τ(1− τ)Σ−1Σ0Σ

−1
)
,

where Σ0 = E{Ξ}, Σ = E{fY (Qτ (X,Z,U))Ξ} and

Ξ = g′(X,β0)g
′(X,β0)

T − E(g′(X,β0)Z
T | U) ·

E(ZZT | U)−1E(Zg′(X,β0)
T | U).

The results of Theorems 2.2 and 2.3 indicate that with-
out undersmoothing, our proposed profile nonlinear quan-
tile regression procedure would eventually provide a

√
n-

consistent estimate of β0 with its asymptotic distribution
being (7). The following theorem presents the asymptotic
normalities of the estimates of α(·) as well as its first deriva-
tive α′(·).

Theorem 2.4. Suppose that β̂ − β0 = Op(n
−1/2), u is an

interior point on its support U . If the same conditions given
in Theorem 2.3 hold, then we have

√
nh

{(
α̂(u, β̂)− α(u)

h
(
α̂′(u, β̂)− α′(u)

) )− 1

2
μ2h

2Ω−1(u)Γ(u)α′′(u)

}

d→ N
(
0, τ(1− τ)Ω−1(u)Ω0(u)Ω

−1(u)
)
,

where

Ω(u) = fU (u)E {fY (Qτ (X,Z,U))� | U = u} ,
Ω0(u) = fU (u)E {fY (Qτ (X,Z,U))�0 | U = u} ,

Γ(u) = E

{
fY (Qτ (X,Z,U))

(
ZZT

0

)
| U = u

}
,

� =

(
ZZT 0
0 μ2ZZT

)
and �0 =

(
ν0ZZT 0

0 ν2ZZT

)

2.3 Bandwidth selection

It is well known that the bandwidth always plays a cru-
cial role in local polynomial smoothing wherever in mean
regression and quantile regression, because this parameter
controls the curvature of the fitted function. One advan-
tage of the proposed method lies in that undersmoothing
is not necessary, which can be observed from the condition
h = O(n−δ) with δ ∈ (1/6, 1/4). As a result, some exist-
ing bandwidth selection criteria such as the rule of thumb
[24], k-fold cross-validation (k-CV, [1]) and the generalized
cross-validation (GCV, [25]) can be used. Here following the
similar arguments on quantile regression by [35], we take the

bandwidth as

(8) hτ = hm{τ(1− τ)/φ(Φ−1(τ))2}1/5,

where hm is the optimal bandwidth used in mean regres-
sion, φ and Φ are the probability density function and the
cumulative distribution function of the standard normal dis-
tribution, respectively. Based on the facts that many exist-
ing algorithms can be employed to the selection of hm (see
the discussions of [22]) and our proposed procedure is not
sensitive to the choice of bandwidth, thus in this paper we
select hm through the plug-in bandwidth selector developed
by Ruppert et al. [22], which is easily implemented via the
function “dpill” in R software, for the purpose of reducing
computational burden.

Remark 1. Compared with the k-CV and GCV ap-
proaches, the bandwidth given in (8) not only provides an
easy approach to get the optimal bandwidth for quantile
regression, but also can effectively reduce the burden of cal-
culations. For detailed discussion about this method, we rec-
ommend to turn to Yu and Jones [35].

3. VARIABLE SELECTION PROCEDURE

In practice, the true model is often unknown, which per-
mits the possibility of selecting an overfitted or an underfit-
ted model, leading to inefficient predictions or biased esti-
mators. With high-dimensional covariates, sparse modeling
is often considered superior owing to enhanced model pre-
dictability and interpretability. This motivates us to develop
a variable selection procedure for the purpose of selecting
significant parametric components in model (1).

With this goal in mind, we employ the adaptive LASSO
penalty proposed by Zou [38] to simultaneously select sig-
nificant variables and estimate their effects. To this end,
we construct the following adaptive penalized quantile loss
function

Φn(λ, β) =

n∑
j=1

n∑
i=1

ρτ

{
Yi − g(Xi, β)− ZT

i [α̂(Uj)

+α̂′(Uj)Uij ]
}
wij +

p∑
k=1

λk|βk|,

where λ = (λ1, . . . , λp)
T is the tuning parameter. Thus given

λ, the penalized estimate of β0, denoted as β̂λ, can be ob-
tained from

β̂λ = argmin
β

Φn(λ, β).

As will be shown in Theorem 3.1 that the penalized es-
timate β̂λ enjoys the oracle property if the adaptive tuning
parameters λ = (λ1, . . . , λp)

T is properly selected. Thus,
the values of λk, k = 1, . . . , p should be determined before
implementation in practice, and many existing selection cri-
teria based on data-driven method such as GCV and BIC
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can be used. In view of the expensive computation to simul-
taneously select a p-dimensional parameter, we simply set
λk = λn/|β̂k|2, k = 1, . . . , p according to [38], where λn is
a common penalty parameter with its dimension being one,
and β̂ denotes the unpenalized estimator generated from
Section 2. That is to say, the considered adaptive penalized
objective function is

Φn(λn, β) =

n∑
j=1

n∑
i=1

ρτ

{
Yi − g(Xi, β)− ZT

i [α̂(Uj)

+α̂′(Uj)Uij ]
}
wij + λn

p∑
k=1

|βk|
|β̂k|2

.

Finally, we adopt a BIC-type criterion to select the one
dimension tuning parameter λn following Wang and Leng
[27]. In detail, we select λn as

λ̂BIC
n = argmin

λ
log
{ n∑

j=1

n∑
i=1

ρτ{Yi − g(Xi, β̂
λ)

−ZT
i [α̂(Uj) + α̂′(Uj)Uij ]}wij

}
+

logn

n
dfλ,(9)

where dfλ is the effective degrees of freedom measured by

the number of nonzero coefficients in β̂λ for any candidate
penalty parameter λ. In this paper, a residual is regarded as
zero if its absolute value is smaller than 10−6, and the sim-
ulation studies later show that the selected λ̂BIC

n performs
very well.

Therefore, the detailed penalized estimation procedure of
β0 can be summarized as follows:
Step 1∗. Same to Step 1 presented in Section 2.1. Specif-
ically, given the current estimator of β0 by β̃(t), aj and bj
are estimated by

(ãj , b̃j) = arg min
aj ,bj

n∑
i=1

ρτ{Yi − g(Xi, β̃
(t))

−ZT
i [aj + bjUij ]}wij

for j = 1, . . . , n.
Step 2∗. For any one alternative λn, we can calculate an
estimator β̃λn from

β̃λn = argmin
β

n∑
j=1

n∑
i=1

ρτ

{
Yi − g(Xi, β)− ZT

i [ãj

+b̃jUij ]
}
wij + λn

p∑
k=1

|βk|
|β̂k|2

,

where the estimators {ãj , b̃j}nj=1 are obtained from Step 1∗.
Then, we use the BIC-type criterion (9) to search an optimal

λ̂BIC
n , and the related estimator β̃λ̂BIC

n is selected as the
updated estimator β̃(t+1) of β̃(t).
Step 3∗. Iterate Steps 1-2 until convergence. Denote the
finally penalized estimator of β0 by β̂λ.

In the next, we will establish the oracle property of the
adaptive penalized estimator β̂λ. Without loss of general-
ity, we assume that β0I = (β01, . . . , β0l)

T consists all of the
nonzero components of β0, and β0II = (β0,l+1, . . . , β0,p)

T

corresponding to all the zero coefficients. Divide β̂λ into

β̂λ =
(
β̂λT

I , β̂λT

II

)T
, then we have the following theorem

holds.

Theorem 3.1. Suppose that the same conditions given in
Theorem 2.3 hold. If λn → ∞ and λn/

√
n → 0 as n → ∞,

then we have
(i) Selection consistency: β̂λ

II = 0 with probability tending
to 1,
(ii) Asymptotic normality:

(10)
√
n(β̂λ

I − β0I)
d→ N

(
0, τ(1− τ)Σ−1

I Σ0IΣ
−1
I

)
,

where ΣI and Σ0I are the top-left l-by-l submatrices of Σ
and Σ0 in Theorem 2.3, respectively.

Remark 2. It is worth noting that here we choose adaptive
LASSO penalty solely for the convenience of computation.
Other penalty such as smoothly clipped absolute deviation
(SCAD, [5]) can also be considered, and the oracle property
can be similarly established.

4. NUMERICAL RESULTS

In this section, we will conduct some Monte Carlo simu-
lations with various distributed errors to evaluate the finite
sample performance of the proposed estimation and vari-
able selection procedures, and then apply the new meth-
ods to Boston housing price data for further application.
In all examples, we fix the kernel function K(u) to be the
Epanechnikov kernel, that is K(u) = 0.75(1−u2)I(|u| ≤ 1),
where I(·) is the indicative function.

4.1 Monte Carlo simulations

Example 1. In this example, we are interested in compar-
ing the estimation performance of our proposed profile-type
quantile regression (PQR) method when τ = 0.25, 0.5, 0.75
with the profile least squares (PLS) approach developed in
[16]. The data are generated from the model

(11) Y = g(X1, X2;β1, β2) + Z1α1(U) + Z2α2(U) + ε,

where the covariates X = (X1, X2)
T comes from a bivari-

ate normal distribution with mean zero and cov(Xi, Xj) =
0.5|i−j|, Z1 ∼ N(0, 1), Z2 ∼ U(0, 3) and U ∼ U(0, 1),
g(X1, X2;β1, β2) = exp(X1β1+X2β2) with the true param-
eter β0 = (β01, β02)

T = (1, 1.5)T , α1(U) = sin(2πU) and
α2(U) = 3.5{exp(−(4U − 1)2) + exp(−(4U − 3)2)− 1.5}.

To evaluate the efficiencies of the considered esti-
mators, we introduce some measurement criteria: the
mean absolute deviation (MAD) and the correspond-
ing standard deviations (SD) for the parametric compo-
nents; the average square root of average square error
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Table 1. The estimation results in Example 1 with sample size n = 200

Error type Method MAD(β̂1) SD MAD(β̂2) SD RASE1 SD RASE2 SD

N(0,1) PLS 0.0030 0.0026 0.0027 0.0024 0.1937 0.0463 0.1636 0.0397
PQR(0.25) 0.0033 0.0030 0.0029 0.0027 0.2418 0.0541 0.2055 0.0504
PQR(0.5) 0.0031 0.0028 0.0027 0.0026 0.2245 0.0527 0.1909 0.0465

PQR(0.75) 0.0034 0.0030 0.0031 0.0029 0.2488 0.0530 0.2126 0.0493

t(2) PLS 0.0094 0.0300 0.0097 0.0486 0.7592 0.5076 0.7261 0.4494
PQR(0.25) 0.0074 0.0076 0.0065 0.0071 0.3123 0.0845 0.2677 0.0821
PQR(0.5) 0.0061 0.0059 0.0052 0.0052 0.2926 0.0811 0.2404 0.0747

PQR(0.75) 0.0074 0.0079 0.0061 0.0073 0.3104 0.0843 0.2658 0.0829

CN(0.1,10) PLS 0.0082 0.0097 0.0075 0.0092 0.6110 0.2372 0.4751 0.2162
PQR(0.25) 0.0056 0.0056 0.0050 0.0054 0.2731 0.0711 0.2304 0.0623
PQR(0.5) 0.0047 0.0056 0.0043 0.0052 0.2649 0.0635 0.2138 0.0558

PQR(0.75) 0.0060 0.0059 0.0056 0.0058 0.2817 0.0736 0.2348 0.0654

Cauchy PLS 0.0679 0.1550 0.0606 0.1381 6.9564 16.548 5.5902 16.1843
PQR(0.25) 0.0112 0.0155 0.0113 0.0161 0.4119 0.1490 0.3405 0.1162
PQR(0.5) 0.0082 0.0083 0.0077 0.0090 0.3877 0.1381 0.3172 0.1009

PQR(0.75) 0.0119 0.0163 0.0114 0.0157 0.4146 0.1502 0.3447 0.1195

Table 2. The estimation results in Example 1 with sample size n = 400

Error type Method MAD(β̂1) SD MAD(β̂2) SD RASE1 SD RASE2 SD

N(0,1) PLS 0.0016 0.0014 0.0015 0.0014 0.1347 0.0289 0.1155 0.0269
PQR(0.25) 0.0019 0.0016 0.0016 0.0016 0.1750 0.0380 0.1484 0.0321
PQR(0.5) 0.0017 0.0015 0.0015 0.0014 0.1610 0.0328 0.1395 0.0290

PQR(0.75) 0.0018 0.0015 0.0016 0.0015 0.1704 0.0383 0.1491 0.0334

t(2) PLS 0.0057 0.0101 0.0049 0.0087 0.4736 0.1981 0.3901 0.1520
PQR(0.25) 0.0035 0.0036 0.0030 0.0027 0.2005 0.0537 0.1840 0.0491
PQR(0.5) 0.0030 0.0027 0.0026 0.0022 0.1853 0.0495 0.1702 0.0456

PQR(0.75) 0.0033 0.0034 0.0028 0.0025 0.2039 0.0551 0.1884 0.0506

CN(0.1,10) PLS 0.0050 0.0061 0.0044 0.0049 0.4287 0.1379 0.3375 0.1094
PQR(0.25) 0.0028 0.0030 0.0024 0.0022 0.1931 0.0450 0.1524 0.0378
PQR(0.5) 0.0024 0.0023 0.0021 0.0019 0.1797 0.0413 0.1497 0.0346

PQR(0.75) 0.0030 0.0037 0.0028 0.0030 0.1998 0.0469 0.1560 0.0395

Cauchy PLS 0.0780 0.3157 0.0677 0.2718 19.111 176.47 9.564 57.339
PQR(0.25) 0.0069 0.0103 0.0065 0.0107 0.2518 0.0730 0.2157 0.0624
PQR(0.5) 0.0043 0.0051 0.0036 0.0046 0.2432 0.0691 0.1984 0.0531

PQR(0.75) 0.0066 0.0108 0.0058 0.0101 0.2534 0.0739 0.2113 0.0647

(RASE) as well as its SD for the coefficient functions
α1(u), . . . , αq(u), in which the RASE is defined as RASEk ={

1
ngrid

∑ngrid

i=1

(
α̂k(ui)− αk(ui)

)2}1/2

for any estimator α̂k

of αk, where {ui, i = 1, . . . , ngrid} is a set of grid points. In
addition, to show the robustness of our proposed method,
four different error distributions for ε are considered: stan-
dard normal distribution N(0,1), t(2) distribution, contami-
nated normal distribution 0.9N(0,12)+0.1N(0,102) abbrevi-
ate as CN(0.1,10), and standard Cauchy distribution.

The corresponding results with 200 simulation runs are

summarized in Tables 1 and 2. As we can clearly see that

for the normal error, the PLS method performs the best,

and the PQR methods lose some efficiency but are still very

comparable. Whereas, for the other three non-normal errors,

the performances of our proposed PQR procedures are sig-

nificantly better than that of PLS approach no matter in

terms of estimation accuracy or stability. Especially when

the error follows Cauchy distribution, the PLS approach is
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Table 3. Estimation results in Example 1 at τ = 0.1 and τ = 0.9 with sample size n = 200

Error type Method MAD(β̂1) SD MAD(β̂2) SD RASE1 SD RASE2 SD

t(2) τ = 0.1 0.0086 0.0117 0.0074 0.0111 0.3851 0.1214 0.3217 0.1169
τ = 0.9 0.0081 0.0123 0.0078 0.0116 0.3775 0.1253 0.3232 0.1146

Cauchy τ = 0.1 0.0193 0.0241 0.0171 0.0230 0.5224 0.2116 0.4348 0.1945
τ = 0.9 0.0178 0.0212 0.0167 0.0238 0.5177 0.2135 0.4376 0.1912

Table 4. Results of the proposed estimator PQR(0.5) for model (11) across different bandwidth selection procedures with
n = 400

Error type Bandwidth MAD(β̂1) SD MAD(β̂2) SD RASE1 SD RASE2 SD

N(0,1) Plug-in 0.0018 0.0016 0.0017 0.0015 0.1618 0.0312 0.1389 0.0291
5-CV 0.0019 0.0016 0.0018 0.0016 0.1626 0.0320 0.1398 0.0294

10-CV 0.0015 0.0015 0.0016 0.0014 0.1604 0.0313 0.1390 0.0285
GCV 0.0017 0.0016 0.0015 0.0015 0.1601 0.0305 0.1384 0.0287

t(2) Plug-in 0.0028 0.0027 0.0029 0.0025 0.1848 0.0490 0.1713 0.0457
5-CV 0.0026 0.0028 0.0030 0.0021 0.1852 0.0494 0.1701 0.0466

10-CV 0.0026 0.0023 0.0025 0.0022 0.1839 0.0479 0.1688 0.0453
GCV 0.0026 0.0024 0.0028 0.0021 0.1838 0.0483 0.1704 0.0449

Table 5. The empirical coverage probabilities of confidence intervals for model (11) with sample size n = 200

Error type Method
β1 β2

90% 95% 90% 95%

N(0,1) PQR(0.25) 0.8960 0.9460 0.8980 0.9440
PQR(0.5) 0.8980 0.9500 0.9020 0.9480

PQR(0.75) 0.8940 0.9460 0.8960 0.9480

CN(0.1,10) PQR(0.25) 0.8940 0.9440 0.9000 0.9440
PQR(0.5) 0.9020 0.9480 0.8960 0.9480

PQR(0.75) 0.8960 0.9460 0.8980 0.9460

corrupted due to the infinite variance of model error, and
the superiorities of PQR methods become more remarkable.
On the other hand, as the sample size increases from 200 to
400, there is an obvious tendency that the performances of
all the considered estimates get better and better except for
the PLS method of Cauchy error, this phenomenon is rea-
sonable and coincide with the theory that the PLS-based
estimators no longer enjoy root-n consistency in this case.
Besides, although the PQR procedures with quantiles being
0.25, 0.5 and 0.75 have similar performances, the median
method seems to be slightly better in most scenarios. Fur-
thermore, we have added some simulations to evaluate the
performance of our proposed method at the tails of the dis-
tributions in Table 3. Although the effects of τ = 0.1, 0.9 are
not as good as τ = 0.25, 0.5, 0.75 that presented in Table 1,
the overall performances are acceptable and the estimators

are significantly better than the ones of PLS, which imply
the validation of our proposed method.

Some extra simulations are conducted in this example to
examine the performance of our developed method. Table
4 shows some results of the PQR estimator across differ-
ent bandwidth selection, in which only τ = 0.5 is consider
since other two cases are similar from previous studies and
“Plug-in” means that the bandwidth is generated by (8)
with hm obtained by the plug-in bandwidth selector. It is
clear that the results of four different bandwidth selection
procedures are much similar, which indicates the stability
of our proposed new approach with respect to the band-
width selection. Thus, we use the formula (8) to obtain the
bandwidth for its convenience and time-saving benefit in the
latter numerical studies. In addition, Table 5 presents the
empirical coverage rates at the nominal level 90% and 95%
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Table 6. The results of variable selection in Example 2

n Error type Method NC NIC U.fit O.fit C.fit

200 N(0,1) PQR(0.25) 4.950 0.005 0.005 0.040 0.955
PQR(0.5) 4.965 0 0 0.035 0.965

PQR(0.75) 4.960 0 0 0.040 0.960
PQR(0.5)-SCAD 4.960 0.005 0.005 0.035 0.960

t(2) PQR(0.25) 4.935 0.015 0.010 0.055 0.935
PQR(0.5) 4.940 0.005 0.005 0.055 0.945

PQR(0.75) 4.930 0.015 0.010 0.060 0.930
PQR(0.5)-SCAD 4.925 0.015 0.010 0.060 0.930

CN(0.1,10) PQR(0.25) 4.950 0 0 0.045 0.955
PQR(0.5) 4.960 0 0 0.040 0.960

PQR(0.75) 4.955 0.005 0.005 0.045 0.950
PQR(0.5)-SCAD 4.935 0.005 0.005 0.040 0.955

Cauchy PQR(0.25) 4.920 0.025 0.020 0.065 0.915
PQR(0.5) 4.925 0.005 0.005 0.065 0.930

PQR(0.75) 4.920 0.010 0.010 0.070 0.920
PQR(0.5)-SCAD 4.925 0.035 0.015 0.065 0.920

400 N(0,1) PQR(0.25) 4.990 0 0 0.010 0.990
PQR(0.5) 4.995 0 0 0.005 0.995

PQR(0.75) 4.990 0 0 0.005 0.995
PQR(0.5)-SCAD 4.995 0 0 0.005 0.995

t(2) PQR(0.25) 4.985 0 0 0.015 0.985
PQR(0.5) 4.990 0 0 0.010 0.990

PQR(0.75) 4.980 0 0 0.015 0.985
PQR(0.5)-SCAD 4.980 0 0 0.010 0.990

CN(0.1,10) PQR(0.25) 4.995 0 0 0.005 0.995
PQR(0.5) 4.995 0 0 0.005 0.995

PQR(0.75) 4.990 0 0 0.010 0.990
PQR(0.5)-SCAD 4.990 0 0 0.010 0.990

Cauchy PQR(0.25) 4.980 0 0 0.015 0.985
PQR(0.5) 4.985 0 0 0.010 0.990

PQR(0.75) 4.980 0 0 0.020 0.980
PQR(0.5)-SCAD 4.985 0 0 0.015 0.985

of parameters over 500 simulations for model (11) with the
errors of Normal and CN(0.1,10) distributions. Obviously,
the empirical coverage rates are close to the true values for
all cases as expected, this result confirms the validation of
the proposed new method and is consistent to the asymp-
totic normalities of the parameter estimator established in
Theorem 2.3.

Example 2. The main purpose of this example is to evalu-
ate the variable selection performance of our proposed adap-
tive penalized PQR procedure with τ = 0.25, 0.5, 0.75.
Similar model is considered as model (11) except that the
covariates X = (X1, . . . , X7)

T comes from a multi-normal
distribution with mean zero and cov(Xi, Xj) = 0.5|i−j| for
i, j = 1, . . . , 7, and the true parameter β = (β1, . . . , β7)

T =

(1, 1.5, 0, 0, 0, 0, 0)T . As done in Example 1, four different
error distributions for ε are also considered. Besides, the av-
erage number of the true zero coefficients correctly identified
as zero (NC), the average number of the true nonzero coef-
ficients erroneously identified as zero (NIC), the proportion
of trials excluding at least one important variable in the se-
lected final model (U.fit), the proportion of trials selecting
all significant variables and at least including one noise vari-
ables (O.fit), and the proportion of trials selecting the exact
sub-model (C.fit), are presented to show the performance of
variable selection.

The corresponding results with 200 simulation runs are
summarized in Table 6 and some observations can be ob-
tained. Specifically, the penalized PQR procedure with dif-
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Figure 1. The boxplots of RASEs for the varying coefficients
in Example 2 when the error is t(2) distributed.

ferent quantiles performs quite well in correctly selecting the
significant covariates as well as distinguishing the noise co-
variates, which indicates that the BIC selection strategy of
tuning parameters presented in previous section works well.
In addition, the method based on different quantiles perform
similarly in each situation and all become better as the sam-
ple size increasing. Similar conclusions can also be observed
from Figures 1 and 2, which present the boxplots of RASEs
for the varying coefficients with the errors come from t(2)
and CN(0,1) distributions, respectively. Note that, similar
boxplots for the rest two errors can also be obtained, but
we omit presenting them to reduce the length of this paper.
Furthermore, we also present some simulation results of the
proposed PQR estimator under SCAD penalty in Table 6.
Since the estimation procedure is relatively time-consuming,
we only consider the case of τ = 0.5 and abbreviate the es-
timator as PQR(0.5)-SCAD. As we can see, although both
the adaptive LASSO and SCAD penalty obtain some satis-
factory results, the overall performance of adaptive LASSO
appears to be a little better than SCAD in most cases. In a
word, all these results corroborate the theoretical properties
and reflect the robustness of our proposed method.

4.2 Real data analysis

As an illustration, we apply our proposed estimation and
variable selection procedures to the Boston housing price
data, which can be available freely from in R package. This

Figure 2. The boxplots of RASEs for the varying coefficients
in Example 2 when the error is CN(0,1) distributed.

data set contains 506 observations and has been analyzed
by [4, 29, 16] via different semiparametric models. Follow-
ing the previous studies, here we take the median value of
owner-occupied homes in $1000’s (medv) as the response
variable Y , and

√
lstat as the index variable U , where lstat

denotes the percentage of lower status of the population.
The six covariate variables considered are per capita crime
rate by town (crim), average number of rooms per dwelling
(rm), full-value property tax per $10,000 (tax ), nitric ox-
ides concentration per 10 million (nox ), pupil-teacher ratio
by town (ptratio) and proportion of owner-occupied units
built prior to 1940 (age), which are denoted by Z2, Z3, Z4,
Z5, Z6 and Z7, respectively. On the other hand, existing lit-
erature including Lesage and Pace [15] and Wang and Xue
[29] have provided some evidence support for an exponential
relationship betweenmedv and the variables ptratio and age.
Therefore, we analyze this data set based on the following
varying coefficient partially nonlinear models

Y = exp
(
X1β1 +X2β2

)
+

5∑
j=1

αj(U)Zj + ε,

where X1 = Z6 and X2 = Z7, Z1 = 1 corresponding to the
baseline function.

In the beginning, we give a rough understanding of this
data set through two simple figures, which include the box-
plot and histogram of response Y presented in Figure 3
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Table 7. The results of estimation and model fitting in Boston housing price data

Method β̂1 β̂2 R2 MAPE

PLS -0.1634 (0.0258) -0.0255 (0.0217) 0.7994 (0.1106) 0.2792 (0.0781)
PQR(0.25) -0.1443 (0.0105) -0.0509 (0.0091) 0.8322 (0.0531) 0.2049 (0.0446)
PQR(0.5) -0.1418 (0.0093) -0.0481 (0.0077) 0.8380 (0.0497) 0.2015 (0.0418)

PQR(0.75) -0.1450 (0.0108) -0.0528 (0.0089) 0.8339 (0.0514) 0.2060 (0.0453)

Enclosed in parentheses are the corresponding standard errors.

(a)-(b). As we can clearly seen that the distribution of
Y is left-skewed and some outliers may be existed, thus
robust statistical methods shall be preferred here for the
sake of a convincing result. Next, we standardize both the
response and covariate variables so that they have zero
mean and unit sample standard deviation, and transform
the index variable U such that its marginal distribution
is U[0,1]. Particularly, U is transformed by taking a op-
eration Φ(·) on it with Φ(·) being the cumulative distri-
bution function (CDF) of a standard normal distribution.
For a fair evaluation, we randomly pick up 400 samples
from the data for modeling fitting, the rest 106 observa-
tions are used to assess the predictive power of the esti-
mated model. A measurement of goodness of fit is given by
R2 with its definition as R2 = 1 − RSS/

∑
i∈S1

(Yi − Ȳ )2

with Ȳ =
∑

i∈S1
Yi/|S1|, and a measurement of prediction

is given by MAPE =
∑

i∈S2
(Yi − Ŷi)/|S2|, where RSS is the

residual sum of squares, Ŷi is the fitted value of Yi, |S1| and
|S2| denote the modes of the training data set S1 and the
test data set S2, respectively. Therefore, the lager of R2 the
better of model fitting, and the smaller of MAPE the better
of prediction.

The corresponding results with 200 times operation are
presented in Table 7, where the values in parentheses are
their associated standard errors. As we can see from this
table, all the considered procedures indicate that both ptra-
tio and age have some effects and the same impact trend
on Boston housing price, which is coincide with the dis-
covery of [29]. On the other hand, our proposed PQR ap-
proach not only has a better performance in terms of model
fitting, but also is much robust to the data set, because
the PQR methods have larger values of R2 and significantly
smaller standard errors versus PLS. As to the performance
of model prediction, similar results can also be observed
from the boxplots of MAPE displayed in Figure 3 (c). These
conclusions are reasonable and consistent to the theoretical
findings. Moreover, the Shapiro-Wilk normal test proposed
by Shapiro and Wilk [23] is further applied to study the
applicability of PQR method, the obtained testing p-value
is 2.2e-12, which significantly implies the non-normality of
Boston housing data. Similar conclusion is also confirmed by
the normal QQ-plot of residuals presented in Figure 3 (d).
Consequently, taking into account of the robustness of esti-

Figure 3. (a) and (b) are the histogram and boxplot of the
response Y , respectively; (c) is the boxplots of MAPE for the
Boston housing price data based on 200 time operations; (d)
is the normal QQ-plot of residuals for the PQR(0.5) method.

mation as well as performance of prediction, our proposed
PQR method is preferred for analyzing this data set.

5. CONCLUSION

In this paper, we focus on the robust estimation and vari-
able selection methods for the varying coefficient partially
nonlinear models. A novel profile-type nonlinear quantile
regression approach is developed by minimizing the aver-
age check loss estimation procedure, and the asymptotic
properties of the resulting estimators under some mild reg-
ularity conditions are derived. In addition, combining with
the adaptive LASSO penalty, we consider a variable selec-
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tion procedure for the parametric components and further
demonstrate its oracle property. Finally, our limited numeri-
cal studies show the superiority of the proposed profile quan-
tile regression method versus the well-known profile least
squares approach in terms of robustness. For future study,
one may consider the quantile VCPNLMs with complex data
structures such as measurement errors, longitudinal data or
missing data. The studies of above mentioned interesting
questions are part of ongoing research work, but beyond the
scope of this article.

APPENDIX

To establish the asymptotic properties and the oracle
property of the proposed methods, the following regularity
conditions are required.
(C1) The kernel function K(·) is a symmetric probability
density function with compact support and satisfies Lips-
chitz condition.
(C2) The random variable U has a bounded support U and
its marginal density function fU (·) is Lipschitz continuous
and bounded away from 0 on U .
(C3) The covariates X and Z have bounded support. Define
the matrices

π1(u) = E
{
fY
(
Qτ (X,Z,U)

)
ZZT | U = u

}
,

π2(u) = E
{
fY
(
Qτ (X,Z,U)

)
Zg′(X,β0)

T | U = u
}
,

then π1(u) is positive defined for each u ∈ U , π1(u), π1(u)
−1

and π2(u) are all Lipschitz continuous.
(C4) All the true coefficient functions α1(·), . . . , αq(·) have
continuous second order derivatives on U .
(C5) For any x, g(x, β) is a continuous function of β and
the second derivative of g(x, β) with respect to β exists
and is continuous. Besides, the matrices E

{
g′(X,β)⊗2

}
and

E
{
E
(
g′(X,β) | U

)⊗2
}

are all bounded in a neighborhood

of β, where A⊗2 = AAT for any matrix A.
(C6) There exists a large enough open subset B ∈ Rp that
contains the true parameter β0, such that for all x and any
β1, β2 ∈ B, the second derivative matrix g′′(x, β) satisfies

‖g′′(x, β1)− g′′(x, β2)‖ ≤ R(x)‖β1 − β2‖,∣∣∣∣∂2g(x, β)

∂βj∂βk

∣∣∣∣ ≤ Hjk(x)

for all β ∈ B, with E[R2(x)] < ∞, E[H2
jk(x)] < C1 < ∞ for

all j, k.
In addition, we need the following two lemmas which will

be frequently used in the sequel.

Lemma 1. Suppose that An(s) is convex and can be rep-
resented as 1

2s
TVns + JT

n s + Cn + rn(s), where Vn is sym-
metric and positive definite, Jn is stochastically bounded,

Cn is arbitrary and rn(s)
p→ 0 for each s. Then αn, the

minimizer of An, is only op(1) away from βn = −V −1
n Jn,

the minimizer of 1
2s

TVns+ JT
n s+ Cn. If also Jn

d→ J , then

αn
d→−V −1J .

Lemma 2. Let (X1, Y1), ..., (Xn, Yn) be i.i.d. random vec-
tors, where Yi

′s are scalar random variables, f denotes the
joint density of (X,Y ). Let K be a bounded positive function
with bounded support, satisfying Lipschitz condition. Further
assume that supx

∫
|y|rf(x, y)dy < ∞ and E|Y |r < ∞ for

some r > 0. Then,

sup
x∈D

∣∣∣∣∣ 1n
n∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}
∣∣∣∣∣

= Op

(
log1/2(1/h)√

nh

)
,

provided that n2ε−1h → ∞ for some ε < 1 − r−1 and D is
the support set of x.

The proofs of Lemma 1 and Lemma 2 can be referred to
[7] and [20], respectively.

Proof of Theorem 2.1. For any given β, let âβ = α̂(u, β) and

b̂β = α̂′(u, β). Then we have

(âTβ , b̂
T
β )

T = argmin
(a,b)

n∑
i=1

ρτ

{
Yi − g(Xi, β)

−ZT
i [a+ bUi0]

}
K(Ui0/h),

where Ui0 = Ui − u. Denote by

ξ̂n =
√
nh

(
âβ − α(u)

h(b̂β − α′(u))

)
, Ai =

(
Zi

ZiUi0/h

)
,

ri(u) = −
{
[g(Xi, β)− g(Xi, β0)]

+ZT
i [α(Ui)− α(u)− α′(u)Ui0]

}
.

It is easy to demonstrate that ξ̂n is also the minimizer of
the following objective function

Ln(ξn) =

n∑
i=1

{
ρτ (εi − ri(u)− ξTnAi/

√
nh)

−ρτ (εi − ri(u))
}
Ki

with respect to ξn, where Ki = K(Ui0/h).
Following the identity of Knight [11], that is

(12)

ρτ (x− y)− ρτ (x) = −yψτ (x) +

∫ y

0

[I(x ≤ s)− I(x ≤ 0)]ds,

where ψτ (x) = τ − I(x ≤ 0). Based on some simple calcula-
tions, Ln(ξn) can be rewritten as

(13) Ln(ξn) = −ξTnWn +Bn(ξn)
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with the definitions of Wn and Bn(ξn) are

Wn =
1√
nh

n∑
i=1

KiAiψτ (εi)

Bn(ξn) =

n∑
i=1

Ki

∫ ri(u)+ξTnAi/
√
nh

ri(u)

[I(εi ≤ s)− I(εi ≤ 0)]ds.

Note that, the conditional expectation of Bn(ξn) given U is

E{Bn(ξn) | U = u}

=
1

2
fY (Qτ (X,Z,U) | u) ξTn

[
1

nh

n∑
i=1

KiAiA
T
i

]
ξn

+

{
1√
nh

fY (Qτ (X,Z,U) | u)
n∑

i=1

Kiri(u)Ai

}T

ξn

+op(1).

In addition, as Bn(ξn) is a summation of i.i.d. random vari-
ables of the kernel form, it follows from Lemma 2 and some
simple calculations that

Bn(ξn) = E{Bn(ξn)}+Op

(
log1/2(1/h)/

√
nh
)

= E{E[Bn(ξn) | u]}+Op

(
log1/2(1/h)/

√
nh
)

=
1

2
ξTnΩ(u)ξn +Bn2(ξn) + op(1),(14)

in which the definition of Bn2(ξn) are

Bn2(ξn) = E
{ 1√

nh
fY (Qτ (X,Z,U)) ·

n∑
i=1

Kiri(u)Ai | U = u
}T

ξn.(15)

Applying the Taylor expansion to ri(u) yields ri(u) =
g′(Xi, β0)dβ − 1

2U
2
i0Z

T
i α

′′(u) +O
(
U3
i0 + δ2β

)
, then we have

E

{
1√
nh

fY (Qτ (X,Z,U))

n∑
i=1

KiZiri(u) | u
}

(16)

= −
√
nh

2
μ2h

2fU (u)π1(u)α
′′(u) +

√
nhfU (u)π2(u)dβ

+O
(√

nh
(
h4 + δ2β

))
and

E

{
1√
nh

fY (Qτ (X,Z,U))

n∑
i=1

KiZiri(u)
Ui0

h
| u
}

(17)

= O
(√

nh
(
h3 + hδβ

))
,

where π1(u) and π2(u) are defined in condition (C3).

Therefore, based on Equations (13)-(17), Ln(ξn) can be
expressed as

Ln(ξn) = op(1) +
1

2
ξTnΩ(u)ξn −WT

n ξn +
√
nhfU (u)×

E

( −1
2 μ2h

2π1(u)α
′′(u) + π2(u)dβ +O

(
h4 + δ2β

)
O
(
h3 + hδβ

) )T

ξn,

It follows from Lemma 1 that the minimizer of Ln(ξn) is

ξ̂n = op(1) + Ω(u)−1Wn −
√
nh×

E

( −1
2 μ2h

2α′′(u) + π1(u)
−1π2(u)dβ +O

(
h4 + δ2β

)
O
(
h3 + hδβ

) )
.

Consequently, combing the expressions of ξ̂n and Wn, we
complete the proof of Theorem 2.1.

Proof of Theorem 2.2. To prove this theorem, it is sufficient
to show that for any given small η, there exists a sufficiently
large constant C such that

(18) P

{
inf

‖v‖=C
Dn(β0 + n−1/2v) > Dn(β0)

}
≥ 1− η,

where v is a p-dimensional vector and

Dn(β) =

n∑
j=1

n∑
i=1

ρτ

{
Yi − g(Xi, β)

−ZT
i [α̂(Uj) + α̂′(Uj)Uij ]

}
wij .

Let rij = ZT
i [−α(Ui) + α̂(Uj) + α̂′(Uj)Uij ], applying the

Taylor expansion to g(Xi, β0 + n−1/2v) yields

Dn(v) = Dn(β0 + n−1/2v)−Dn(β0)

=
n∑

j=1

n∑
i=1

{
ρτ (εi − rij − n−1/2vT g′(Xi, β0))

−ρτ (εi − rij)
}
wij .

Following the identity (12) and some similar arguments in
the proof of Theorem 2.1, we can obtain that

(19) Dn(v) =
1

2
vTΛv+Dn1(v) +Dn2(v) + op(1),

where

Λ = E
{
fY (Qτ (X,Z,U)) g′(X,β0)g

′(X,β0)
T | U

}
,

Dn1(v) = − 1√
n

n∑
j=1

n∑
i=1

wijψτ (εi)g
′(Xi, β0)

Tv,

Dn2(v) = E
{ 1√

n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U)) rij×

g′(Xi, β0)wij | Uj

}T

v.
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Note that, rij can be expressed by the Taylor expansion
as

rij =
(
ZT
i , Z

T
i Uij/h

)( α̂(Uj)− α(Uj)
h (α̂′(Uj)− α′(Uj))

)

−1

2
ZT
i α

′′(Uj)U
2
ij +O(U3

ij).

Substituting this expression into Dn2(v) yields

(20) Dn2(v) = (Dn21 +Dn22)
T
v+O(h3),

where

Dn21 = E
{ 1√

n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U))
(
ZT
i , Z

T
i Uij/h

)
·

(
α̂(Uj)− α(Uj)

h (α̂′(Uj)− α′(Uj))

)
g′(Xi, β0)wij | Uj

}
,

Dn22 = −E
{ 1√

n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U))

1

2
ZT
i α

′′(Uj)U
2
ijg

′(Xi, β0)wij | Uj

}
.

Based on the results of Theorem 2.1, we have

Dn21 = E
{ 1√

n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U) | Uj) ·

(
ZT
i , Z

T
i Uij/h

) ( Qn1(Uj)
Qn2(Uj)

)
g′(Xi, β0)wij

}

+E
{ 1√

n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U) | Uj)Z
T
i ·

1

2
μ2h

2α′′(Uj)g
′(Xi, β0)wij

}
+ op(1)

� T1 + T2 + op(1).(21)

For the first term T1, it follows from the expressions of
Qn1(u) and Qn2(u) that T1 is

E
{ 1√

n

n∑
j=1

n∑
i=1

wij

(
ZT
i , Z

T
i Uij/h

)
nfU (Uj)

( E(ZZT | Uj)
−1

E(ZZT | Uj)
−1

)
·

n∑
k=1

Kh(Ukj)ψτ (εk)
( Zk

ZkUkj/(μ2h)

)
g′(Xi, β0)

}

=
1√
n

n∑
k=1

n∑
j=1

ψτ (εk)wkjE(g′(X,β0)Z
T | Uj) ·

E(ZZT | Uj)E(Z | Uj) + op(1),

where the second equality holds by interchanging the
summations and the symmetry of kernel function K(·).

Thus,

Dn1(v) + TT
1 v(22)

= op(1)−
1√
n

n∑
i=1

n∑
j=1

ψτ (εi)wij

[
g′(Xi, β0)

−E(g′(X,β0)Z
T | Uj)E(ZZT | Uj)E(Z | Uj)

]T
v

� −
√
nPT

n1v+ op(1),

where

Pn1 = − 1

n

n∑
i=1

n∑
j=1

ψτ (εi)wij

[
g′(Xi, β0)

−E(g′(X,β0)Z
T | Uj)E(ZZT | Uj)E(Z | Uj)

]
.

On the other hand, with some simple calculations based
on the expressions of Dn22 and T2, we can verify that

Dn22 + T2 = op(1).(23)

Consequently, combining Equations (19)-(23), Dn(v) can be
expressed as

(24) Dn(v) =
1

2
vTΛv−

√
nPT

n1v+(Dn22+T2)
Tv+ op(1).

Since it is not difficult to derive that
√
nPT

n1v = Op

(
‖v‖
)

and (Dn22 + T2)
Tv = op

(
‖v‖
)
, which means that Dn(v) is

dominated by the positive term 1
2v

TΛv as long as C is large
enough, then we have

P

{
inf

‖v‖=C
Dn(β0 + n−1/2v) > Dn(β0)

}
≥ 1− η.

Therefore, (18) holds and we complete the proof of Theorem
2.2.

Proof of Theorem 2.3. The
√
n-consistency of β̂ is derived in

Theorem 2.2. In the next, we focus our attention on proving
the asymptotic normality of β̂. Using the similar notations
as above and let β̂∗ =

√
n(β̂−β0), it follows from the results

of Theorem 2.2 that β̂∗ is also the minimizer of the following
objective function

Rn(β
∗) =

n∑
j=1

n∑
i=1

{
ρτ (εi − rij − g′(Xi, β0)

Tβ∗/
√
n)

−ρτ (εi − rij)
}
wij .

Based on some similar arguments as previous done, we can
obtain that
(25)

Rn(β
∗) =

1

2
β∗T

Λβ∗ −
√
nPT

n1β
∗ + (Dn22 + T ∗

2 )
Tβ∗ + op(1),
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where

T ∗
2 = E

{ 1√
n

n∑
j=1

n∑
i=1

fY (Qτ (X,Z,U) | Uj)Z
T
i ·

[1
2
μ2h

2α′′(Uj)− E(ZZT | Uj)
−1 ·

E(Zg′(X,β0)
T | Uj)dβ

]
g′(Xi, β0)wij

}
+ op(1).(26)

Thus, do some basic calculations based on the expressions
of Dn22 and T ∗

2 , we have

Dn22 + T ∗
2(27)

= − 1√
n

n∑
j=1

fY (Qτ (X,Z,U) | Uj) ·

E(g′(X,β0)Z
T | Uj)E(ZZT | Uj) ·

E(Zg′(X,β0)
T | Uj)dβ + op(1)

= −
√
nP2(β − β0) + op(1),

where

P2 = E
{
fY (Qτ (X,Z,U))E(g′(X,β0)Z

T | U) ·

E(ZZT | U)E(Zg′(X,β0)
T | U)

}
.

Consequently, from Equations (25) and (27), Rn(β
∗) can

be written as

Rn(β
∗) =

1

2
β∗T

Λβ∗ −
√
n[Pn1 + P2(β − β0)]

Tβ∗ + op(1).

Based on the conclusions of Lemma 1, we have

β̂∗ =
√
nΛ−1Pn1 +

√
nΛ−1P2(β − β0) + op(1).

Combining this expression with the definition of β̂∗ yields

(28) β̂ − β0 = Λ−1Pn1 + Λ−1P2(β − β0) + op(1/
√
n).

Note that, by condition (C5) and the expressions of Λ and
P2, we can obtain that Λ, P2 and Λ − P2 are positive ma-
trices. So Λ̃ = Λ−1/2P2Λ

−1/2 is also a positive matrix with
its eigenvalues are all less than 1.

Denote by β̃k be the estimator of the k-th iteration in
our proposed procedure, then Equation (28) holds with β̂
and β replaced by β̃k+1 and β̃k for each k, respectively. Let
γ̃k = Λ1/2(β̃k − β0), then we have

γ̃k+1 = Λ−1/2Pn1 + Λ̃γ̃k + op(1/
√
n).

By the fact that all the eigenvalues of Λ̃ are smaller than
1, thus the convergence of our proposed procedure can be
guaranteed following a similar analysis in Xia and Härdle
[31]. Specifically, for some sufficiently large k, we have

Λ1/2(β̂ − β0) = Λ−1/2Pn1 + Λ̃Λ1/2(β̂ − β0) + op(1/
√
n)

holds, which is equivalent to

(Λ− Λ1/2Λ̃Λ1/2)(β̂ − β0) = Pn1 + op(1/
√
n).

Finally, based on the Cramér-Wald device and the Center
Limit Theorem, we can derive that the asymptotic distri-
bution of β̂ is (7). This competes the proof of Theorem 2.3.

Proof of Theorem 2.4. Combining the conclusion that β̂ is a√
n-consistent estimate of β0 with the conditions (C3) and

(C5), the asymptotic properties of α̂(u, β̂) can be established
through a similar proof in Theorem 2.1, so we briefly give
some major steps here. Let

ζ̂n =
√
nh

(
α̂(u, β̂)− α(u)

h(α̂′(u, β̂)− α′(u))

)
,

ζn =
√
nh

(
α(u, β̂)− α(u)

h(α′(u, β̂)− α′(u))

)
,

and si(u) = −ZT
i [α(Ui) − α(u) − α′(u)Ui0]. Then, we can

verify that ζ̂n is also the minimizer of the following objective
function

Πn(ζn) =

n∑
i=1

{
ρτ (εi − si(u)− ζTnAi/

√
nh)

−ρτ (εi − si(u))
}
Ki.

Via some similar arguments in the proof of Theorem 2.1
leads to

Πn(ζn) =
1

2
ζTnΩζn −WT

n ζn

+
√
nhfU (u)

(
−1

2μ2h
2π1(u)

op(1)

)T

ζn + op(1).

Then, it follows from Lemma 1 that the minimizer of Πn(ζn)
is

ζ̂n = Ω−1Wn −
√
nhfU (u)

(
−1

2μ2h
2π1(u)

op(1)

)
+ op(1).

In addition, based on some basic calculations, we can

prove that Wn
d→N

(
0, τ(1 − τ)Ω0(u)

)
. Therefore, from the

definition of ζ̂n, we have

√
nh

{(
α̂(u, β̂)− α(u)

h(α̂′(u, β̂)− α′(u))

)
− 1

2
μ2h

2Ω−1(u)Γ(u)α′′(u)

}

d→ N
(
0, τ(1− τ)Ω−1(u)Ω0(u)Ω

−1(u)
)

holds, where Ω(u), Ω0(u) and Γ(u) are defined in Theorem
2.4. This completes the proof.

Proof of Theorem 3.1.We first prove the asymptotic normal-
ity of β̂λ. Similar to the first part proof of Theorem 2.3, we
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can show that there exists a local minimizer β̂λ of Φn(λ, β)

satisfying ‖β̂λ − β0‖ = Op(1/
√
n). Let θ̂ =

√
n(β̂λ − β0),

then θ̂ is also the minimizer of

Ψn(θ)

=

n∑
j=1

n∑
i=1

{
ρτ (εi − rij − g′(Xi, β0)

T θ/
√
n)

− ρτ (εi − rij)
}
wij +λn

p∑
k=1

1

|β̂k|2
(
|β0k + θk/

√
n| − |β0k|

)
.

It follows from some similar arguments in Theorem 2.3 that

Ψn(θ) =
1

2
θTΛθ −

√
n[Pn1 + P2(β − β0)]

T θ

+λn

p∑
k=1

1

|β̂k|2
(
|β0k + θk/

√
n| − |β0k|

)
+ op(1).

Now, considering the penalty term of Ψn(θ). For any

k = 1, 2, . . . , l, we have β0k �= 0, |β̂k|2
p→|β0k|2 and√

n (|β0k + θk/
√
n| − |β0k|) → θk · sgn(β0k). From the con-

dition λn/
√
n → 0 and slutsky’s theorem, so

λn

|β̂k|2
(
|β0k + θk/

√
n| − |β0k|

)
=

λn√
n|β̂k|2

√
n
(
|β0k + θk/

√
n| − |β0k|

)
→ 0.

Besides, for k = l + 1, l + 2, . . . , p, we have β0k = 0 and√
n (|β0k + θk/

√
n| − |β0k|) = |θk|. It follows from the con-

dition λn → ∞ that λn

|β̂k|2
(|β0k + θk/

√
n| − |β0k|) → ∞ for

any θk �= 0. Therefore, we have

λn

|β̂k|2
(
|β0k + θk/

√
n| − |β0k|

)

d→

⎧⎨
⎩

0, if β0k �= 0
0, if β0k = 0 and θk = 0
∞, otherwise

holds, which indicates Ψn(θ)
d→Ψ∗

n(θ) hold and Ψ∗
n(θ) is{

1
2θ

T
I ΛIθI −

√
nρT θI , if θk = 0 for k = l + 1, . . . , p,

∞, otherwise,

where ρ = Pn1I + P2I(βI − β0I), θI , ΛI , Pn1I , P2I , βI

and β0I are the correspondingly first l components or top-
left l-by-l submatrices of θ, Λ, Pn1, P2, β and β0, respec-
tively.

Note that Ψn(θ) is convex and Ψ∗
n(θ) has an unique min-

imum, so from the epi-convergence results of Geyer [6] and
Knight and Fu [12], the asymptotic normality part of The-
orem 3.1 is proved by some similar arguments as done in
Theorem 2.3.

In the following, we devoted to proving the consistency
of model selection. To this end, we only need to show

that P (β̂λ
II = 0) → 1, which is equivalent to prove that

P (β̂λ
k �= 0) → 0 if β0k = 0 for k = l + 1, . . . , p. Recall

that β̂λ minimize Φn(λ, β), if β0k = 0 but β̂λ
k �= 0, we must

have

n∑
j=1

n∑
i=1

ρτ

{
Yi − g′k(Xi, β̂

λ)β̂λ
k − ZT

i [α̂(Uj)+

α̂′(Uj)Uij ]
}
wij +

λn

|β̂k|2
|β̂λ

k |

≤
n∑

j=1

n∑
i=1

ρτ
{
Yi − ZT

i [α̂(Uj) + α̂′(Uj)Uij ]
}
wij ,

where g′k(Xi, β̂
λ) represents the k-th component of

g′(Xi, β̂
λ). Taking into account of the inequality that∣∣∣∣ρτ (x1)− ρτ (x2)

x1 − x2

∣∣∣∣ ≤ max(τ, 1− τ) ≤ 1,

then we have

λn√
n|β̂k|2

≤ 1√
n

n∑
j=1

n∑
i=1

|g′k(Xi, β̂
λ)|wij .

This implies that the following inequality holds, that is

P (β̂λ
k �= 0) ≤ P

⎛
⎝ λn√

n|β̂k|2
≤ 1√

n

n∑
j=1

n∑
i=1

|g′k(Xi, β̂
λ)|wij

⎞
⎠ .

Obviously, P (β̂λ
k �= 0) → 0 holds. In fact, since

k = l + 1, . . . , p here, we have λn√
n|β̂k|2

→ ∞, whereas

1√
n

∑n
j=1

∑n
i=1 |g′k(Xi, β̂

λ)|wij is bounded from conditions

(C5) and (C6), hence

P

⎛
⎝ λn√

n|β̂k|2
≤ 1√

n

n∑
j=1

n∑
i=1

|g′k(Xi, β̂
λ)|wij

⎞
⎠→ 0.

Consequently, for k = l + 1, . . . , p, we can prove that
P (β̂λ

k �= 0) → 0 holds, which is equivalent to P (β̂λ
k = 0) → 1.

This completes the proof.
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