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Quantitative evaluation of impacts of likelihood
functions on Bayesian parametric estimation of
epidemic models∗
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In epidemic modeling, the selection of likelihood func-
tion plays a crucial role on estimating model parameters
and making efficient prevention strategies. Compared with
the Poisson likelihood function (LP ) and normal likelihood
function (LN ) based on the assumption of population homo-
geneity, the likelihood function, LL, derived from Liapunov’s
central limit theory deals with the population heterogeneity
issue that each person has a different probability of being in-
fected. This study focuses on quantifying the performance of
the three likelihood functions with particular attention paid
to explore the influence of population heterogeneity on the
results of parameter estimation for three epidemic models.
Our results show that LL outperforms LP and LN based on
six sets of data, three models, and three evaluation criteria.
Furthermore, LL improves predictive capability of the three
models in comparing with the prediction results of Liu et
al. (2015). However, asserting the superiority of LL for all
circumstances should be cautious because the performance
of the three likelihood functions are affected jointly by eval-
uation criteria, data sets, and the models under evaluation.

Keywords and phrases: Parameter estimation, Likeli-
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1. INTRODUCTION

Mathematical modeling plays an important role in the
field of epidemiology research. The accuracy of a model is
not only a necessary foundation for determining whether the
actual epidemic process can be predicted correctly, but also
a major criterion in the decision-making stage of the epi-
demic control strategies. However, even for a well-defined
mathematical model, if its parameters are unknown or ill-
defined, the modeling results may be misleading. For ob-
taining reliable evaluation of a model, it is necessary to esti-
mate the model’s parameters first. Parameter estimation is
a key issue in the process of epidemics analysis, prediction,
surveillance, and control.

∗The work was supported by the Natural Science Foundation of Tian-
jin (2017KJ092) and National Natural Science Foundation of China
(11471243, 11501411).
†Corresponding author.

In the domain of epidemiological modeling, much atten-
tion has been paid to parameter estimation in the last sev-
eral decades. A common way of parameter estimation is to
use optimization algorithms. Based on a set of constraints
and a proper initial guess, optimization is conducted by min-
imizing an object function that is always defined as a mea-
sure of the difference between observations and correspond-
ing model outputs. Widely used optimization approaches
have been developed, such as nonlinear least-squares fitting
[1], maximum likelihood methods [2], evolutionary compu-
tation [3], genetic algorithm [4, 5] and simulated annealing
[6]. However, for these methods, when the objective func-
tion is non-convex, the optimization results may heavily de-
pend on the initial guess. In addition, many optimization
approaches yield only the best parameter estimates (i.e., a
point estimate), but neglect uncertainty of the estimates.
Bayesian methods [7, 8] address this issue by inferring the
probability distributions of parameters rather than just a
point estimate.

According to the Bayes theorem, the analytical form of
the posterior distribution cannot be obtained unless the de-
nominator of the Bayes equation can be computed. To re-
solve this problem, sampling approaches based on Monte
Carlo simulations are used to obtain a numerical approxima-
tion of the posterior distribution. Markov chain Monte Carlo
(MCMC) method is one of the most popular sampling meth-
ods. To improve computational efficiency of MCMC simu-
lation, in the last several decades, researchers have made
great efforts on developing advanced sampling algorithms
such as the delayed rejection adaptive Metropolis (DRAM)
algorithm [9], and differential evolution adaptive Metropolis
(DREAM) algorithm [10].

While MCMC has been used for estimating parameters
of epidemic models, such as [11], [12] and [13], the issue of
selecting an appropriate likelihood function for parameter
estimation has been largely ignored. Bartlett [14] first pro-
posed that the Poisson distribution could be used in the es-
timating process for most epidemic models. Daniels [15] also
proved that, when population is large, the distribution of the
number of infections can be approximated by Poisson dis-
tribution. Ball [16] then extended the conclusion of Bartlett
and Daniels to the epidemics models that are described by
random directed graph. The authors of [17] further pointed
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out that the result of Daniels can be utilized when initial
susceptible population size is large and infection rate per
infective is constant. Since then, Poisson distribution has
been widely used in epidemic studies [18, 19, 20, 21, 22].
However, McNeil [23] and Kryscio [24] suggested that a nor-
mal approximation to the number of infections can be used
when the population size is large. Von Bahr and Martin Lof
[25] also stated that the limit distribution of the infected
population can be approximately by a normal distribution.
Following these works, the normal distribution is also widely
used for parameter estimation in epidemic studies, such as
African cassava mosaic virus [26], plasmodium falciparum
Malaria [27, 28] and 2009 influenza A(H1N1) [29].

The Poisson and normal likelihood functions, denoted as
LP and LN , respectively, are formulated on an identical
premise that each susceptible individual has the same prob-
ability of being infected at the same time. In this case, the
population is regarded as being homogeneous. Otherwise,
we call the population to be heterogeneous. In this paper,
another likelihood function, LL, is deduced to handle het-
erogeneous cases by coordinating with MCMC method. To
the best of our knowledge, LL is rarely used in epidemic
models although it is has been used in other reseach fields
such as hydrology field [30]. This study focused on quanti-
fying the performance of the three likelihood functions, i.e.,
LP , LN and LL, with a particular attention paid to explore
the influence of population heterogeneity on the results of
parameter estimation for epidemic models.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the motivation of the study, and the three
likelihood functions; the comparison criteria are also intro-
duced. The results of the comparison results of the three
likelihood functions are shown in section 3. The conclusions
of this study are given in Section 4.

2. BACKGROUND KNOWLEDGE

Our study bases on the following assumptions: an epi-
demic can be described by a mathematical model f ; the true
values of the parameters of f are unknown, and observed
data of the epidemics are available for Bayesian estimation
of the model parameters.

We denote the parameters set as a K-element vector
α = (α1, α2, ..., αK)′, the T -element vector of observations
as o = (o1, o2, ..., oT )

′, and T -element vector of time set as
t = (t1, t2, ..., tT )

′. Let y = (y1, y2, ..., yT )
′ be the unknown

true infective number set, and at ti, the relation between oi
and yi is

oi = yi + εi,

where εi is the observation noise at ti, and

yi = f(ti, α),

where f is a model with respect to ti and α. Capaldi [31]
defines εi as

εi = f(ti, α)
βκi,

where β ≥ 0, and κi(i = 1, 2, ..., T ) are independent identi-
cally distributed (i.i.d.) random variables. In this paper, we
set β as 0.

The Bayesian rule [7, 8] takes the elements of the un-
known true infective number set y as random variables and
characterizes their uncertainties by posterior distribution

(1) p(y|o) = p(y)p(o|y)
p(o)

=
p(y)L(y|o)∫
p(y)p(o|y)dy ,

where p(o) is a constant that is independent of y and is
difficult to be computed out in addition to a few simple
cases. An equivalent form of Eq. (1)

(2) p(y|o) ∝ p(y)L(y|o),

is frequently used.
Eq. (2) establishes the relation between observations o

and parameters set α, because y = f(t, α) only depends on
α when t is known. Therefore, Eq. (2) can be rewritten as

p(α|o) ∝ p(α)L(α|o).

When the prior distribution, p(α), is noninformative,

(3) p(α|o) ∝ L(α|o).

The Bayesian inference obeys the so-called likelihood prin-
ciple, viz., any two posteriors that have the same likelihood
functions would yield the same inference for a given sample
of data. However, in practice, one rarely has the confidence
of claiming that the chosen likelihood function is correct.
It is thus necessary to assess the reliability of the chosen
likelihood function.

2.1 Likelihood functions

Based on an assumption that the population is inde-
pendent and homogenous, the status of individual j (j =
1, 2, ...N) at ti can be described as a boolean random vari-

able Oji, and Oi =
∑N

j=1 Oji is the total observed infected
number at ti. The probability that it equals to oi is

(4) p(Oi = oi|pi) = Coi
N (pi)

oi(1− pi)
N−oi ,

where pi is the probability of infection at ti. In [15] and
[23], the Poisson distribution and normal distribution are
respectively taken as the approximation of Eq. (4), thus the
log likelihood function logL(y|o) can be approximated by

LP

T∑
i=1

oi log f(ti, α)− f(ti, α), and

LN

T∑
i=1

−
(
log f(ti, α) + f(ti, α) +

o2i
f(ti, α)

)
.

However, as illustrated in [20], the assumption that a large
population is homogeneously mixing is unrealistic for epi-
demics and may lead to incorrect conclusion. By virtue of
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the Lyapunov central limit theorem, we consider the im-
pacts of population heterogeneity on parameter estimation
results.

Theorem 2.1. (Lyapunov CLT) Given a set of indepen-
dent random variables X1, X2, ..., Xn, where E(Xi) = μi

and var(Xi) = σi < ∞ (i = 1, 2, ..., n), then

Φ(x) = lim
n→∞

p(

∑n
i=1 Xi −

∑n
i=1 μi√∑

σ2
i

≤ x).

On the assumption that the susceptible population is in-
dependent but heterogenous, i.e., at ti each individual j
(j = 1, 2, ...N) has a probability pji of infection, then the ob-
served status of j at ti could be defined as a boolean random
variable Oji, whose expectation μji and variance σ2

ji are re-

spectively pji and pjiqji, where qji = 1−pji. Oi =
∑N

j=1 Oji

is the number of observed infected individuals at ti. By the
Lyapunov CLT, we get that

p(Oi = oi|Yi = yi) =
1√

2π
∑N

j=1 pjiqji

e
− (oi−yi)

2

2
∑N

j=1
pjiqji .

Then, the log-likelihood function is approximated to

L∗
L −

T∑
i=1

⎡
⎣log

⎛
⎝ N∑

j=1

pjiqji

⎞
⎠+

(oi − f(ti, α))
2∑N

j=1 pjiqji

⎤
⎦ .

Based on Box and Tiao [32], we have

(5) LL logL(y|o) ∝ −
T∑

i=1

(oi − f(ti, α))
2,

when the prior distribution of pjiqji is noninformative.
LL has been used as an alternative likelihood function of

the MCMC technique, DREAM(ZS) [10], in estimating pa-
rameters of hydrological models in [30, 33]. In the domain of
epidemics, LL is rarely used as a likelihood function in spite
of its flexibility to handle population heterogeneity. Com-
paring with the frequently-utilized likelihood functions LP

and LN , it is unknown to what extent the likelihood function
LL affects the accuracy of the uncertainty quantification in
epidemic models. Therefore, we compare the performance of
LP , LN , and LL through three representative models.

2.2 Comparison criteria

The residual sum of squares (RSS), which is utilized in
many researches to evaluate the performance of parameter
estimation and model selection, is defined as

(6) RSS =

T∑
i=1

(oi − f(ti, α̂))
2
,

where α̂ is a vector of the parameters whose value are esti-
mated based on the observed data set o. Smaller RSS indi-
cates lower disparities between the observations and cor-

responding model simulations. Yet, as stated by Larson
[34], running and evaluating the statistical performance of a
method on the same data would lead to over-fitting. Evalu-
ating the output of a model based on new data can result in
more reliable conclusions of the model’s performance [35],
we use another statistical index, that is, residual sum of
squares of predicted data (RSSp), defined as

(7) RSSp =

T∑
j=k

(oi − f(ti, α̃))
2,

where α̃ denotes the parameter values estimated based on
samples o1, ..., oj−1. An estimator is more reliable than an-
other estimator if it has a smaller RSSp.

In practice, Eq. (6) and Eq. (7) are often implemented
by the cross-validation (CV) approach. In a m-fold CV,
data set D is splitted into k mutually exclusive subsets
D1, D2, ..., Dm of approximately equal size [36]. At step
i ∈ {1, 2, ...,m}, the training set is D/Di and the validating
set is Di. This leads to the mean residual sum of squares
(MRSS) defined as

(8) MRSS =
1

m

m∑
i=1

|Di|∑
j=1

(Di(j)− f(tj , α̂
−i))2,

where Di(j) is the jth data of Di, α̂
−i is the parameters’

estimating result based on training data D/Di, and tj is
the time stamp of Di(j). Kohavi [36] pointed out that 10-
fold CV may be the best method even when computation
power allows for more folds.

3. DATA AND RESULTS

The performance of the three likelihood functions was
first analyzed by using the “true” data generated by using
“true” parameter values and a “true” model. This allows us
inspecting each likelihood function to investigate how well
it can retrieve the “true” parameter values. The advantage
of using simulating data instead of actual data is that, since
the true parameter value is known, we can directly evaluate
the performance of parameter estimation and model predic-
tion. The disadvantage is that it is difficult to ensure the
general applicability of the conclusions obtained from sim-
ulation data, since these conclusions may be influenced by
the model’s structure and the simulated data. This prob-
lem can be resolved by examining the likelihood functions’
performance with enough models and data, which however
is beyond the scope of this study. One less-than-ideal alter-
native option is to consider their performance by a set of
classical models and several different datasets.

In this paper, we consider three classical epidemic models,
i.e., the Logistic, Gompertz and Richards model, and three
simulating data sets (DL, DR and DG) that are respectively
produced by the three models (Eq. (9)–Eq. (11)). The sim-
ulated data are post-processed by adding white noise. Af-
ter evaluating the three models using the simulated data,
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the real data of Ebola epidemics in Africa is used to further
evaluate the performance of the likelihood functions to draw
conclusions that are more realistic.

3.1 Simulated data and results of parameter
estimation

The three models are given below:

• Logistic model [37]: Y ′
L(i) = rYL(i)

(
1− YL(i)

K

)
. Its an-

alytical solution is

(9) YL(i) =
Ky0

y0 − (y0 −K)e−ri
,

where r is per capita growth rate of the infected cases,
K is the carrying capacity and y0 is the initial number
of infected cases.

• Richards model [38]: Y ′
R(i) = rYR(i)

(
1− (YR(i)

K )q
)
. It

is a variant of the Logistic model, and incorporates an
exponential term q to depict the exponent of deviation
from the standard logistic curve. Its analytical solution
is

(10) YR(i) = K

(
1 +

(y0
K

)−q

e−rqi

)− 1
q

.

• Gompertz model [39]: Y ′
G(i) = rYG(i) ln

(
K

YG(i)

)
. Its

analytical solution is

(11) YG(i) = e(ln(y0)e
−ri+(1+lnK)(1−e−ri)).

We assume that true values of r, q, K and y0 are respec-
tively 0.6, 4, 40000 and 50, and the observation interval is
measured by day and the observation period is 120 days.
The simulated data Dc are acquired by

Dc(i) = Yc(i) + εi,

where Yc(i) is the true data got by Eq. (9) to Eq. (11),
εi ∼ N(0, 20) and c ∈ {L,R,G}.

Before starting the parameter estimation, we review the
relationships between the nature of populations and the
three likelihood functions. We associate a model with an
epidemic and represent the cumulative number of infections
at ti by the model’s solution yi = f(ti, α). If we take the
susceptible population as i.i.d., then yi = Npi, where N
is the number of susceptible population, pi is the individ-
ual’s probability of being infected at ti. In this case, the
probability that the observed infected number at ti equals
to oi is calculated by Eq. (4). According to [15] and [23],
Eq. (4) can be approximated by the Poisson distribution
and normal distribution, based on which LP and LN are
the likelihood functions when a population is assumed to be
homogeneous. When population is heterogeneous, yi = Npi
is wrong, since the probability of being infected is different
for different person. It is more appropriate to denote yi as

Figure 1. Results of the performance comparison among the
likelihood functions LP , LN and LL by RSS, RSSp and

MRSS.

∑N
j=1 pji, and by the Lyapunov’s central limit theorem, we

can deduce the likelihood function LL, namely, Eq. (5) to
deal with the heterogenous issue.

The MCMC simulation for parameter estimation and
uncertainty quantification is conducted by running three
chains. Latin hypercube sampling method is used to
generate random parameter values. Uniform distribution
is taken as the prior parameter distributions. The scale
reduction factor (R̂) [40] is used to monitor the convergence
of the MCMC simulation, and convergence is achieved
when R̂ ≤ 1.2. We find that the convergence goal is
fulfilled in each data set for all three likelihood functions.
To take DG and LN as an example, the convergence
result that is shown in Figure S1 in Supplementary
Material http://intlpress.com/site/pub/files/ supp/sii/
2019/0012/0003/SII-2019-0012-0003-s001.pdf indicates all
the MCMC chains achieve convergence after 9000 runs.
The estimating results of the parameters are listed in
the supplementary Material (Table S1 in Supplementary
Material), and used as an alternative explanation of the
convergence performance.

As for RSS and RSSp, we first produce the predicted
data sets D′

L(t), D
′
R(t) and D′

G(t) for t ∈ {121, 122, ..., 140}
in the same way asDL(t),DR(t), andDG(t), then by Eq. (6)
and Eq. (7), the value of RSS and RSSp are calculated and
shown in Figure 1(a) and Figure 1(b). As shown in Fig-
ure 1(a), if RSS is used as the evaluation criterion, the
performance of LL is the best for data sets DL and DR.
For data set DG, the performance of the three likelihood
functions are similar. When RSSp is used as the evalua-
tion criterion, LL evidently performs best as shown in Fig-
ure 1(b). In addition, as for data sets DR, D

′
L, and D′

R,
LL is superior to LP and LN . Therefore, the performance
of a likelihood function may rely on the data set when the
evaluation criterion is fixed. On the other hand, the perfor-
mance of different likelihood functions may be different for
the same data set when the performance is judged based
on different criteria. Therefore, it is not advisable to draw
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conclusions on the results of parameter estimation without
carefully comparing the performance of alternative likeli-
hood functions.

We also use 10-fold cross validation to check the perfor-
mance of the likelihood functions on different data sets. The
MRSSs are shown in Figure 1(c). For all the data sets, the
MRSSs values of LP and LN are nearly identical. For DR,
the difference between LP (or LN ) and LL is very large,
while the difference is small for DG. For DL, the difference
is moderate. Although LL gives the least MRSS in all data
sets when MRSS is used as criterion, the differences in the
performance of the three functions vary.

Predictive uncertainty of the likelihood functions is quan-
tified by using the 95% confidence intervals estimated from
the data sets DL, DR and DG. The confidence intervals
of the differences between estimations and observations are
presented in Figure S2(a)–Figure S2(c) in Supplementary
Material. As for DL, the intervals induced by all three likeli-
hood functions are too narrow to cover any the observations
before time 60. With regard to DR, the likelihood functions
are also not wide enough to cover the observations before
time 50. The intervals induced by LL is narrower than the
intervals of the other two functions, and cannot cover the
observations until time 70. DG is much better than DL and
DR, since its observations are all covered by the intervals
induced through all three likelihood functions. The mean
predictions, i.e., the center of the intervals, are shown in
Figure S2(d)–Figure S2(f) in Supplementary Material. For
data sets DL and DR, the mean predictions obtained by
employing LP and LN are closer to the observations than
those obtained by employing LL. However, for data set DG,
the mean predictions obtained by LP and LN are more bi-
ased than those obtained by using LL. These results man-
ifest that LP and LN have the similar predictions on all
three data sets, while LL gives different predictions. There-
fore, it is necessary to consider all three likelihood functions
for quantifying predictive uncertainty of epidemics model-
ing, even though the corresponding MCMC simulations are
computationally expensive.

3.2 Ebola data and results

Ebola, which is characterized by diarrhea, fever, and se-
vere vomiting, has a high fatality rate and has been clas-
sified as a serious epidemic by the World Health Organiza-
tion (WHO). The last outbreak of Ebola emerged in Africa
in 2014. The outbreak was first identified in Guinea, then
it spreaded to the neighboring areas of Liberia and Sierra
Leone. The observed data sets of Guinea, Liberia and Sir-
rea Leone are available at http://www.who.int/ebola/en/.
In order to compare the performance of the three likeli-
hood functions in real epidemic outbreaks, we used the ac-
cumulated infective number that are gathered from Guinea,
Liberia, Sierra Leone as observations. In addition, there is
no report on the Ebola in other West Africa countries, so
we use the three countries’ total time series data of the

three countries as the observed data set of the West Africa
area.

The epidemic dynamics of the four areas are simulated
by the Logistic, Richards and Gompertz model. The model
parameters are estimated by using the likelihood functions,
LP , LN and LL. As shown in Table S2 in Supplementary
Material, the RSS induced by LL is the smallest. Therefore,
if RSS is used as a comparison criterion, LL is the likelihood
function that achieves better fitting in each model.

We further considered the prediction capabilities of the
likelihood functions. From the web http://www.who.int/
ebola/en/, we obtained the reported data from May 4, 2015,
to June 12, 2015 as the prediction data. Figure S3 to Fig-
ure S9 in Supplementary Material represent the predicting
results of the different likelihood functions. Furthermore, in
order to survey the effectiveness of the likelihood function
LL, we also cite the result of Liu [41] as a comparison ob-
ject. For Ebola, by means of the likelihood function LP and
adaptive MCMC method, Liu estimated parameters of three
models, i.e., Logistic, Gompertz and Richards models. With
purpose of emphasizing the importance of model selection
in parameter estimating process, Liu got the following key
findings:

• As for Guinea and the West Africa area, Logistic model
is slightly better than Richards model, but they are
both better than Gompertz model. Therefore, in pre-
dicting stage, Liu used Logistic model to generate pre-
dicted number of infections.

• As for Liberia, Richards model is the best. The pre-
dicting results of the Logistic and Gompertz models
are very close, but they are not as good as that of the
Richards model. Therefore, he used Richards model to
generate predicting data of infections of Liberia.

• Richards model is used to generate Sierra Leone’s pre-
dicted number of infected persons, because its behavior
is far better than those of the other models where Gom-
pertz model is worse and Logistic model is the worst.

For clarity, Table S3 in the Supplementary Material is
used to describe the model selecting result of Liu.

As for Guinea, the predicted result of the Logistic model
with likelihood LL (Figure S3(a)) is significantly better than
those of the others. For the Gompertz model (Figure S3(b)),
the performance of all the three likelihood functions are not
as good as that of Liu, and it is because that Liu used model
selection method and chose the Logistic model as the best
one for Guinea. As for the Richards model, Figure S3(c)
shows that all the three likelihood functions underestimate
the incidence of Ebola. But comparing with the result of
Liu which overestimated the incidence, Figure S4 in Sup-
plementary Material shows that the absolute error of LL is
smaller than that of Liu for the Richards model. As a sum-
mary, for Guinea, the LL likelihood function is much better
than LP and LN for all the three models, and the predicting
capability of LL is superior to that of Liu for the Logistic or
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Richards model. Yet, the prediction results obtained by all
three likelihood functions are inferior to those of Liu for the
Gompertz model, because Liu used model selection method
and found that the Gompertz model is not suitable for the
data obtained from Guinea.

The predicted results of Liberia by all the three likelihood
functions and epidemic models are illustrated in Figure S5
in Supplementary Material. Liu used the Richards model
to obtain the predicted infective number. For the Logistic
model, all the predictions underestimate the incidence of
Ebola, but Liu obtained better prediction because he used
the preferred Richards model. For the Gompertz model, the
predictions of all the three likelihood functions overestimate
the Ebola incidence, while Liu underestimated it. But as has
shown in Figure S6 in Supplementary Material, the absolute
difference ratio of LL is 2% − 3.5%, which is smaller than
that of Liu (nearly 8%). This finding is controversial to that
of Liu who has claimed the Richards model is the best for
the data from Liberia. Therefore, for the Liberia data, when
all the three likelihood functions are compared, the perfor-
mance of LL is the best. Moreover, the fact that LL gives
better performance for the Gompertz model than Liu man-
ifests the impact of likelihood function on model selection.

Figure S7 in Supplementary Material illustrates the pre-
diction result of Sierra Leone. Through model selection, Liu
concluded that the Richards model is the best, and the Lo-
gistic and Gompertz models are not recommended. This
conclusion is confirmed in our study for the Logistic (Figure
S7(a)) and Gompertz (Figure S7(b)) models, in that the
performance of all three likelihood functions is inferior to
that of Liu. When we also use the Richards model, likeli-
hood function LL gives more accurate results than LP and
LN , but it is not as good as that of Liu.

The predicting result of West Africa is illustrated in Fig-
ure S8 in Supplementary Material. Since Liu showed that
Richards model is the best, none of the performance of the
three likelihood functions is superior to that of Liu when we
take the Logistic model as our proposed model. However,
when the three likelihood functions are used for compari-
son, we find that LL and LN are better than LP . For the
Gompertz model, the predictions of all the three likelihood
functions overestimate the incidence of Ebola, but the abso-
lute difference ratio of LL is nearly identical to that of Liu
(as shown in Figure S9 in Supplementary Material). There-
fore, the conclusion of Liu that Richards model is preferable
for West Africa needs to be examined, since the predictive
ability of the Gompertz model with likelihood function LL

is not inferior to it. Likelihood function LL performs better
than the other two likelihood functions and Liu when we
adopt Richards model.

The MRSSs of the four areas for the three models and the
three likelihood functions are listed in Table S4 in Supple-
mentary Material. The performance of different likelihood
functions is compared when the epidemics model is fixed. In
each model and area, the MRSS obtained by LL is smaller
than or similar to the others.

Figure 2. MPSA results of the Richards model in Sierra
Leone with likelihood functions LP , LN and LL. Acceptable
and unacceptable cases are denoted as dashed and solid lines

respectively. Sensitivity degree of each parameters are
represented by the separation extent between two cases.

3.3 Parameter sensitivity analysis

Using the Richards model as an example, we identified
the relatively sensitive and hence important parameters by
employing the multiparametric sensitivity analysis (MPSA)
method of [42].

The parameter sensitivity is evaluated by comparing two
‘cumulative frequency’ distributions that are associated with
the acceptable and the unacceptable cases. If the two distri-
butions are similar, the parameter is identified as insensitive,
otherwise sensitive. For the Sierra Leone data, the cumula-
tive frequency distributions of the unacceptable and accept-
able cases are shown in Figure 2 for the Richards model. The
MPSA results identified that the sensitivity order of the pa-
rameters is r > K > y0 > q for all likelihood functions. The
consequence of per capita growth rate of the infected cases
(r) is the most important parameter (Figure 3(a)), since a
critical index in epidemics field, namely, the basic reproduc-
tion number R0 is calculated by formula R0 = exp(rT ) [41],
where T is the the duration of the infectious period. The
result that q is the most insensitive parameter is also rea-
sonable in accordance with the model selection consequence
of [41]. As for the other countries whose MPSA ordering
results are displayed in Table S5 in Supplementary Mate-
rial, their MPSA results are not shown in graphical format
because of space limit. The sensitivity ordering is the same
for all the three likelihood functions. Therefore, LL is more
reliable since it obtains less residual sum of squares in the
parametric estimating process and better verification results
in the prediction process.

The orders of sensitivity are also analyzed by computing
the acceptance rate under the same range of parameters
(Figure 3). A large acceptance rate of a parameter means
its low sensitivity. Its results are same as those of the MPSA
approach.
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Figure 3. Acceptance rates when the parameters are set in
the same range as MPSA.

4. DISCUSSION

In epidemiological area, the selection of likelihood func-
tion as well as its impact on parameter estimation plays
a crucial role on making efficient preventing strategies. In
this paper, three likelihood functions denoted by LP , LN

and LL, are respectively employed. Based on an assump-
tion that the population is homogeneous, LP and LN , have
served well in the epidemic parameter estimation process.
What we should note here is that the homogeneous as-
sumption is ideal and each person may has different prob-
ability of being infected, i.e., the population is heteroge-
neous. LL that deals with the population heterogeneity
issue is active in the hydrology field [30], whereas it is
rarely used in the epidemic area. So we intend to explore
the influence of population heterogeneity on the results
of parameter estimation for epidemic models by quantify-
ing the performance of LP , LN and LL on three tradi-
tional models, and the primary findings are shown as fol-
lows:

• On all data sets, the estimations stemmed from like-
lihood functions LP and LN are similar, whereas they
are different from those obtained by employing LL. Fur-
thermore, the performance of LL is superior to those of
LP and LN in view of all criteria.

• Likelihood functions can exert imperative impacts on
model selection. By employing LP as the likelihood
function of the model selection process, Liu [41] ex-
plores the parameter values and claims that Gompertz
model may not be a suitable candidate for describing
the Ebola data. However, we find that the formerly ‘un-
realistic’ Gompertz model becomes preferable when LL

is taken as the likelihood function. This illuminates that
appropriate likelihood function should also be deliber-
ated to improve model’s predicting capability in the
model selecting process.

In summary, the outstanding performance of LL rein-
forces the indispensability of considering population hetero-
geneity in the parameter estimating process for epidemic
models. However, it is unadvisable to assert the superior-
ity of LL over LP and LN , since the comparison results
obtained from a limited number of models, data sets and
criteria can’t be generalized to all probable scenarios. The
appropriateness of LL should be further considered on other
epidemic models such as West Nile Fever, Nipah virus and
Ehrlichiosis, and selecting an appropriate likelihood func-
tion is also worthy of attention for parameter estimating
and model selecting of deadly epidemics such as Ebola.
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