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In this paper, we discuss adjusted cumulative incidence
in multiple treatment groups with unbalanced samples. In
a nonrandomized experiment or an observational study, the
observed data may be unbalanced in covariates when mul-
tiple treatments are administered differently based on pa-
tients’ characteristics. In the case of multiple survival out-
comes, clinical researchers are often interested in estimating
the cumulative incidence within a specific treatment group,
and this approach is subject to a potential bias with un-
balanced samples. Using extensive simulation analyses, we
demonstrate that a näıve approach to the estimation of a
cumulative incidence curve may yield misleading results, un-
less patients’ characteristics are fully considered. To achieve
an unbiased estimation from unbalanced data, we propose
an adjusted cumulative incidence based on the inverse prob-
ability of a treatment weighting. In a series of simulations,
the proposed method shows robust performance when es-
timating cumulative incidence under various scenarios, in-
cluding balanced and unbalanced samples. Lastly, we ex-
plain how to apply the proposed method using an example
based on real data.
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cidence, Inverse probability of treatment weighting, Kaplan–
Meier, Survival analysis.

1. INTRODUCTION

Data on competing risks are commonly obtained in
biomedical research, particularly in cancer studies, where
the need to deal with multiple potential outcomes is nearly
ubiquitous; see Satagopan et al. (2004); Kim (2007); Dignam
and Kocherginsky (2008); Lau et al. (2009); Andersen et al.
(2012) for a comprehensive review of this topic. If there are
competing risks, individuals are observed from when they
enter the study until the occurrence of an event of interest,
a competing event, or censoring. In oncology, for example,
competing risks are encountered when cancer patients are
followed after treatment, and their first failure event may be
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a local recurrence, distant metastasis, the onset of a second
primary cancer, or death. A patient can potentially experi-
ence failure from multiple causes, but we might observe only
the first event type, which possibly precludes other types of
events. Even in cases where individuals can have subsequent
events (e.g., cancer recurrence, followed by death), clinicians
might focus on the occurrence of the first event to estimate
disease-free survival (DFS), thus creating a problem of com-
peting risks.

In analyses of competing risks, two principal factors—
the cause-specific hazard (CSH) function and the cumula-
tive incidence function (CIF)—are identifiable and, thus,
are commonly used to summarize outcomes by event type.
With multiple causes of failure, we would like to know the
marginal or net probability of a failure caused by a given
event type, in the absence of other failure types. Nonethe-
less, this is a hypothetical measure that typically involves
untestable parametric assumptions about the dependence of
the censoring mechanism on the underlying survival times
(Kalbfleisch and Prentice, 2002, Chapter 8). The CSH quan-
tifies the rate of transition to the event of interest in a real
situation, in which individuals may instead experience an-
other type of event. Alternatively, the CIF allows us to esti-
mate the crude incidence of an event while taking competing
risks into account. In the presence of competing risks, there
is no longer a one-to-one correspondence between the CSH
and the CIF for a specific event type. With covariates, sev-
eral modeling approaches are available for evaluating the
relation of covariates to cause-specific failures through the
CSH or CIF (e.g., Prentice et al., 1978; Fine and Gray, 1999;
Peng and Fine, 2009; Choi and Huang, 2014).

Although much has been written on estimations in situ-
ations of competing risks, less attention has been devoted
to hypothesis testing related to multiple treatments with
unbalanced samples. In nonrandomized experiments or ob-
servational data, samples are often unbalanced because mul-
tiple treatments are sometimes applied differently based on
patients’ characteristics, where a risk measure within a spe-
cific treatment group can be biased owing to the unbalanced
samples. To overcome such problems, several established
methods are used for stratification or matching in order to
adjust the survival estimation (Hankey and Myers, 1971;
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Cupples et al., 1995; Amato, 1988; Nieto and Coresh, 1996).
To assess overall survival rates, while accounting for poten-
tial confounders, Xie and Liu (2005) derived an appropriate
weighted survival estimate, the so-called adjusted Kaplan–
Meier estimator, which is based on the inverse probability
weighting scheme of a treatment (Robins and Rotnitzky,
1992). The inverse probability of the treatment weighting
(IPTW), which reflects the extent to which a patient be-
longs to the treatment group, given the covariates, is as-
signed to each observation, creating a potentially balanced
pseudo-population. Nevertheless, no estimator of cumula-
tive incidence has been proposed that accounts for compet-
ing events. In the presence of competing risks, the choice
of test may be unclear, and substantively different inferen-
tial conclusions may arise from the same data, depending on
which risk measure is used. Such discrepancies occur natu-
rally, because the tests address different parameters of the
failure process, one or more of which may be of interest in
a given situation.

In this article, we propose a method for estimating a
nonparametric cumulative (crude) incidence probability by
means of multiple treatment groups with unbalanced sam-
ples. We first adjust the survival function by the IPTW,
which serves as an estimate of the ordinary survival function
of Xie and Liu (2005), and then use the adjusted survival
function for the calculation of the crude risk probability.
The proposed method shows good performance in simula-
tions and is applied to the Glioma data set from The Cancer
Genome Atlas (TCGA) project. The remainder of the pa-
per is organized as follows. Section 2 presents the proposed
weighted crude incidence estimator for unbalanced treat-
ment data, along with background information on analyses
of competing risks. Section 3 describes the simulation results
on the performance of the proposed method on a finite sam-
ple. Section 4 applies the proposed method to a real-data
example. In Section 5, we provide concluding remarks.

2. METHODS

2.1 Notation and basics

Let T be the failure time variable, and suppose there
are K possible causes of failure, denoted by ε = 1, 2, ...,K.
For simplicity, we assume there are two competing events
(i.e., K = 2) because the event of interest is singled out and
coded as 1, and all types of events other than a cause-1 event
can be grouped together as cause-2 events. In the presence
of competing risks, the CSH function of the kth event is
defined as

λk(t) = lim
dt→0

1

dt
P (t ≤ T < t+ dt, ε = k|T ≥ t),

and Λk(t) =
∫ t

0
λk(s)ds. The CSH function describes the in-

stantaneous risk of event k for subjects that are currently
event-free. In the presence of covariates, researchers often

adapted a marginal proportional hazards model (Prentice
et al., 1978) to λk(·), in which prognostic factors associated
with the biological mechanism behind event k may change
the instantaneous event risk. On the other hand, the prob-
ability that an event occurs in a specific period depends on
the CSHs of the other events (Gray, 1988; Fine and Gray,
1999). The crude probability of an event type can be deter-
mined by the CIF, given by

Fk(t) = P (T ≤ t, ε = k).

Then, we can write S(t) = P (T > t) = 1−
∑

k Fk(t) to de-
note the overall probability of surviving any cause of failure.

A convenient representation of the CIF as a product limit
estimator naturally arises starting from the subdistribution
hazard introduced by Gray (1988), and has the form

λ∗
k(t) = lim

dt→0

1

dt
P (t ≤ T < t+ dt,

ε = k|(T ≥ t) ∪ (T < t, ε �= k)).

This hazard formulation has been shown to be useful when
comparing the crude incidence between different groups be-
cause it restores the one-to-one relation between the subdis-
tribution hazard and the cumulative probability of a partic-
ular failure type; that is,

λ∗
k(t) = −d log{1− Fk(t)}/dt.

One can think of λ∗
k as the hazard function for an improper

random variable T ∗
k = I(ε = k)× T̃ + I(ε �= k)×∞, which

has a distribution function equal to Fk(t), t < ∞ and point
mass 1−Fk(∞) at t = ∞. Note that for any finite t, T ∗

k ≤ t
is equivalent to T ≤ t and ε = k, implying that P (T ∗

k ≤ t) =
Fk(t). The definition of T ∗

k is consistent with the argument
that when an event other than k occurs first, the latter will
never be observed as having occurred first and, thus, the
corresponding time will be infinity.

2.2 Adjusted crude incidence function
(ACIF)

Let (Ti, Ci, εi, Xi,Zi), i = 1, 2, ..., n, denote an indepen-
dent sample of competing risk data with two or more groups,
where Ti and Ci are the failure and censoring time variables,
respectively, Xi is the group index, Xi = 1, 2, ..., R for R
different treatment groups, and Zi is the p-dimensional co-
variate vector. In the presence of right censoring, the ac-
tual event time and the event type are partially observed,
in which we can have T̃i = min(Ti, Ci) and Δi = δiεi,
the observed failure time and failure status, respectively,
with δi = I(Ti ≤ Ci) denoting the censoring indicator.
The observed competing risks data can be expressed as
(T̃i,Δi, Xi,Zi), which is an independent copy of (T̃ ,Δ, X,Z)
for subject i = 1, 2, ..., n.

In this section, we discuss how to derive the overall and
adjusted cumulative incidence functions. First, designate
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the covariate index as d ∈ {1, ..., p}. For the sample index,
i = 1, 2, ..., n, suppose πir is the probability of the ith sub-
ject’s being in group r ∈ {1, ..., R}. This probability may de-
pend on the covariate vector Zi, (i.e., πir = P (Xi = r|Zi)).
Here, we assume that (i) {πir} are either known, as in a
designed study, or can be consistently estimated given Zi,
and (ii) {πir} are bounded below by zero. Similarly, let wir

represent the weight for the ith subject who is assigned to
the treatment group with Xi = r. When {πir} are unknown
and need to be estimated from the data, we may use a non-
parametric smoothing method (Wang et al., 1997) or a para-
metric multinomial logistic regression that relates the prob-
ability πir of assigning treatment r to subject i, given the
covariates, as

πir ≡ P (Xi = r|Zi = z)

=
exp(ζr + γ′

rz)∑R
l=1 exp(ζl + γ′

lz)
, r = 1, ..., R− 1, i = 1, ..., n,

where ζr is the intercept for the rth treatment, and γr is
a vector of the parameters associated with z. For model
identification, we set (ζR, γR) = (0, 0), and, thus πiR = 1−∑R−1

r=1 πir is fixed. Once the set of parameters (ζr, γr) is
estimated, we may define a weight as wir = I(Xi = r)/πir,
following the IPTW scheme. It is easy to see that E(wir) = 1
if the model for πir is specified correctly.

Suppose that survival time values are observed at times
t1 < t2 < ... < tD. At time tj , j = 1, ..., D, there are
(d1,jr, d2,jr) individuals, representing cause-1 and cause-2
events, respectively, out of Yjr individuals at risk in group r.
We can write dk,jr =

∑
i:T̃i=tj

I(Xi = r,Δi = k), k = 1, 2,

and Yjr =
∑

i:T̃i≥tj
I(Xi = r), where the indicator function

I(Xi = r) is equal to one if the ith subject receives treat-
ment r, and zero otherwise. Here, dk,jr indicates the number
of patients who die of cause k at time tj in group r. Then,
Yjr indicates the number of patients who are still at risk
until time tj in group r; therefore, they are at risk.

Accordingly, the weighted number of cause-specific events
and the weighted number at risk in group r are defined as

dwk,jr =
∑

i:T̃i=tj

wirI(Xj = r,Δi = k)(1)

=
∑

i:T̃i=tj

I(Xj = r,Δi = k)

πir

for k = 1, 2, and

(2) Y w
jr =

∑
i:T̃i≥tj

wirI(Xi = r) =
∑

i:T̃i≥tj

I(Xi = r)

πir
,

respectively.
Several research groups, including Gail and Pfeiffer

(2005) and Benichou and Gail (1990), have studied paramet-
ric crude incidence estimations. On the other hand, Klein

and Moeschberger (2003) discuss the nonparametric esti-
mation of Fk(t), given by

F̂k(t) =

{
0, if t ≤ t1,∑

j:tj≤t Ŝ(tj−)
dk,j

Yj
, if t1 < t,

where Ŝ(tj−) is the Kaplan–Meier estimator, evaluated im-

mediately before time t, and dk,j =
∑R

r=1 dk,jr and Yj =∑R
r=1 Yjr represent the number of cause-specific events and

the number of individuals at risk, respectively, at time tj .
The CIF estimators and the direct testing procedures are
available in the R packages, cmprsk and timereg, respec-
tively.

To reduce the sample bias of different groups with com-
peting risks, we propose estimating the ACIF for group r
using

(3) F̂w
kr(t) =

∑
j:tj≤t

Ŝw
r (tj−)

dwk,jr
Y w
jr

,

where the adjusted estimate of the treatment-specific sur-
vival function, Ŝw

r (t), can be obtained as

(4) Ŝw
r (t) =

⎧⎪⎨⎪⎩
1, if t < t1,∏

j;tj≤t

[
1−

dw1,jr + dw2,jr
Y w
jr

]
, if t1 ≤ t.

If subjects are assigned equally to each treatment group, as
in randomized clinical trials, the ACIF estimator F̂w

k,r(t) is

reduced to the conventional CIF estimator, F̂k(t).

2.3 Variance estimation for the ACIF

For ease of exposition, here and below, we consider a case
with only two treatment groups, denoted by Xi = 0 and 1.
We refer to groups 1 and 0 as the treatment group and the
control group, respectively, and let πi = P (Xi = 1|Zi) and
1−πi = P (Xi = 0|Zi). Then, the weight for the ith subject
is wi = 1/πi if she received treatment 1, and wi = 1/(1−π1)
otherwise. To derive the variance estimation of the ACIF,
we use some of the intermediate results from Xie and Liu
(2005), and assume that

(5) max
i:T̃i≥tj

(1/πi)∑
i:T̃i≥tj

(1/πi)
→ 0 as n → ∞.

Xie and Liu (2005) demonstrated that E[Ŝw
1 (t)] = S1(t) if

t ≤ Tmax, where Tmax denotes the largest observed failure
time in the treatment group. Moreover, it turns out that
under condition (5), the variance estimator of Ŝw

1 (t) has the
following formulation if either πi is known in advance or if
πi is unknown and π̂i need to be estimated from the data:

(6) v̂ar[Ŝw
1 (t)] = [Ŝw

1 (t)]
2
∑

j:tj≤t

1− θ̂wj1

Mj θ̂wj1
,
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where θ̂wj1 = 1 − λ̂w
1,j1 − λ̂w

2,j1, with λ̂w
k,jr = dwk,jr/Y

w
jr , (k =

1, 2, r = 1, 2), and Mj =
(
∑

i:Ti≥tj
1/πi)

2∑
i:Ti≥tj

(1/πi)
2 . Similar results

hold for the control group at Xi = 0.
Using an argument similar to that of Xie and Liu (2005),

we can show that, for instance, E[F̂w
11(t)] = F11(t) if t ≤

Tmax, where F11(t) represents the CIF of the treatment
group who failed as a result of cause 1. The asymptotic
variance of F̂11(t) can be obtained by applying the delta ap-
proximation, and its estimate for the interval tj ≤ t < tj+1

is expressed as

v̂ar[F̂w
11(t)](7)

=

j∑
l=1

{λ̂w
1,l1Ŝ

w
1 (tl−1)}2

{
1− λ̂w

1,l1

Mlλ̂w
1,l1

+
l−1∑
m=1

1− θ̂wm1

Mmθ̂wm1

}

+ 2

j−1∑
l=1

j∑
s=l+1

{λ̂w
1,l1Ŝ

w
1 (tl−1)λ̂

w
1,s1Ŝ

w
1 (ts−1)}

×
{
− 1

Y w
l1

+
l−1∑
m=1

1− θ̂wm1

Mmθ̂wm1

}
.

The above asymptotic standard deviations of the ACIF can
be applied to estimations of pointwise confidence intervals
in analyses of competing risk data with group stratification.
A linear 100(1−α)% pointwise confidence interval for F̂w

11(t)
for fixed time t is

(8) F̂w
11(t) + zα/2σ̂11(t),

where zα/2 is the upper α/2 quantile of the standard nor-

mal distribution, and σ̂11(t) is the square root of v̂ar[F̂
w
11(t)],

as given by (7). Because this interval might not be com-
pletely satisfactory for small sample sizes, we can also take
advantage of the log-log transformation approach (Choud-
hury, 2002), which corresponds to the 100(1 − α)% confi-
dence interval of the form

exp

{
±zα/2σ̂11(t)

F̂w
11(t) log{F̂w

11(t)}

}
.

3. SIMULATION ANALYSIS

3.1 An adjusted Kaplan–Meier curve for
data from a proportional hazards model

The simulation structure is inspired by the structure
specified by Xie and Liu (2005), who successfully compared
the performance of a Kaplan–Meier curve and an adjusted
Kaplan–Meier curve in terms of adjusting for the bias in
unbalanced data. Here, we show how well the adjusted CIF
can estimate the cumulative incidence curve, adjusting for
the bias caused by unbalanced data.

A thousand samples are generated based on the covari-
ates, z1, z2, z3, and z4. The covariate z1 is simulated by
means of a Bernoulli distribution, with z1 ≈ Bernoulli(0.5),

which indicates gender, and the covariate z2 is simulated by
means of a uniform distribution, with z2 ≈ uniform(40,60),
which indicates age. The covariate z3 is generated from a
uniform distribution, with z3 ≈ uniform(40,60), which indi-
cates weight, and the covariate z4 is generated by sampling
to return 0, 1, or 2, indicating certain categorical variables.

Based on the above setting, a group indicator variable xi

is generated with the following probability.

P (x = 1|z1) =
{
0.5 if z1 = 0

0.5 if z1 = 1,

which means that we generate a balanced data set. We also
generate an unbalanced data set for another scenario, where
a group indicator variable xi is generated with probability

P (x = 1|z1) =
{
0.8 if z1 = 1

0.2 if z1 = 0,

which has the same conditions as the balanced data set ex-
cept for the probability of the group indicator x.

In the simulation, we provide a different time mean for
the group and covariate z1’ as follows:

(1) 1
λ00

= E(T |X = 0, z1 = 0) = 20

(2) 1
λ01

= E(T |X = 0, z1 = 1) = 60

(3) 1
λ10

= E(T |X = 1, z1 = 0) = 20

(4) 1
λ11

= E(T |X = 1, z1 = 1) = 60.
The survival time values are generated using the propor-

tional hazards function h(t, x, z) = h0(t) exp(α1z1 + α2z2 +
α3z3 + α4z4 + βx), where h0 = 0.05, α1 = − log(3), α2 = 0,
α3 = 0, α4 = 0, and β = 0, whereas the survival time values
are related only to z1, which indicates by gender, and the
other terms except for the z1 term become zero. If the distri-
bution corresponding to h0(t) conforms to the exponential
distribution, then the hazard rate h0(t) is represented by λ.

As mentioned in Section 1, if more than one cause of
death exists, cumulative incidence can be considered. In the
case of two causes of death, we call the first one cause 1,
and the other cause 2. Here, we consider the proportion of
causes, as follows:

P (C = 1|x) =
{
0.6 if x = 0

0.4 if x = 1,

where C indicates the causes. Based on the scenario above,
we perform simulation study. For each scenario, we generate
two types of data: uncensored data, and censored data.

3.2 Comparison of performance between
cumulative incidence and adjusted
cumulative incidence with balanced data

In this section, we compare the performances of the reg-
ular cumulative incidence with those of the adjusted cumu-
lative incidence under balanced data as well as unbalanced
data. To calculate an adjusted Kaplan–Meier survival curve,
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we first compute the weight wi by using a logistic regres-
sion. To obtain a weight wi, we first calculate the conditional
probability p̂i, which is the probability of being in the group
given zi, where i = 1, 2, 3, 4. Weight wi =

1
p̂i

is assigned to

those subjects who belong to group 1, otherwise wi =
1

1−p̂i
.

By using equations (1), (2), (3), and (4), we compute the
estimates of adjusted cumulative incidence curves. In addi-
tion, we calculate the regular cumulative incidence using the
original version of equation (3).

We plot the estimates of adjusted Kaplan–Meier sur-
vival curves with the estimates of regular Kaplan–Meier
survival curves under the balanced data set, the plots of
which are shown in Appendix A in the Supplementary Ma-
terial http://intlpress.com/site/pub/files/ supp/sii/2019/
0012/0003/SII-2019-0012-0003-s002.pdf. Then, we plot the
estimates of the regular cumulative incidence curves with
the estimates of the adjusted cumulative incidence curves.
Appendices B and C in the Supplementary Material show
the regular cumulative incidence and the adjusted cumula-
tive incidence for causes 1 and 2, respectively. For greater
accuracy, we also show estimates of the regular cumulative
incidence and the adjusted cumulative incidence for specific
time for groups 0 and 1, which are shown in Table 1 of
Appendix D in the Supplementary Material. Based on the
result table, the differences between the unadjusted cumu-
lative incidence and the adjusted cumulative incidence are
negligible. That is, we can say that the unadjusted estimates
and the adjusted estimates of cumulative incidence are very
similar when data are balanced.

Next, we compare the estimates of the cumulative inci-
dence curves with the estimates of the adjusted cumulative
incidence curves in case that the data is censored, which
indicates that the event has not happened during the anal-
ysis. For the censored data, we need to generate censor-
ing times. The censored times, C, are generated from an
exponential distribution with mean λc, where λc follows a
uniform(0.02, 0.07) distribution. Then, we compare the cre-
ated censoring times and the survival times that we gener-
ated in Section 3.1. If the censoring times are earlier than
the survival time, then we assume the corresponding data is
censored.

Based on the censored data, we plot the estimates of ad-
justed Kaplan–Meier survival curves (or the adjusted cu-
mulative incidence curves) with the estimates of regular
Kaplan–Meier survival curves (or the regular cumulative in-
cidence curves), respectively. The related plots are shown
in Appendix E, F, and G in the Supplementary Material.
For greater accuracy, we also show estimates of the regu-
lar cumulative incidence and the adjusted cumulative in-
cidence for specific times for groups 0 and 1, which are
shown in Table 2 of Appendix D in the Supplementary Ma-
terial.

To sum up, based on the results of Appendix D in the
Supplementary Material, the cumulative incidence and the
adjusted cumulative incidence show similar estimates under
balanced data. It indicates that the adjusted cumulative in-

cidence work equally well even though the regular cumula-
tive incidence is designed under balanced data. In the next
section, we compare those two approaches under unbalanced
data.

3.3 Comparison of performance between
cumulative incidence and adjusted
cumulative incidence for the unbalanced
data

3.3.1 Uncensored data

In this section, we compare the performance of the reg-
ular cumulative incidence with those of the adjusted cu-
mulative incidence under unbalanced data. In Figure 1, we
first plot the average of estimates of the adjusted Kaplan–
Meier survival curves under the balanced data (shown as a
red curve), the average of estimates of the regular Kaplan–
Meier survival curves under the balanced data (shown as
a blue curve) as refereces. Then, we plot the estimated
Kaplan–Meier survival curves under the unbalanced data
(shown as gray curves), and the average of estimates of
the regular Kaplan–Meier curves under the unbalanced data
(shown as a black curve). As shown in Figures 1 (a) and (b),
the red curve and blue curve are similar. Nonetheless, the
black curve in Figures 1 (a) and (b) is skewed far from the
red and blue curve, which are the estimated survival func-
tion under balanced data. The black curve in Figure 1 (a)
and (b) is skewed toward the survival function generated
by exponential distributions with means of 60 and 20, re-
spectively. This is because we assign 80% of the subjects
to group 0, which has an average time of 60, and 20% of
the subjects to group 1, which has an average time of 20.
This is why the graphs shown in Figures 1 (a) and (b) are
skewed.

Similarly, we compare the adjusted cumulative incidence
with the regular cumulative incidence for Cause 1. In Figures
2, we plot the average of estimates of the adjusted cumu-
lative incidence under the balanced data (shown as a red
curve), and the average of estimates of the regular cumula-
tive incidence under the true balanced data (shown as a blue
curve) as references. Then, we shows the estimated cumu-
lative incidence under the unbalanced data (shown as gray
curves), and the average of estimates of the regular cumula-
tive incidence under the unbalanced data (shown as a black
curve). Figures 2 (a) and (b) show that the red curve and
blue curve look similar. However, the black curve in Figures
2 (a) and (b) is skewed far from the cumulative incidence
under balanced data, and skewed toward the cumulative in-
cidence generated by exponential distributions with means
of 60 and 20, respectively. Similar patterns are also observed
for Cause 2 in Figure 6 (c) and (d), which show such skew-
ness of estimates of the regular cumulative incidence under
the unbalanced data.

However, if we adjust the cumulative incidence curve
against such a unbalanceness, the estimates are not skewed
far from the true survival or cumulative incidence curves.
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Figure 1. Comparisons of regular Kaplan–Meier curves when unbalanced data are used. The average line of adjusted survival
curves of balanced data (red curve); the average line of unadjusted survival curves of balanced data (blue curve); the average
line of adjusted and unadjusted survival curves of unbalanced data (black curve); adjusted and unadjusted survival curves of

unbalanced data (gray curves).

Figures 1 (c) and (d) depict the adjusted Kaplan–Meier
survival curves. We plot the average of estimates of ad-
justed survival curves under the balanced data (shown as
red curves), and the average of estimates of the regular sur-
vival curves under the balanced data set (shown as a blue
curve) as references. Then, we plot the average of estimates
of the regular survival curves under the unbalanced data
(shown as a black curve). The three curves look very simi-
lar. In addition, Figures 2 (c) and (d) present the adjusted

cumulative incidence for Cause 1, and Figures 3 (c) and (d)
show the adjusted cumulative incidence for Cause 2. In Fig-
ure 2 (c) and (d), the average of estimates of the adjusted
cumulative incidence curve under the balanced data (shown
as red curves), the average of estimates of the regular cu-
mulative incidence curve under the balanced data (shown as
a blue curve), and the average of estimates of the adjusted
cumulative incidence curve of the unbalanced data (shown
as a black curve) look very similar. The same pattern are
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Figure 2. Comparisons of regular cumulative incidence for unbalanced data and cause 1. The average line of adjusted
cumulative incidence curves of balanced data (red curve); the average line of unadjusted cumulative incidence curves of
balanced data (blue curve); the average line of adjusted and unadjusted cumulative incidence curves of unbalanced data

(black curve); adjusted and unadjusted cumulative incidence curves of unbalanced data (gray curves).

also shown in Figure 3 (c) and (d).

To sum up, if the data are unbalanced, the adjusted cu-
mulative incidence approach provide estimated curves close
to the curves estimated under balanced data. Thus, it re-
duces the effect of unbalanceness of data, and can capture
true underlying survival incidence well. On the other hand,
the regular cumulative incidence approach is relatively much
sensitive to such effect of unbalanceness and provides biased
estimates of survival incidence.

3.3.2 Censored data

We also perform simulation studies under the unbalanced
data with censoring. Figures 4 (a) and (b) depict estimates
of the regular survival curves under unbalanced data, and
Figures 4 (c) and (d) plot estimates of the adjusted survival
curves under unbalanced data. Figures 5 (a) and (b) plot the
unadjusted cumulative incidence for cause 1, and Figures 6
(a) and (b) show the estimates of regular cumulative inci-
dence for cause 2. In addition, Figures 4 (c) and (d), 5 (c)
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Figure 3. Comparisons of adjusted cumulative incidence when unbalanced data are analyzed for cause 2. The average line of
adjusted cumulative incidence curves of balanced data (red curve); the average line of unadjusted cumulative incidence curves
of balanced data (blue curve); the average line of adjusted and unadjusted cumulative incidence curves of unbalanced data

(black curve); the adjusted and unadjusted cumulative incidence curves of unbalanced data (gray curve).

and (d), and 6 (c) and (d) show estimates of the adjusted

survival curve, estimates of adjusted cumulative incidence

for cause 1, and estimates of adjusted cumulative incidence

for cause 2, respectively.

Similar to the result based on uncensored data, the esti-

mates of the adjusted survival curves under unbalanced data

are close to estimates of regular or adjusted survival curves

under balanced data when the data is censored. However,

the estimates of regular survival curves under unbalanced

data are relatively far from the estimates of regular or ad-
justed survival curves under balanced data.

3.4 An adjusted Kaplan–Meier
curve/cumulative incidence curve for
data from a nonproportional hazards
model

We also perform simulation study based on a nonpropor-
tional hazards model, where we generate the survival time

430 S. Choi et al.



Figure 4. Comparisons of Kaplan–Meier curves when unbalanced data are used. The average line of adjusted survival curves of
balanced data (red curve); the average line of unadjusted survival curves of balanced data (blue curve); the average line of
unadjusted survival curves of unbalanced data (black curve); the unadjusted survival curves of unbalanced data (gray curve).

as follows: log(T ) = α1z1+α2z2+α3z3+α4z4+βx+ε, where
α1 = −ln(3), α2 = 0, α3 = 0, α4 = 0 and β = 0. It is called
an accelerated model, and an error term ε follows a normal
distribution with mean zero and standard deviation one.
For the cumulative incidence, we consider the proportion of
causes in the data set in Section 3.2, and other simulation
setting are the same.

Under the data simulated from a nonproportional hazards
model, we first compare the regular approach with the ad-
justed approach under unbalanced data with censoring. The

plots for estimates of adjusted and regular survival curves
are shown in Appendix H of the Supplementary Material.
The plots for the cumulative incidence for causes 1 and 2
are presented in Appendices I and J of the Supplementary
Material, respectively.

As shown in those figures above, the estimates of the ad-
justed cumulative incidence curves under unbalanced data
are close to estimates of regular or adjusted cumulative
incidence curves under balanced data. However, the esti-
mates of regular cumulative incidence curves under unbal-
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Figure 5. Comparisons of cumulative incidence when unbalanced data are analyzed for cause 1. The average line of adjusted
cumulative incidence curves of balanced data (red curve); the average line of unadjusted cumulative incidence curves of
balanced data (blue curve); the average line of unadjusted cumulative incidence curves of unbalanced data (black curve);

unadjusted cumulative incidence curves of unbalanced data (gray curves).

anced data are relatively far from the estimates of regular or
adjusted cumulative incidence curves under balanced data.
Overall, the adjusted cumulative incidence approach is ro-
bust against data unbalanceness, but the regular cumulative
incidence approach is sensitive.

4. PRACTICAL APPLICATION

In the following application, we use the cumulative inci-
dence and adjusted cumulative incidence to compare the

two estimators in a data set of 503 patients who have

lower-grade glioma of the brain; this data set was obtained

from TCGA (http://firebrowse.org). Glioma is a type of

cancer that originates in the brain or spine. It has four

stages, and stage number two is called brain lower-grade

glioma. This stage occurs in young people 20–25 years of

age and the affected cell types are astrocytes, oligoden-

droglioma, and oligoastrocytoma, which are called the “his-

tological type” in these data. The treatments for this cancer
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Figure 6. Comparisons of cumulative incidence when unbalanced data are used for cause 2. The average line of adjusted
cumulative incidence curves of balanced data (red curve); the average line of unadjusted cumulative incidence curves of
balanced data (blue curve); the average line of unadjusted cumulative incidence curves of unbalanced data (black curve);

unadjusted cumulative incidence curves of unbalanced data (gray curves).

are radiation therapy or a surgical treatment, depending
on the tumor characteristics (American Brain Tumor As-
sociation, http://www.abta.org/brain-tumor-information/
types-of-tumors.glioma.html). The observed variables in the
data set are the patient’s status: whether he/she has died,
whether he/she received radiation therapy, whether he/she
was decimated by the tumor, and certain gene information
related to the brain lower-grade glioma.

The purpose of this practical application is to confirm
that the adjusted cumulative incidence is different to the

regular cumulative incidence. In this example, we divide the
group based on the variable “radiation therapy,” which indi-
cates whether or not patients underwent radiation therapy.
In this application, the treatment is “radiation therapy.”

The variable “histological type” indicates whether the pa-
tients received radiation therapy. In the group of patients,
the proportion of the histological type in each group based
on radiation therapy is presented in Table 1. As mentioned
earlier, to adjust each estimator, we have to set the weights.
The response variable “radiation therapy” is regressed on
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Table 1. The proportion of a histological type in each group based on radiation therapy

Histological type astrocytoma oligoastrocytoma oligodendroglioma

Radiation therapy 45.3% 24.9% 29.8%
No radiation therapy 24.0% 28.4% 47.5%

Figure 7. Comparison of adjusted cumulative incidence and cumulative incidence in a real study. Cumulative incidence for the
“yes” radiation group (gray dotted curve); adjusted cumulative incidence for the radiation group (black curve); cumulative
incidence for the “no” radiation group (blue dotted curve); the adjusted cumulative incidence for the “no” radiation group

(red curve).

several variables that have a significant effect on the “radi-

ation therapy” variable. The variables analyzed in order to

calculate the weights are histological type and several im-

portant genes that are related to brain lower-grade glioma.

After we estimate the weights, we obtain the regular cumu-

lative incidence and the adjusted cumulative incidence. The

resulting plots for causes 1 and 2 are presented in Figure 7.

As shown in the figure, the regular cumulative incidence

data for the group who received radiation therapy (gray

dotted curve) and the group who did not receive radiation

therapy (blue dotted curve) do not lie close together. Never-

theless, the adjusted cumulative incidence for the group who

received radiation therapy (black curve) and the adjusted

cumulative incidence for the group who did not receive ra-

diation therapy (red curve) are close. This means that even if

we have confounding variables, such as “histological type” in

this study, we obtain similar estimated curves between mul-

tiple unbalanced treatments after weighting. We calculate

the pointwise confidence level using Equation (8) and plot

the confidence level for the adjusted estimators for causes 1

and 2. The plots for causes 1 and 2 are shown in Figures 8

(a) and (b), respectively.

5. CONCLUSIONS

In this study, we explained two estimators, regular es-
timator and adjusted estimator, based on the proportional
hazards model using unbalanced data and balanced data.
Using the simulation proposed by Xie and Liu (2005),
we compared the performance of the adjustments of the
two estimators. For the balanced data, we showed that
with the adjustment and without the adjustment, they
converge in the same way. We found that the perfor-
mance of the adjusted estimators when analyzing unbal-
anced data is robust against unbalanceness. A regular cu-
mulative incidence is sensitive to such unbalanceness, so an
adjusted cumulative incidence often shows better perfor-
mance. Overall, the adjusted cumulative incidence is pre-
ferred.

Other extensions of the adjusted cumulative incidence
are possible, for example, if we want to verify the ad-
justed cumulative incidence for high-dimensional data. Par-
ticularly in biological data, high-dimensional data have far
more variables than the sample size. This approach re-
quires additional work in biometrics. In addition, we want
to apply this estimator to another type of nonparametric
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Figure 8. Cumulative incidence for both groups and its 95% confidence interval. Estimated cumulative incidence (bold
curves); 95% pointwise confidence interval (dashed curves).

method, namely the Cox proportional hazards regression
model.

APPENDIX A. ASYMPTOTIC VARIANCE
ESTIMATION OF ACIF

Using arguments similar to those of Choudhury (2002)
and Xie and Liu (2005), it can be shown that for tj ≤ t <

tj+1, the estimated variance of F̂w
11 (i.e., v̂ar[F̂w

11(t)]) is equal
to

j∑
l

v̂ar[λ̂w
1,l1Ŝ

w
1 (tl−1)](9)

+ 2

j−1∑
l

j∑
s=l+1

ĉov[λ̂w
1,l1Ŝ

w
1 (tl−1), λ̂

w
1,s1Ŝ

w
1 (ts−1)],

where

v̂ar[λ̂w
1,l1Ŝ

w
1 (tl−1)]

= {λ̂w
1,l1Ŝ

w
1 (tl−1)}2

{
1− λ̂w

1,l1

Mlλ̂w
1,l1

+

l−1∑
m=1

1− θ̂wm1

Mmθ̂wm1

}
,

and

ĉov[λ̂w
1,l1Ŝ

w
1 (tl−1), λ̂

w
1,s1Ŝ

w
1 (ts−1)]

= {λ̂w
1,l1Ŝ

w
1 (tl−1)λ̂

w
1,s1Ŝ

w
1 (ts−1)}

×
{(

1− 1

Y w
l1

) l−1∏
m=1

(
1− θ̂wm1

Mmθ̂wm1

)
− 1

}
.

Using a Taylor series linear approximation, we have

l−1∏
m=1

(
1− θ̂wm1

Mmθ̂wm1

)
≈ 1 +

l−1∑
m=1

(
1− θ̂wm1

Mmθ̂wm1

)
,

and, under condition (5), we have M−1
m → 0 and, therefore,

if we ignore the terms of a smaller order of magnitude than
M−2

m , then equation (9) is reduced to

v̂ar[F̂w
11(t)]

=

j∑
l=1

{λ̂w
1,l1Ŝ

w
1 (tl−1)}2

{
1− λ̂w

1,l1

Mlλ̂w
1,l1

+

l−1∑
m=1

1− θ̂wm1

Mmθ̂wm1

}

+ 2

j−1∑
l=1

j∑
s=l+1

{λ̂w
1,l1Ŝ

w
1 (tl−1)λ̂

w
1,s1Ŝ

w
1 (ts−1)}

×
{
− 1

Y w
l1

+

l−1∑
m=1

1− θ̂wm1

Mmθ̂wm1

}
.
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