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The inverse gamma-difference distribution and its
first moment in the Cauchy principal value sense

Aaron Hendrickson

In this paper, the probability density and distribu-
tion functions for the reciprocal-difference of independent
gamma random variables with unequal shape parameters
are derived. A theorem is developed and applied to eval-
uate the first moment of this distribution in the sense of
the Cauchy principal value, which addresses the inverse chi-
squared- and inverse exponential-difference distributions as
special cases. These results are used to find the first moment
and an approximation to the centralized inverse-Fano distri-
bution, which models the sampling distribution of the pho-
ton transfer conversion gain measurement of electro-optical
imaging sensors. A Monte Carlo simulation is performed to
show how the first moment of the inverse gamma-difference
distribution can be utilized to control the bias of the con-
version gain measurement in a live experiment. The low il-
lumination problem of conversion gain measurement is in-
troduced with a discussion motivating future application of
the theoretical results derived.
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1. INTRODUCTION

In Klar [1] a literature review was conducted to investi-
gate an apparent lack of research done on the distribution
of the difference of independent gamma random variables.
It revealed that while this gamma-difference distribution
seems largely absent from the statistical literature, it has in
fact been studied for the case of equal shape parameters by
several authors in a variety of different contexts [2, 3, 4, 5].
This, however, cannot be said for the unequal shape
parameter case, for which only one explicit derivation
by Mathai [6] as well as a brief mention in Krishna &
Jose [7] was found. Sources for the distribution of the
difference of independent chi-squared random variables
with different degrees of freedom, which is a special case
of the gamma-difference distribution with unequal shape
parameters, were also provided [8, 9].

In a more recent article by Hendrickson [10], the gamma-
difference distribution for unequal shape parameters was

used in the derivation of the centralized inverse-Fano distri-
bution, which was introduced as a model for the sampling
distribution of the photon transfer conversion gain measure-
ment of electro-optical imaging sensors [11]. A centralized
inverse-Fano random variable was defined as

G = X/Y,

where X ∼ N (μ, σ2) and Y ∼ GD(α1, α2, β1, β2) are in-
dependent normal and gamma-difference random variables,
respectively. Due to the functional complexity of this ratio,
closed-form solutions for the density and distribution of G
were only found for the case of integer shape parameters.
For noninteger shape parameters, these functions were ex-
pressed analytically as integrals involving confluent hyperge-
ometric functions which proved difficult to evaluate. It was
suggested that when the conversion gain is measured under
sufficiently high illumination, the dispersion of G is due al-
most entirely to the dispersion in Y [12, 10]; thus, opening
up the possibility of approximating the density of G by a
scaled inverse gamma-difference distribution. Furthermore,
section 4 will show that various properties ofG can be drawn
out from a characterization of the inverse gamma-difference
distribution including, in particular, its first moment. Un-
derstanding these properties is of interest in the imaging
science community since a better understanding of the be-
havior of the conversion gain measurement, especially under
low illumination conditions, is critical to properly charac-
terizing the performance of sensors with nonlinear transfer
functions as well as developing a generalized photon transfer
methodology.

In light of these observations, this paper seeks to pro-
vide an initial characterization of the distribution represent-
ing the reciprocal difference of independent gamma random
variables with unequal shape parameters. This will be ac-
complished by deriving some preliminary results pertaining
to the gamma-difference distribution followed by a deriva-
tion of the inverse distribution and its first moment using the
Cauchy principal value interpretation. This paper concludes
with a discussion on an application of these theoretical re-
sults involving electro-optical imaging sensors.

2. GAMMA-DIFFERENCE DISTRIBUTIONS

The starting point for this characterization is uncovering
the pertinent details of the gamma-difference distribution
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as well as deriving some new results for subsequent use in
section 3. The gamma-difference random variable is

Y = Y1 − Y2,

where Y1 ∼ G(α1, β1) and Y2 ∼ G(α2, β2) are independent
gamma random variables parameterized in terms of a shape
parameter αi > 0 and rate parameter βi > 0 for i = 1, 2.
For the density and distribution functions of Y −1 in section
3.1 three results are needed, namely, the density and distri-
bution of Y as well as pr(Y ≤ 0). Then, for the derivation
of the principal-valued expectation of Y −1 in section 3.2 we
require the density of Y at the origin as well an expression
for the noninteger moments of Y partitioned about the ori-
gin1. Here we present all of these results albeit not in this
order.

The density of Y , as presented in [6] and [1], is expressed
in terms of Whittaker’s confluent hypergeometric function
Wκ,μ(z). Using the relation found in [13, Eq. 13.14.3], which
expresses Wκ,μ(z) in terms of Kummer’s confluent hyperge-
ometric function of the 2nd kind, U(a, b, z), the density of
Y can be expressed in a more compact form.

(1) fY (y) =

{
CY

Γ(α2)
eβ2y U(1− α2, 2− αo,−βoy), y ≤ 0,

CY

Γ(α1)
e−β1y U(1− α1, 2− αo, βoy), y > 0,

where αo = α1 +α2, βo = β1+β2, CY = βα1
1 βα2

2 β1−αo
o , and

Γ(s) is the gamma function. An expression for the density
of Y at the origin is now provided in the following.

Lemma 2.1. For αo and βo as defined following (1) and
Y ∼ GD(α1, α2, β1, β2)

fY (0) =

{
∞, 0 < αo ≤ 1,
β
α1
1 β

α2
2 β1−αo

o

(αo−1)B(α1,α2)
, αo > 1,

where B(x, y) := Γ(x)Γ(y)/Γ(x+ y) is the beta function.

Proof. From (1), fY (0) is equivalent to

fY (0) =
CY

Γ(αi)
lim

y→0+
U(1− αi, 2− αo, βoy).

Let a = 1−αi < 1 and b = 2−αo < 2, then the limiting cases
of U(a, b, z) as z → 0 can be found in [13, Eqs. 13.2.18–22].

lim
z→0

U(a, b, z) =

{
∞, 1 ≤ b < 2,
Γ(1−b)

Γ(a−b+1) , b < 1.

Substituting in the proper values for a and b and multiplying
by CY /Γ(αi) yields the final result.

As for the distribution of Y , there is no known closed-
form expression so it is written as follows [1].

1By this we mean the integral defining the moments is partitioned
about the origin.

(2) FY (y) =

βα2
2

Γ(α1)Γ(α2)

∫ ∞

max{0,−y}
tα2−1e−β2tγ (α1, β1(t+ y)) dt,

where γ(s, z) :=
∫ z

0
ts−1 e−t dt is the lower-incomplete

gamma function. To evaluate pr(Y ≤ 0) it will be eas-
ier to first find the needed expression for the partitioned
noninteger moments of Y and then recover the desired
probability from the zeroth moment. To obtain the par-
titioned moments we start with decomposing the gamma-
difference variable into its positive and negative components
by Y = Y 1Y≤0+Y 1Y >0, where 1A is the indicator function
on the set A, and then introduce the following lemma.

Lemma 2.2 (13, Eq. 13.10.7). For �ν > max{�b − 1, 0}
and �z > 0

∫ ∞

0

tν−1e−zt U(a, b, t) dt =

Γ(ν)Γ(ν − b+ 1)

Γ(a− b+ 1 + ν)
z−ν

2F1

(
a, ν

a− b+ 1 + ν
; 1− 1

z

)
,

where

(3) pFq

(
a1, . . . ,ap
b1, . . . , bq

; z

)
:=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

is the generalized hypergeometric function, and (s)n := Γ(s+
n)/Γ(s) is the rising Pochhammer symbol.

Lemma 2.2 is then applied to evaluate E(Y ε−11Y≤0) and
E(Y ε−11Y >0). For the negative component, i.e. Y 1Y≤0, we
define the branch cut zε = |z|εeiε arg z for −π/2 < arg z <
3π/2 and make the substitution y = −t to put the integral
defining E(Y ε−11Y≤0) into a useful form.

Lemma 2.3. For αo and CY as defined following (1)
and Y ∼ GD(α1, α2, β1, β2) let ε > max{1 − αo, 0}, then
E(Y ε−1) = E(Y ε−11Y≤0) + E(Y ε−11Y >0) where

E(Y ε−11Y≤0) =

− eiπεCY
Γ(ε)Γ(αo − 1 + ε)

Γ(ε+ α1)Γ(α2)βε
2

2F1

(
1− α2, ε

ε+ α1
; −β1

β2

)
,

E(Y ε−11Y >0) =

CY
Γ(ε)Γ(αo − 1 + ε)

Γ(α1)Γ(ε+ α2)βε
1

2F1

(
1− α1, ε

ε+ α2
; −β2

β1

)
.

The partitioned noninteger moments can now be utilized
to find the probability of Y being nonpositive as well as the
complementary expression by substituting ε = 1 into each
result of Lemma 2.3.
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Corollary 2.1. For αo and βo as defined following (1) and
Y ∼ GD(α1, α2, β1, β2)

pr(Y ≤ 0) =
βα1
1 βα2−1

2 β1−αo
o

α1 B(α1, α2)
2F1

(
1− α2, 1

1 + α1
; −β1

β2

)
,

pr(Y > 0) =
βα1−1
1 βα2

2 β1−αo
o

α2 B(α1, α2)
2F1

(
1− α1, 1

1 + α2
; −β2

β1

)
.

3. THE INVERSE GAMMA-DIFFERENCE
DISTRIBUTION

In this section three results are derived in the form of the
density and distribution functions of the inverse gamma-
difference variable as well as its principal-valued first mo-
ment. In regards to the latter, Theorem 3.2 and Lemmas
3.1–3.2 will be developed to facilitate the evaluation of the
first moment found in the main result of Theorem 3.3. Along
the way several additional auxiliary result will also be pre-
sented.

3.1 Density and distribution functions

With the requisite description of the gamma-difference
distribution at hand, the inverse gamma-difference variable
Z = Y −1 is introduced. The density and distribution of Z
are presented in Theorem 3.1.

Theorem 3.1. For Y ∼ GD(α1, α2, β1, β2) let Z = Y −1,
then

(i) fZ(z) =

{
z−2 fY (z

−1), z �= 0,

0, z = 0,

(ii) FZ(z) = 1(0,∞)(z) + FY (0)−
{
FY (z

−1), z �= 0,

0, z = 0,

where fY is defined in (1), FY is defined in (2), and FY (0) =
pr(Y ≤ 0) is defined in Corollary 2.1.

Proof (i). Z is a univariate transformation of Y ; thus, the
change of variables formula for density functions is applied
to derive the z �= 0 case of fZ directly from the density of
Y in (1). For the z = 0 case we need to evaluate the limit of
fZ as z → 0− or z → 0+. Taking the limit as z → 0+ and
substituting y = 1/z yields fZ(0) = limy→∞ y2fY (y). As
y → ∞, U(a, b, y) ∼ y−a [13, Eq. 13.2.6]; therefore, fZ(0) ∝
limy→∞ yα1−1e−β1y = 0.

Proof (ii). A straightforward integration of fZ yields FZ .

3.2 Moments

Since the inverse gamma-difference variable Z is the re-
ciprocal transformation of the gamma-difference variable Y ,
the moments E(Zn) are equivalent to the negative moments
E(Y −n).

Proposition 3.1. For αo as defined following (1) and
Z ∼ IGD(α1, α2, β1, β2), E(Zn) exists and is finite for
n < min{αo, 1}.

Proof. By definition, E(Zn) = E(Y −n). Let n = 1− ε, then
according to Lemma 2.3, E(Y −n) exists and is finite for
1− n < max{1− αo, 0}. Solving this inequality for n yields
n < min{αo, 1}.

Proposition 3.1 indicates that Z does not admit a first
moment. This observation is confirmed by the work of
Piegorsch & Casella which demonstrated that the recipro-
cal of a continuous random variable X does not possess a
defined expectation if fX(0) > 0 [14]. From Lemma 2.1 the
density of Y is shown to always be nonzero at the origin;
therefore, we employ the concept of the Cauchy principal
value to define the principal-valued first negative moment
as an alternative interpretation to the traditional definition.

Definition 3.1. Let δ0, δ1 > 0 and X be a continuous ran-
dom variable with density fX defined on R. The principal-
valued first negative moment of X is

PVE(X−1) := lim
δ0,δ1→0

(∫ −δ0

−1/δ1

+

∫ 1/δ1

δ0

)
fX(x)

x
dx,

if and only if each integral exists and is finite.

The use of the Cauchy principal value prescription for
first negative moments has most notably been applied to
problems arising from reciprocals of normal, skew-normal,
skew-t, and generalized Student-t random variables [15, 16,
17]. In the context of the generalized central limit theorem,
the principal-valued first negative moment also appears as
a centering constant for describing the limiting distribution
of suitably normed sums of reciprocal random variables. Let
{Xi} be a sequence of i.i.d. random variables with density
fX that is continuous and nonzero at the origin, then accord-
ing to the generalized central limit theorem, X−1 belongs
to the domain of attraction of the Cauchy law for which we
write [18]

1
n

∑n
i=1 X

−1
i − PVE(X−1)

πfX(0)

d→ C(0, 1),

where C(0, 1) represents the standard Cauchy distribution.
While several applications exist, evaluating principal-

valued first negative moments for certain distributions via
Definition 3.1 may not prove to be tractable motivating the
need for other approaches. The following theorem presents
one such alternative approach.

Theorem 3.2. Let X be a continuous random variable with
density fX where fX(x) > 0 over some open interval Ω ⊂ R

containing the origin. If fX is continuously differentiable on
Ω and | d

dxfX(x)| < M holds in a neighborhood of the origin
for M ∈ R then for ε > 0
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Figure 1. The contour C.

(4) PVE(X−1) =

lim
ε→0

[
E(Xε−11Y≤0) + E(Xε−11Y >0)

]
+ fX(0)πi.

Proof. For notational convenience we let δ > 0 and define

Xδ = X1X/∈[−δ,δ] +X1X∈[−δ,δ].

Without loss of generality, assume fX(x) > 0 for all x ∈ R

and let ε > 0, then

(5) E(Xε−1
δ ) = E(Xε−11X/∈[−δ,δ]) + E(Xε−11X∈[−δ,δ]).

Changing the value of δ only serves to change the partition of
the sample space ofX. As such, it should be readily apparent
that E(Xn) = E(Xn

δ ) for any δ so long as E(Xn) exists.
Now, for z ∈ C we define the branch cut zε = |z|εeiε arg z

with −π/2 < arg z < 3π/2 and then consider the contour C
depicted in Figure 1. If for some δ the density fX is analytic
over the region bound by the real axis and the contour γ2,
that is, R = {z : |z| ≤ δ ∧ �z ≥ 0}, then the expected value
in (5) is equal to the integral along C. For the integral over
γ1 and γ3 we have

lim
ε→0

∫
|x|>δ

xε fX(x)

x
dx =

∫
|x|>δ

fX(x)

x
dx,

by the dominated convergence theorem. Furthermore, for
the integral over γ2 we obtain the result

lim
ε→0

iδε
∫ 0

π

eiεϕfX(δeiϕ) dϕ = i

∫ 0

π

fX(δeiϕ) dϕ,

since limε→0 e
iεϕ → 1 uniformly for ϕ ∈ [0, π]. Bringing both

terms together then provides the limiting expression

(6) lim
ε→0

E(Xε−1
δ ) =

∫
|x|>δ

fX(x)

x
dx+ i

∫ 0

π

fX(δeiϕ) dϕ.

Under the stated assumptions, (6) is independent of the
choice for δ. Therefore, taking δ → 0 yields

(7) lim
ε→0

E(Xε−1
0 ) = PV

∫
R

fX(x)

x
dx− fX(0)πi.

The work by Peng (2008) showed that if fX is continuously
differentiable on Ω and | d

dxfX(x)| < M holds in a neigh-
borhood of the origin for M ∈ R, then this limit exists and
is finite [16]. Upon adding fX(0)πi to both sides and not-
ing that E(Xε−1

0 ) = E(Xε−11Y≤0) + E(Xε−11Y >0), the
expression in (4) is attained.

The last two results needed to evaluate the principal-
valued first moment of the inverse gamma-difference distri-
bution, PVE(Z), are provided in the following two lemmas.
The derivations of these results are helpful, although not
necessary, to understand the steps taken in the final evalu-
ation of PVE(Z) presented in Theorem 3.3.

Lemma 3.1. Let f(ε) = 2F1(1 − a, ε; ε + b; −z) where
a, b, z, ε > 0, a+ b > 1, and f ′ = df/dε, then

(i) f(0) = 1,

(ii) f ′(0) =
(a− 1) z

b
3F2

(
2− a, 1, 1

1 + b, 2
; −z

)
.

Proof (i). Provided the definition of the Pochhammer sym-
bol and the generalized hypergeometric function in Lemma
2.2, one finds (0)k>0 = 0 and 2F1(1 − a, 0; b; −z) = 1, re-
spectively.

Proof (ii). Making use of the generalized hypergeometric se-
ries in Lemma 2.2, f is expressed as

(8) f(ε) =

∞∑
k=0

ξk(ε) (1− a)k
(−z)k

k!
,

where ξk(ε) = (ε)k/(ε + b)k. Assume a + b > 1 and z ≤ 1,
then the series in (8) converges absolutely and

(9) f ′(ε) =
∞∑
k=1

ξ′k(ε) (1− a)k
(−z)k

k!
.

To evaluate the derivative, we introduce the differential for-
mula d(s)n/ds = (s)n(ψ(s + n) − ψ(s)) where ψ(s) :=
d
ds log Γ(s) is the digamma function [19, Eq. 3.3]. The quan-
tity ξ′k(ε) is subsequently found to be

ξ′k(ε) =
(ε)k

(ε+ b)k

(
ψ(ε+ b)−ψ(ε+ b+k)+ψ(ε+k)−ψ(ε)

)
.

Now writing (ε)k in terms of gamma functions and making
use of of the recurrence relations Γ(ε) = Γ(ε + 1)/ε and
ψ(ε) = ψ(ε+ 1)− ε−1 we write

ξ′k(ε) =
Γ(ε+ k)

(ε+ b)kΓ(ε+ 1)

(
1+

ε
[
ψ(ε+ b)− ψ(ε+ b+ k) + ψ(ε+ k)− ψ(ε+ 1)

])
.

From this expression we find ξ′k(0) = Γ(k)/(b)k; thus,

f ′(0) = −z

∞∑
k=0

(1− a)k+1Γ(k + 1)

(b)k+1(k + 1)

(−z)k

k!
.

By the properties of the Pochhammer symbol Γ(k + 1) =
(1)k, k + 1 = (2)k/(1)k, and (s)k+1 = s(1 + s)k, which
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results in the series taking on the form

(10) f ′(0) =
(a− 1) z

b

∞∑
k=0

(2− a)k(1)k(1)k
(1 + b)k(2)k

(−z)k

k!
.

By inspection of the generalized hypergeometric series in
Lemma 2.2, the desired result is realized.

Remark 3.1. For z > 1 the result in (10) is defined by
the analytic continuation of the generalized hypergeometric
function 3F2(a;b; z).

Lemma 3.2. Let g(ε) = Γ(a)Γ(ε + b)cε where a, b, c, ε > 0
and g′ = dg/dε, then

(i) g(0) = Γ(a)Γ(b),

(ii) g′(0) = Γ(a)Γ(b)(ψ(b) + log c).

Theorem 3.3. For αo and βo as defined following (1) and
Z ∼ IGD(α1, α2, β1, β2), let αo > 1, then

PVE(Z) =
βα1
1 βα2

2 β1−αo
o

(αo − 1)B(α1, α2)

(

ψ(α1)− log β1 +
(α1 − 1)β2

α2 β1
3F2

(
2− α1, 1, 1

1 + α2, 2
; −β2

β1

)

−ψ(α2)+log β2−
(α2 − 1)β1

α1 β2
3F2

(
2− α2, 1, 1

1 + α1, 2
; −β1

β2

))
.

Proof. Let ε > 0. From Theorem 3.2 we note that
limε→0 E(Y ε−1

0 ) is comprised of a principal-valued contribu-
tion that is real-valued, as well as a purely imaginary term
that is the residue from integrating over the simple pole at
the origin for ε = 0. With this in mind, the principal-valued
first moment of Z is

PVE(Z) = � lim
ε→0

[
E(Xε−11Y≤0) + E(Xε−11Y >0)

]
.

Assume αo > 1 such that fY is finite at the origin, then by
Lemma 2.3

lim
ε→0

E(Y ε−1
0 ) = CY Γ(αo − 1) lim

ε→0
Γ(ε)D(ε),

where

D(ε) =
2F1

(
1−α1,ε
ε+α2

; −β2

β1

)
Γ(α1)Γ(ε+ α2)βε

1

− eiπε
2F1

(
1−α2,ε
ε+α1

; −β1

β2

)
Γ(ε+ α1)Γ(α2)βε

2

.

From the definition of the generalized hypergeometric func-
tion, 2F1(a, 0; c; z) = 1; thus, it is straightforward to show
D(0) = 0. Furthermore, by writing the leading gamma
term as Γ(ε) = Γ(ε + 1)/ε it becomes obvious that
limε→0 E(Y ε−1

0 ) ∝ limε→0 D(ε)/ε, which is indeterminate.
By L’Hôpital’s rule

lim
ε→0

E(Y ε−1
0 ) =

CY Γ(αo)

(αo − 1)
lim
ε→0

d

dε

(
f1(ε)

g1(ε)
− eiπε

f2(ε)

g2(ε)

)
,

(11)

where

f1(ε) = 2F1

(
1− α1, ε

ε+ α2
; −β2

β1

)
,

f2(ε) = 2F1

(
1− α2, ε

ε+ α1
; −β1

β2

)
,

and

g1(ε) = Γ(α1)Γ(ε+ α2)β
ε
1,

g2(ε) = Γ(ε+ α1)Γ(α2)β
ε
2.

Evaluating the derivative in (11) and making use of Lemma
2.1 gives

(12) lim
ε→0

E(Y ε−1
0 ) = fY (0)

(

f ′
1(0)−

f1(0) g
′
1(0)

g1(0)
− f ′

2(0) +
f2(0) g

′
2(0)

g2(0)

)
− fY (0)πi.

Lemmas 2.1, 3.1, and 3.2 provide the results necessary to
evaluate the individual components. After a bit of algebraic
manipulation the real part of (12) yields the desired expres-
sion for PVE(Z).

As was the case for the noninteger moments of Y pre-
sented in Lemma 2.3, PVE(Z) consists of the sum of two
terms which are the contributions of the negative and pos-
itive cases of fZ . This property in turn allows for approxi-
mations when Z is nearly positive or negative.

Corollary 3.1. In Theorem 3.3, as pr(Z > 0) → 1

PVE(Z) → βα1
1 βα2

2 β1−αo
o

(αo − 1)B(α1, α2)

(
ψ(α1)− log β1

+
(α1 − 1)β2

α2 β1
3F2

(
2− α1, 1, 1

1 + α2, 2
; −β2

β1

))
.

Likewise, as pr(Z < 0) → 1

PVE(Z) → − βα1
1 βα2

2 β1−αo
o

(αo − 1)B(α1, α2)

(
ψ(α2)− log β2

+
(α2 − 1)β1

α1 β2
3F2

(
2− α2, 1, 1

1 + α1, 2
; −β1

β2

))
.

In certain applications involving gamma-difference distri-
butions with large shape parameters (αi), it can be benefi-
cial to approximate PVE(Z) via the normal approximation.
For a derivation of the normal approximation using Theo-
rem 3.2 see appendix B.

Corollary 3.2. For Z ∼ IGD(α1, α2, β1, β2) and large α1

and α2

PVE(Z) ≈
√
2√

α1/β2
1 + α2/β2

2

D
(

α1/β1 − α2/β2√
2(α1/β2

1 + α2/β2
2)

)
,

where D(z) := e−z2 ∫ z

0
et

2

dt is the Dawson integral.
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Additionally, it is well known that the chi-squared and
exponential distributions are special cases of the gamma
distribution. As a consequence of this, PVE(Z) admits the
principal-valued first moment of the reciprocal difference of
independent chi-squared and exponential random variables
as special cases.

Corollary 3.3. For i = 1, 2 and νi > 0, let Yi ∼ χ2(νi) =
G(νi/2, 2), νo = ν1 + ν2, and Z = (Y1 − Y2)

−1, then for
νo > 2

PVE(Z) =
22−νo/2(

νo

2 − 1
)
B
(
ν1

2 , ν2

2

)(

ψ
(ν1
2

)
+

ν1 − 2

ν2
3F2

(
2− ν1

2 , 1, 1

1 + ν2

2 , 2
; −1

)

− ψ
(ν2
2

)
− ν2 − 2

ν1
3F2

(
2− ν2

2 , 1, 1

1 + ν1

2 , 2
; −1

))
,

Corollary 3.4. For i = 1, 2 and λi > 0, let Yi ∼ Exp(λi) =
G(1, λi) and Z = (Y1 − Y2)

−1, then

PVE(Z) =
log(λ2/λ1)

λ−1
1 + λ−1

2

.

4. APPLICATION

4.1 Preliminaries

Photon transfer (pt) is a methodology for characterizing
the performance of electro-optical imaging sensors. Due in
part to its simplicity and broad applicability to a variety
of sensor technologies, pt has been adopted industry-wide
as the archetypal approach to measuring sensor performance
since its conception in the mid 1970s. For the manufacturers
of imaging sensors, pt is used in the design and optimization
processes to ensure the best possible product is created. On
the consumer end, pt is used to verify performance claims
made by sensor manufacturers and to calibrate imaging sys-
tems for use in a specific application. As a consequence of
this widespread use, the pt method was officially standard-
ized in the European machine vision association’s (emva)
1288 standard for sensor evaluation which had its first re-
lease in 2005.

The primary purpose of pt is measuring a sensor’s trans-
fer function, that is, the parametric relationship between
the input signal, in the form of packets of electrons (e-) pro-
duced in the pixels by interacting photons, to the output
signal usually in the form of digital numbers (DN). When
this relationship is linear, the transfer function can be de-
scribed by a single constant known as the conversion gain g
in units of (e-/DN). Measuring the conversion gain is cen-
tral to the photon transfer method as it effectively allows
one to convert the output signal in arbitrary digital units
into a physically meaningful quantity of electrons. This in
turn allows for the pixels comprising the sensor to be char-
acterized in terms of key imaging performance metrics such

as read noise, well-capacity, dynamic range, and dark cur-
rent in an absolute sense [11]. Consider for example, the
read noise which dictates the lowest light conditions under
which a sensor can generate useful imagery. The read noise
is measured according to the formula

σr(e-) = g(e-/DN)× σr(DN),

where σr(DN) is the standard deviation of the digital out-
put signal of a pixel when exposed to zero illumination at a
zero second integration time and σr(e-) is the read noise in
electron units. Like the read noise, each of the other perfor-
mance metrics mentioned, as well as others not mentioned,
require multiplying the gain by some sample statistic in DN
units to convert it to electron units. As a result of the central
role it plays, the uncertainty and bias of the conversion gain
measurement fundamentally limits the uncertainty and bias
the pt methodology as a whole. That said, little is actually
understood about the properties of the conversion gain mea-
surement; thus, motivating the need for a detailed analysis.

The earliest work carried out to characterize this funda-
mental measurement traces back to that presented in [11, 12]
where estimates for the uncertainty were obtained via propa-
gation of errors. These results provided a reasonable approx-
imation to the uncertainty of the measurement under limited
circumstances. In particular, both works assume the gain is
measured under high illumination conditions to achieve a so-
called shot noise-limited response. While adequate in many
applications, this assumption is much too restrictive for the
characterization of certain sensor architectures as discussed
in more detail in section 4.5. In response to this limitation,
the centralized inverse-Fano (cif) distribution was derived
as a model of the sampling distribution for the pt conver-
sion gain measurement [10]. With a theoretical model of the
sampling distribution the properties of the measurement and
ultimately how it behaves under low illumination conditions
could begin to be explored and subsequently used to develop
a much needed approach to low-illumination conversion gain
measurement. Such an approach would be a critical compo-
nent to the developing a more generalized pt methodology.

4.2 An estimator for g

Developing an estimator for the conversion gain of a lin-
ear pixel is done by taking advantage of the statistical prop-
erties of photons. As a consequence of Bose-Einstein statis-
tics, photons–which we will denote with the unit symbol
γ–can be modeled as Poisson random variables whereby the
number of photons k observed by a pixel over some integra-
tion time τ (s) is described by the Poisson probability mass
function

p(k) = e−Φτ (Φτ)
k

k!
, k = 0, 1, 2, . . . ,

where Φ is the photon flux with units (γ · px−1 · s−1),
[11, 12, 20]. Noting that the Poisson mass function has equal
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mean and variance and assuming the pixel produces no sig-
nal and noise of its own, the conversion gain is the mean-to-
variance ratio of the pixel’s digital output. However, because
the pixel will produce its own background signal and noise,
the conversion gain can be measured according to the fol-
lowing formula [11, 10].

G = (X̄ − Ȳ )/(X̂ − Ŷ ) = P̄ /P̂

The statistics X̄ =
∑n1

i=1 Xi/n1 and X̂ =
∑n1

i=1(Xi −
X̄)2/(n1 − 1) are the sample mean and variance computed
from n1 i.i.d. digital observations of a pixel under illumina-
tion. Similarly, the statistics Ȳ and Ŷ are the sample mean
and variance computed from n2 i.i.d. digital observations
of the same pixel under zero illumination. Thus, the differ-
ences P̄ and P̂ are estimators for the photon induced signal,
E(P̄ ) > 0, and signal variance, E(P̂ ) > 0, and their ratio es-
timates the desired estimand g = E(P̄ )E(P̂ )−1 which is the
gain. According to [10, 11, 12] the total pixel noise under il-
lumination and non-illumination can be adequately modeled
as normal such that Xi ∼ N (μ1, σ

2
1) and Yi ∼ N (μ2, σ

2
2).

In short, the justification for this model is tied to the sum
of the various noise sources present in the sensor being nor-
mally distributed while the Poisson distribution of the pho-
ton noise approaches a normal form for even moderately
small photon exposures. This model inherently leads to X̄
being independent of X̂ and Ȳ being independent of Ŷ .
Since the illuminated sample and dark sample are taken
separately at two different points in time one can also rea-
sonably assume the two samples to be independent of each
other such that X̄, X̂, Ȳ , and Ŷ are mutually independent;
hence the photon induced mean signal and signal variance
are represented by the independent variables

P̄ ∼ N
(
μ1 − μ2,

σ2
1

n1
+

σ2
2

n2

)
,

P̂ ∼ GD
(
n1 − 1

2
,
n2 − 1

2
,
n1 − 1

2σ2
1

,
n2 − 1

2σ2
2

)
,

and the ratio G = P̄ /P̂ is a centralized inverse-Fano random
variate.

4.3 Principal-valued expectation, bias, and
consistency of G

We now extend the notion of the principal-valued moment
to multivariate functions of random variables. In the case of
the centralized inverse-Fano variable, PVE(G) can be found
by first writing the density of G as

(13) fG(g) =

∫
R

|p̂| fP̄ ,P̂ (gp̂, p̂) dp̂.

Knowing that the non-zero density of P̂ at the origin causes
the expected value ofG to diverge, a disk of radius δ centered
at the origin is removed from the interval of integration in

(13), which subsequently permits PVE(G) to be written in
the form

PVE(G) = lim
δ→0

∫
R

g

∫
|p̂|>δ

|p̂| fP̄ ,P̂ (gp̂, p̂) dp̂dg.

Defining the transformation T : p̂ = v, g = u/v one finds
the Jacobian | det(J(g, p̂))| = |v|−1. Changing variables and
simplifying subsequently yields

(14) PVE(G) = E(P̄ )PVE(P̂−1).

Then noting that E(P̄ ) = μ1−μ2 and that P̂−1 is an inverse
gamma-difference random variable with αi = (ni−1)/2 and
βi = αi/σ

2
i for i = 1, 2, the result of Theorem 3.3 can be

used to produce an explicit expression for PVE(G).
From the form in (14) one observes that the principal-

valued expectation of G is not equal to the desired quan-
tity E(P̄ )E(P̂ )−1 as is to be expected. By generalizing
the concept of expectation via the principal value we can
quantify the principal-valued bias of the estimator G by
PVB(G) := PVE(G − g). With a bit of algebraic manip-
ulation one finds

PVB(G) = E(P̄ )
[
PVE(P̂−1)− E(P̂ )−1

]
= E(P̄ )PVB(P̂−1).

To characterize the asymptotic bias and consistency of G,
we map all ordered pairs of sample sizes (n1, n2) ∈ N×N to
the index j ∈ N via Cantor’s pairing function π(n1, n2) :=
1
2 (n1+n2)(n1+n2+1)+n2 and then define the sequence of

estimators {Gj}j≥0 where Gj = P̄j/P̂j . Then, noting that

P̄j
p→ E(P̄ ) and P̂j

p→ E(P̂ ), by Slutsky’s theorem one finds
for the probability limit

plim
j→∞

Gj = E(P̄ )E(P̂ )−1 = g,

provided E(P̂ ) �= 0. This establishes that G is weakly con-
sistent. Consequently, it is possible to control the bias of G
at a given illumination level by varying the sample sizes n1

and n2. To illustrate this point, consider the expression for
PVE(G) in (14) and use the definition g = E(P̄ )E(P̂ )−1 to
write the relative bias of G as

(15)
PVE(G)

g
=

PVE(P̂−1)

E(P̂ )−1
.

We see that the relative bias of G w.r.t. g is just the relative
bias of P̂−1 w.r.t. E(P̂ )−1. Furthermore, inspection of the
r.h.s. of (15) and the definitions of αi and βi reveals that
the relative bias of G is a function of the sample sizes ni

and populations variances σ2
i , i = 1, 2. The zero illumina-

tion population variance σ2
2 is a fixed quantity inherent to

the pixel design while σ2
1 is fixed for a fixed level of illumi-

nation; thus, the relative bias at a given illumination level
is controlled exclusively by the sample sizes.
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Table 1. Parameters used in simulation.

Parameter Value(s) Unit

g 2.1 e-/DN
μ2 42.3 DN
σ2 6.33 DN
μe- (see figures 2–3) e-
μ1 μ2 + μe-/g DN

σ1 (σ2
2 + μe-/g

2)1/2 DN

To demonstrate how (15) can be used to control the rela-
tive experimental bias of g in a realistic scenario, the mean
dark signal μ2, dark noise σ2, and conversion gain g were
estimated from a pixel of a scientific grade charge-coupled
device sensor as presented in Table 1. These estimates were
treated as population parameters and subsequently used to
generate the illuminated population parameters μ1 and σ1

based on the electron signal μe- = 400 e- which represents
the mean number of electrons generated by incident illu-
mination on the pixel. This mean electron signal was cho-
sen as to reflect an illumination level that puts the sen-
sors output below the shot noise-limited regime. Equipped
with all the required parameters, two normally distributed
pseudo-random samples X = {Xi}2001i=1 and Y = {Yi}2001i=1

where Xi ∼ N (232.8, (11.4)2) and Yi ∼ N (42.3, (6.33)2)
were generated using matlab software. Starting with the
first ni = 21 observations (αi = 10) in each sample, the
variance of each population was estimated by X̂ and Ŷ and
then α1 = (n1 − 1)/2, α2 = (n2 − 1)/2, β1 = α1/X̂, and
β2 = α2/Ŷ were substituted into the r.h.s. of (15) to esti-
mate the relative bias of G at the current sample sizes. This
process was then iterated where for each iteration two more
observations were added to the initial sample to re-evaluate
the relative bias of G at the new sample sizes. Figure 2
shows the result of three runs of this experiment along with
the theoretical bias (solid line) as a function of αi. One can
see that the estimated relative bias provides a reasonable ap-
proximation to the exact value especially for αi > 100. As
such, an experimenter could follow a similar process whereby
a shutter is placed in front of the sensor to switch between
capturing dark and illuminated observations and then ob-
serve when the sample sizes become large enough to achieve
a prescribed relative bias. Once the desired maximum rela-
tive bias is achieved the experiment would be terminated.

It is important to highlight the use of equal sample sizes
in this demonstration. While a convenient first choice, equal
sample sizes are unlikely to be optimal in the sense that
there likely exists a pair of unequal sample sizes to achieve
the same bias with a smaller total number of observations.
The results and methodology presented here serve as a
jumping off point for developing a procedure to iteratively
monitor the relative bias while also controlling the relative
size of each sample as to reach the desired bias with the
minimum total number of observations.

Figure 2. Relative bias PVE(G)/g (solid) vs. α1 = α2 along
with estimates for three Monte Carlo trials.

4.4 An inverse gamma-difference
approximation to the CIF distribution

Consider the variances of the variables P̄ and P̂ :

var(P̄ ) = σ2
1/n1 + σ2

2/n2,

var(P̂ ) = 2σ4
1/(n1 − 1) + 2σ4

2/(n2 − 1),

where σ2 is the pixel noise in the absence of illumination,
σ2
1 = σ2

2 + σ2
γ is the total pixel noise variance under illumi-

nation, and σγ is the photon noise observed by the pixel.
Each of these quantities is assumed to be in units of DN. It
can be concluded that given sufficiently large σ2 and σγ ,

the variance of P̂ dominates that of P̄ . Under such cir-
cumstances it is then reasonable to treat P̄ as degenerate
w.r.t. P̂ , i.e. P̄ ∼ δ(E(P̄ )), which in turn leads to the ap-
proximation

(16) G ≈ E(P̄ )× P̂−1.

Clearly this approximation is a scaled inverse gamma-
difference variable which has the benefit of obviating the
need for numerical integration to compute the approximate
density of G. That said, another approximation is realized
by normalizing each side of (16) by PVE(G) yielding

(17)
G

PVE(G)
≈ P̂−1

PVE(P̂−1)
,

provided PVE(G) �= 0. By normalizing in this manner, all
quantities relating to P̄ have been removed; hence, the ran-
dom variable P̂−1/PVE(P̂−1) has the additional benefit of
not requiring the parameters μ1 and μ2. To get a better
sense for the utility of this approximation, we again con-
sider the parameters in Table 1. Using these parameters as
well as the mean electron signals μe- = 1, 2, and 10 e-, the
distributions of G/PVE(G) and P̂−1/PVE(P̂−1) were com-
puted and plotted together as seen in Figure 3. As the il-
lumination is increased (indicated by increasing μe-), the
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Figure 3. Density of G/PVE(G) (dotted) vs.
P̂−1/PVE(P̂−1) (solid) for the parameters presented in

Table 1 and α1 = α2 = 75.

two distributions converge until they become nearly indis-
tinguishable at a mean electron signal of 10 e-. The electron
signals used here were chosen as to magnify the discrepancy
between the two distributions and are much lower than that
which would be used in a real experiment. As such, this
example demonstrates how the distributions of G/PVE(G)
and P̂−1/PVE(P̂−1) can under appropriate conditions be
assumed identical for the practical purpose of conversion
gain measurement.

One reason for studying this approximation in more detail
is that it leads to constructing relative confidence intervals
for G. If the illumination is sufficiently high as to achieve
the convergence seen in Figure 3 and the sample sizes are
large then g/G ≈ P̂ /E(P̂ ) which is approximately nor-
mally distributed. Consequently, computing an interval es-

timate of P̂ /E(P̂ ) and inverting the interval bounds should
yield and approximate confidence interval for G/g so long as
pr(G ≤ 0) ≈ 0. This relative interval would have practical
use in design of experiment algorithms designed to estimate
the sample sizes needed to measure the conversion gain to
some desired relative uncertainty in a live experiment [10].
That said, more work has to be done to analyze how the
magnitude of σ2 affects the illumination level at which the
convergence seen in Figure 3 takes places. It is clear that
larger σ2 will lead to convergence at lower illumination lev-
els; however, rules of thumb for determining an appropriate
illumination level for a given σ2 are needed to make this
more practical.

4.5 The low illumination problem

This paper introduced a theorem for computing principal-
valued moments, the inverse gamma-difference distribution,
its principal-valued first moment, and an application to
electro-optical imaging sensor characterization via the pho-
ton transfer method. Being derived from the principals of
normal sampling theory, the result contained herein are
likely to be applicable to other fields of interest. That said,
this work has a very specific higher goal in view.

Recall the application section where the discussion cen-
tered around the measurement of the conversion gain of
sensors that exhibit a linear transfer function. For such de-
vices, the gain is independent of signal level and can be mea-
sured at arbitrarily large illumination levels where undesir-
able characteristics of the gain measurement can be avoided.
However, in practice, linearity tends to be an overly ideal-
ized model of the transfer function that is frequently violated
by many different sensor designs and architectures. In fact,
for the case of the increasingly commonplace complemen-
tary metal-oxide semiconductor (cmos) active-pixel sensor
(aps) technology, nonlinearity of the transfer function is an
inherent consequence of the physics dictating the operation
of the device.

In response to a need to characterize nonlinear sensors
like the cmos aps, Janesick [11] devised an extension to
the photon transfer method, later dubbed the nonlinear
compensation (nlc) technique [21], which makes a less re-
strictive assumption on the transfer function. Specifically,
Janesick argued that the physics underlying many electro-
optical sensors such as the cmos aps permit a quasi-linear
response at low levels of illumination; thus permitting the
estimation of the conversion gain using the traditional for-
mula. Once this initial measurement of the gain was per-
formed, it is multiplied by subsequent measurements taken
at several additional (higher) levels of illumination to effec-
tively track a modified yet analogous gain estimator as a
function of signal. While the justification for this approach
is reasonable, properly measuring the gain at low illumina-
tion presents significant practical challenges that must be
addressed.
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First, at low illumination one must precisely control the
sample sizes to ensure that the measurement of P̂ remains
positive and away from the origin. If this is not done prop-
erly, the gain measurement will be heavily biased and ill-
behaved which are direct consequences of the nonlinearity
of the transformation P̄ /P̂ and its discontinuity at P̂ = 0,
respectively. To complicate matters more, the sample sizes
required to maintain this balance also become very large at
low illumination which motivates the need for a procedure
to determine optimal sample sizes as discussed in section
4.3. Second, to make confidence intervals for G tractable we
require that the uncertainty in the measurement of G be
dominated by that of P̂ . While we have established some
initial observations that will be useful to solve this problem,
more work has to be done to determine rules of thumb for
setting the illumination level based on the magnitude of sig-
nal independent noise present in the sensor. In short, these
two problems constitute what we call the low illumination
problem. The results derived in this paper open the door to
the analysis needed to solve this important practical prob-
lem and subsequently develop a more robust and generalized
approach to the photon transfer method.

APPENDIX A. ALTERNATIVE PROOF FOR
THEOREM 3.2

Proof. We begin with the random variable X with den-
sity function fX that is continuously differentiable and
| d
dxfX(x)| < M holds in a neighborhood of the origin for
M ∈ R. The moments of X partitioned about the origin are
defined by

E(Xε−1
0 ) = E(Xε−11Y≤0) + E(Xε−11Y >0).

Writing each expected value using the integral definition
leads to

lim
ε→0

E(Xε−1
0 ) = lim

ε→0

(∫ 0

−∞
+

∫ ∞

0

)
xε−1fX(x) dx.

Next, we define the branch cut zε = |z|εeiε arg z where
−π/2 < arg z < 3π/2 and then write

lim
ε→0

E(Xε−1
0 ) = lim

ε→0

(∫ ∞

0

xε−1fX(x) dx

− eiπε
∫ 0

−∞
|x|ε−1fX(x) dx

)
.

With a bit of algebraic manipulation, the integrand of the
second term can be written in terms of the nascent delta
function ηε(x) = ε|x|ε−1.

lim
ε→0

E(Xε−1
0 ) = lim

ε→0

∫
R

|x|ε fX(x)

x
dx

− πi lim
ε→0

(
eiπε − 1

iπε

)∫ 0

−∞
ηε(x)fX(x) dx

In the limit as ε → 0, ηε converges to the Dirac delta func-
tion in the sense that

lim
ε→0

∫ 0

−∞
ηε(x)fX(x) dx = fX(0).

Thus we have

(18) lim
ε→0

E(Xε−1
0 ) = lim

ε→0

∫
R

|x|ε fX(x)

x
dx− fX(0)πi.

For the remaining term we first partition the interval of
integration by2

(19)

∫
R

|x|ε fX(x)

x
dx =

∫
|x|>δ

|x|ε fX(x)

x
dx

+ fX(0)

∫ δ

−δ

|x|ε
x

dx+

∫ δ

−δ

|x|ε fX(x)− fX(0)

x
dx.

Starting with the first term on the right hand side of (19) it
is straightforward to show that the limit can be evaluated
directly according to the dominated convergence theorem.
For the second term we see that it evaluates to zero when
ε > 0 due to the integrand being odd and the interval of in-
tegration being symmetric about the origin. Therefore, this
term adds no contribution in the limit. Lastly, since fX is
continuously differentiable on R, the singularity of the inte-
grand at the origin when ε = 0 is removable. Again calling
on the dominated convergence theorem the limit of this term
is evaluated directly. Altogether, the limit yields

lim
ε→0

∫
R

|x|ε fX(x)

x
dx =

∫
|x|>δ

fX(x)

x
dx+

∫ δ

0

fX(x)− fX(−x)

x
dx,

which we recognize as the Cauchy principal value. Substi-
tuting this result back into (18) yields the expression

lim
ε→0

E(Xε−1
0 ) = PV

∫
R

fX(x)

x
dx− fX(0)πi.

Upon, adding fX(0)πi to both sides, replacing E(Xε−1
0 )

by its definition, and identifying the remaining integral as
PVE(X−1), the desired result is found.

APPENDIX B. ALTERNATIVE DERIVATION
OF THE FIRST NEGATIVE

MOMENT OF THE NORMAL
DISTRIBUTION

The principal-valued first negative moment of the normal
density function was first introduced in a paper by Que-
nouille where it was derived by the means of a differential

2The author thanks Daniel Fischer for suggesting this approach on
math.stackexchange.com [22].
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equation [15]. Here we provide an abbreviated alternative
derivation for this expression through application of Theo-
rem 3.2.

Proof. We begin by defining X ∼ N (μ, σ2) and then
partitioning the integral representation for the moments
E(Xε−1) about the origin. From [23, Eq. 3.462.1] the parti-
tioned moments are found to be

E(Xε−11X≤0) = −eiπεfX(0) exp
(

μ2

4σ2

)
Γ(ε)D−ε

(
μ
σ

)
,

E(Xε−11X>0) = fX(0) exp
(

μ2

4σ2

)
Γ(ε)D−ε

(
−μ

σ

)
,

where Dν(z) is the parabolic cylinder function. By defini-
tion, the sum of these two expressions yields the moments
of the normal density function which is continuous in ε.

E(Xε−1
0 ) = fX(0) exp

(
μ2

4σ2

)
×

Γ(ε+ 1)
D−ε

(
−μ

σ

)
− eiπεD−ε

(
μ
σ

)
ε

As ε → 0, the leading gamma term tends to unity while the
ratio is indeterminant. Applying L’Hôpitals rule the limit
becomes

lim
ε→0

E(Xε−1
0 ) = fX(0) exp

(
μ2

4σ2

)
×

lim
ε→0

∂
∂ε

(
D−ε

(
−μ

σ

)
− eiπεD−ε

(
μ
σ

))
.

According to [24, Eq. 07.41.20.0005.01]

∂
∂νDν(z)

∣∣∣
ν=0

=
1

2
e−z2/4

(

− 2F2

(
1, 1
3
2 , 2

; z2

2

)
z2 + π erfi

(
z√
2

)
− log 2− γ

)
,

where erfi(z) is the imaginary error function and γ =
0.57721 . . . is the Euler–Mascheroni constant. Making use of
this result as well as the relation D(z) = −1

2 i
√
πe−z2

erf(iz),
where D(z) is the Dawson integral, we arrive at the final ex-
pression for the limit.

lim
ε→0

E(Xε−1
0 ) =

√
2

σ D
(

μ√
2σ

)
− fX(0)πi

Dropping the imaginary component then yields the solution
derived by Quenouille for PVE(X−1).
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