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A martingale-difference-divergence-based
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In this article, we propose a new method for estimating
the central mean subspace via the martingale difference di-
vergence. This method enjoys a model free property and
does not need any nonparametric estimation. These advan-
tages enable our method to work effectively when many dis-
crete or categorical predictors exist. Under mild conditions,
we show that our estimator is root-n consistent. To deter-
mine the structural dimension of the central mean subspace,
a consistent Bayesian-type information criterion is devel-
oped. Simulation studies and a real data example are given
to illustrate the proposed estimation methodology.
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1. INTRODUCTION

Sufficient dimension reduction (SDR) (Li [8], Cook [2])
is a popular approach to tackle the challenges of high di-
mensional data analysis. It is aimed at seeking a matrix
B ∈ Rp×d with rank d (d < p), such that Y |=X|BTX, or
equivalently,

(1) P{Y ≤ y|X} = P{Y ≤ y|BTX}, for all y ∈ R,

where Y is the response, X = (X1, · · · , Xp)
T is the predic-

tor vector and |= indicates conditional independence. The
column space of B satisfying (1) is called the SDR subspace.
The intersection of all such subspaces, if itself satisfies (1),
is called the central subspace (CS), denoted by SY |X. The
column dimension d of B is called the structural dimension
of SY |X. There is a huge literature on estimating SY |X, for
instance, Li [8], Cook and Weisberg [4], Li and Wang [6],
Ma and Zhu [11], among others.

The SDR model (1) concerns about all aspects of the con-
ditional distribution of Y given X. However, in many appli-
cations, certain characteristics of the conditional distribu-
tion may often be of special interest. For example, we might
be only interested in the conditional expectation E{Y |X}
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dation of China (11426156, 11501372).
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in regression analysis. For this purpose, Cook and Li [3] in-
troduced the following model

E{Y |X} = E{Y |BTX},(2)

where B ∈ Rp×d. The minimum column space of B satisfy-
ing (2) is called the central mean subspace (CMS), denoted
by SE{Y |X}. Various methods have been developed to esti-
mate SE{Y |X}, among with ordinary least squares method
(OLS, Li and Duan [10]), principle Hessian direction (pHd,
Li [9]), iterative Hessian transformation (ITH, Cook and
Li [3]), minimum average variance estimation (MAVE, Xia
et al. [23]), Fourier transformation method (FMN, Zhu and
Zeng [25]) and semiparametric approach [13]. See, Ma and
Zhu [12] for recent review.

These existing CMS methods often rely on nonparametric
smoothing techniques or impose strong conditions on pre-
dictors, such as linearity condition or constant covariance
condition [12]. Different from the traditional methods, this
paper proposes a new method based on the martingale dif-
ference divergence (MDD, Shao and Zhang [17]). Our pro-
posed method is a model-free procedure, which can recover
SE{Y |X} without prespecifying any models, without smooth-
ing techniques and work effectively under different kinds of
predictors.

Recently, Sheng and Yin [18, 19] used the distance covari-
ance (DCOV, Székely et al. [21, 22]) to estimate SY |X for
model (1). Our proposed MDD method is motivated from
Sheng and Yin [18, 19]. Notice that DCOV is to measure
(in)dependence between random variables, while MDD is
for the conditional mean (in)dependence. This is the main
reason why we should use MDD instead of DCOV in model
(2). In the simulation studies, we can see that the DCOV
procedure may fail to identify the central mean subspace
SE{Y |X} in many settings, for example, in models with het-
eroscedastic errors.

It is noteworthy that Propositions 1 and 2 in Sheng
and Yin [19] are fundamental to ensure their method work.
However, since MDD does not inherit all the properties of
DCOV, the proof strategies used by Sheng and Yin [19] are
not adaptive to our method. Thus, how to obtain similar
propositions for model (2) is an important but challenging
problem. To deal with this difficulty, more complicated tech-
niques are needed. More details can been found in the proofs
of Propositions 1 and 2 in the Appendix.
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The rest of the paper is organized as follows. Section 2
describes our method and its asymptotic properties. In Sec-
tion 3, we introduce a BIC criterion for the CMS dimension
determination. In Sections 4–5, a Monte Carlo simulation
study and a real data application are used to illustrate the
proposed methodology. In Section 6, some conclusion re-
marks are given. All the regularity conditions and the tech-
nical proofs are deferred to the Appendix.

2. METHODOLOGY

2.1 A brief review of MDD

For two random vectors X ∈ Rp and Y ∈ R, Shao and
Zhang [17] introduced the following conditional mean inde-
pendence of Y on X

E{Y |X} = E{Y }, almost surely.(3)

The relationship (3) plays an important role in statistics.
To measure this relationship, Shao and Zhang [17] proposed
the martingale difference divergence (MDD), given by

MDD(Y |X)2 =

∫
Rp

|E{Y ei<s,X>}

− E{Y }E{ei<s,X>}|2ω(s)ds,

where i =
√
−1 is the imaginary unit, ω(s) = 1/{‖s‖1+pcp}

and cp = π(p+1)/2/Γ((p+1)/2). Throughout the paper, ‖ · ‖
denotes the (possibly complex) Euclidean norm, defined by

‖u‖ =
√
uHu, where uH denotes the conjugate transpose of

u ∈ Cp. If u ∈ C1, its modulus is simply denoted as |u|.
The MDD has an attractive property that MDD(Y |X) =

0 if and only if (3) holds. That is, the MDD can be used
to characterize the conditional mean independence. Further-
more, Theorem 1 in Shao and Zhang [17] suggests that

MDD(Y |X)2 = −E{(Y − E{Y })(Y ′ − E{Y ′})‖X−X′‖},
(4)

where (Y ′,X′) is an independent copy of (Y,X), if E{|Y |2+
‖X‖22} < ∞. This equation only involves the expectations
of (Y,X) and thus it is easy to be computed and estimated.

Given n independent observations {(Yk,Xk), k = 1, · · · ,
n} from the joint distribution of (Y,X), we adopt the idea
of U-centring in Park et al. [15] to construct an unbiased
estimator for MDD(Y |X)2. Define Φ = (Φkl)

n
k,l=1 and Ψ =

(Ψkl)
n
k,l=1, where Φkl = ‖Xk −Xl‖ and Ψkl = (Yk −Yl)

2/2.
The U-centred versions of Φij and Ψij are defined respec-
tively

Φ̃kl = Φkl −
1

n− 2

n∑
j=1

Φkj −
1

n− 2

n∑
j=1

Φjl

+
1

(n− 1)(n− 2)

n∑
i,j=1

Φij ,

Ψ̃kl = Ψkl −
1

n− 2

n∑
j=1

Ψkj −
1

n− 2

n∑
j=1

Ψjl

+
1

(n− 1)(n− 2)

n∑
i,j=1

Ψij .

Then, an unbiased estimator of MDD(Y |X)2 is given by

MDDn(Y |X)2 =
1

n(n− 3)

∑
k �=l

Φ̃klΨ̃kl.(5)

2.2 Estimating the central mean subspace

Let the columns of B0 = (β01, · · · , β0d0) be a basis
of SE{Y |X} with BT

0 ΣxB0 = Id0 , where d0 (< p) is the
true structural dimension, Σx is the covariance matrix of
X and Id0 is the identity matrix. Assume that PB0 =
B0(B

T
0 ΣxB0)

−1BT
0 Σx and QB0 = I−PB0 . In this section,

we focus on the estimation of B0 when d0 is known.
The following proposition suggests the MDD measure can

be used to identify the central mean subspace under some
conditions.

Proposition 1. Assume that PT
B0

X |= QT
B0

X. For any p×d0
matrix A with ATΣxA = Id0 , we have

MDD(Y |ATX)2 ≤ MDD(Y |BT
0 X)2.(6)

Moreover, the equality holds if and only if there exists an
orthogonal matrix C1 ∈ Rd0×d0 such that A = B0C1.

If X is normal, we have Cov(PT
B0

X,QT
B0

X) = 0, which

indicates that PT
B0

X |=QT
B0

X. In general, a distribution
with “the linear condtional mean condition” or “constant
covariance conditions” used in the SDR literature, does not
necessarily satisfy such condition. When p is large, Sheng
and Yin [18] showed that the independence condition is not
as stringent as it seems to be. Our simulations indicate that
the proposed method still works well when it is non-normal
so the method is widely applicable.

Let S(B) be the linear subspace spanned by the columns
vectors of any matrix B. Proposition 1 suggests that, if
S(B0) �= S(A) for ATΣxA = Id0 holds, MDD(Y |ATX)2

is strictly less than MDD(Y |BT
0 X)2. Furthermore, if A is

another basis of the central mean subspace, i.e., S(A) =
S(B0), we have MDD(Y |ATX)2 = MDD(Y |BT

0 X)2. Thus,
Proposition 1 implies that

(7) B0 = argmax
BTΣxB=Id0

MDD(Y |BTX)2.

Therefore, the MDD measure can be used to identify the
central mean subspace.

Suppose that {(Xi, Yi), i = 1, · · · , n} are indepen-
dent identically distributed from model (2). Based on (5),
MDD(Y |BTX)2 could be estimated by the following form

(8) MDDn(Y |BTX)2 =
1

n(n− 3)

∑
k �=l

Φ̃kl(B)Ψ̃kl,
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where Φkl(B) = ‖BT (Xk −Xl)‖ and

Φ̃kl(B) = Φkl(B)− 1

n− 2

n∑
j=1

Φkj(B)

− 1

n− 2

n∑
j=1

Φjl(B) +
1

(n− 1)(n− 2)

n∑
i,j=1

Φij(B).

Let Σ̂x be the sample covariance of X. From (7), B0 can be
estimated by

(9) B̂n = argmax
BT Σ̂xB=Id0

MDDn(Y |BTX)2.

We have the following asymptotic result for B̂n.

Theorem 1. Assume that E{|Y |2 + ‖X‖22} < ∞. If
PT

B0
X |= QT

B0
X, then we have

(10)
∥∥B̂nB̂

T
n −B0B

T
0

∥∥
F
= Op(n

−1/2),

where ‖ · ‖F is the Frobenius norm of a matrix.

In Theorem 1, the moment condition E{|Y |2 + ‖X‖22} <
∞ is commonly used in Székely et al. [21] and Shao and

Zhang [17]. Theorem 1 shows that B̂n converges at a root-n
consistency rate.

There are several optimization algorithms to obtain the
estimator B̂n in (9). Sheng and Yin [18] and Sheng and Yin
[19] recommended the Sequential Quadratic Programming
method (SQP, Nocedal and Wright [14]) to solve similar
optimization problems. Xue et al. [24] advocated a projec-
tion pursuit type of sufficient searching algorithm, which
searches and estimates one direction at a time. Cowley et al.
[5] solved similar problems by projected gradient descent
with backtracking line search.

In our numerical studies, we use the SQP method. It
solves a sequence of optimization subproblems, each of which
optimizes a quadratic programming subproblem. The SQP
algorithm is similar to the algorithm in Sheng and Yin [18],
hence we here omit it. Our numerical results indicate the
algorithm is accurate and easy to implement. In this article,
we use the MAVE method to estimate the initials.

3. ESTIMATING THE STRUCTURAL
DIMENSION

In practice, one may have little prior knowledge about the
true structural dimension d0. In this section, we propose
a Bayesian-type information criterion to estimate d0. The
following proposition ensures the MDD measure can be used
in selecting d0.

Proposition 2. Assume that A is any p × d matrix with
ATΣxA = Id, for any d ∈ {1, · · · , p}. If PT

B0
X |=QT

B0
X

holds, then

(i) for any d < d0, we have

MDD(Y |ATX)2 < MDD(Y |BT
0 X)2;(11)

(ii) for any d > d0 and S(B0) � S(A), then (11) still holds;
(iii) for any d > d0 and S(B0) ⊆ S(A), then we obtain

MDD(Y |ATX)2 � MDD(Y |BT
0 X)2.

Proposition 2(iii) indicates that the MDD measure may
fail to distinguish the true structural dimension from overfit-
ted ones. For this reason, a modified Bayesian-type informa-
tion criterion is developed to determine d0. Specifically, for
an arbitrary working dimension d, we define the following
BIC criterion

(12) Gn(d) = − log(MDDn(Y |B̂T
d X)2) + Cnd,

where the second term is the penalty term, Cn is a penalty
constant and

MDDn(Y |B̂T
d X)2 = max

BT Σ̂xB=Id

{MDDn(Y |BTX)2}.

Then, we can estimate the structural dimension d0 by

d̂ = argmin
1≤d≤p

Gn(d).

The penalty constant Cn can be selected by the
following fact. If d < d0, we can show that
MDDn(Y |B̂T

d X)2 − MDDn(Y |B̂T
d0
X)2 = Op(1). If d > d0,

then MDDn(Y |B̂T
d X)2−MDDn(Y |B̂T

d0
X)2 = Op(

1
n ). Thus,

we have the following theoretical result for d̂.

Theorem 2. Assume that E{|Y |2 + ‖X‖22} < ∞ and
PT

B0
X |=QT

B0
X. If Cn satisfies Cn → 0 and nCn → ∞,

then we have

lim
n→∞

P{d̂ = d0} = 1.

In the framework of model selection, a similar BIC crite-
rion have been studied in Shao [16] and Shi and Tsai [20].
They proved that it is able to identify the true model con-
sistently. Selecting an optimal Cn is a challenging problem,
but from our limited experience, the choice of Cn = logn

n
seems to work well in our numerical studies. To estimate
the structural dimension, we can also use the bootstrap
method in Sheng and Yin [19]. Generally speaking, the boot-
strap method requires more computation time than the BIC
method.

4. SIMULATION STUDIES

In this section, we conduct some simulations to illustrate
the performance of our proposed method and compare it
with several existing CMS methods: MAVE, FMN, IHT,
OLS and r-pHd, as well as DCOV. Let B0 is a p×d0 matrix
spanning SE{Y |X} and B̂ is a p× d0 matrix to estimate B0.
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Table 1. The mean (standard deviation) of dist(ŜE{Y |X},SE{Y |X}) for Example 1.

Settings Method n = 100 n = 200 n = 400

Design (A) MDD 0.8011 (0.1434) 0.6743 (0.1547) 0.5219 (0.1336)
DCOV 0.8290 (0.1407) 0.7113 (0.1657) 0.5577 (0.1483)
MAVE 0.8450 (0.1440) 0.7020 (0.1897) 0.4624 (0.1704)
OLS 0.9287 (0.0525) 0.9044 (0.0549) 0.8937 (0.0483)
r-pHd 0.9323 (0.0801) 0.9235 (0.0885) 0.9124 (0.1007)
FMN 0.8119 (0.1317) 0.6823 (0.1472) 0.5255 (0.1287)
IHT 0.8198 (0.1236) 0.6965 (0.1376) 0.5663 (0.1369)

Design (B) MDD 0.8986 (0.1054) 0.8475 (0.1308) 0.7695 (0.1514)
DCOV 0.8998 (0.1063) 0.8508 (0.1401) 0.7704 (0.1559)
MAVE 0.9283 (0.0858) 0.8986 (0.1171) 0.7954 (0.1818)
r-pHd 0.9811 (0.0211) 0.9859 (0.0114) 0.9867 (0.0070)
OLS 0.9558 (0.0594) 0.9642 (0.0546) 0.9808 (0.0287)
FMN 0.9395 (0.0804) 0.9401 (0.0904) 0.9511 (0.0783)
IHT 0.9125 (0.0931) 0.8812 (0.1220) 0.8458 (0.1325)

Design (C) MDD 0.8765 (0.1260) 0.8264 (0.1476) 0.7366 (0.1627)
DCOV 0.8922 (0.1189) 0.8354 (0.1460) 0.7568 (0.1679)
MAVE 0.9227 (0.0952) 0.8806 (0.1252) 0.7664 (0.1941)
OLS 0.9805 (0.0193) 0.9828 (0.0123) 0.9843 (0.0064)
r-pHd 0.9414 (0.0739) 0.9456 (0.0710) 0.9490 (0.0689)
FMN 0.9231 (0.0970) 0.8991 (0.1220) 0.8568 (0.1516)
IHT 0.8991 (0.1117) 0.8449 (0.1399) 0.7463 (0.1538)

To evaluate the estimation accuracy of ŜE{Y |X} = S(B̂), we
use the following distance measure [7], defined by

dist(ŜE{Y |X},SE{Y |X}) = ‖PB̂ − PB0‖,(13)

where PB is the projection operator in the standard
inner product of any matrix B. The smaller value of
dist(ŜE{Y |X},SE{Y |X}), the better performance of ŜE{Y |X}.

In the first three examples, we generate the predictors
X = (X1, · · · , X10)

T from the following three different de-
signs for each model to cover a variety of model assumptions:

1. Design (A): the predictors follow independently the
standard normal distribution;

2. Design (B): X2, X10 ∼ Unif(−
√
3,
√
3), X4, X9 ∼

Exp(1) and other predictors follow independently the
standard normal distribution;

3. Design (C): X3, X9 ∼ Possion(1) and other predictors
follow independently the standard normal distribution.

For each scenario, the error term ε has the standard
normal distribution, independent of X, β1 = (1, 1, 1, 1,
0, 0, 0, 0, 0, 0)T /2 and β2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T /2. We
report the mean and standard deviation of the distances
dist(ŜE{Y |X},SE{Y |X}) based on 500 replicates with n =
100, 200 and 400 for each model.

Example 1. In this example, the data are generated from
the following model

Y =
(βT

1 X)2

3 + (2 + βT
2 X)2

+ 0.2ε.(14)

This model was investigated by Zhu and Zeng [25].

It can be seen from Table 1 that MDD approach outper-
forms other methods across almost all scenarios. Although
SE{Y |X} = SY |X in model (14), we can see that MDD is
slightly superior DCOV, probably owing to the efficiency
gain by focusing on the mean model. FMN has similar per-
formance as MDD in Design (A), whereas MDD performs
noticeably better than FMN in Designs (B)–(C). This might
be due to that FMN depends on the normality assumption
of predictors. Also, it can be seen that the performance of
MAVE improves substantially when n increases from 100
to 400, which is presumably related to the nonparametric
estimation involved.

Example 2. Consider the following heteroscedastic model

Y = βT
1 X+ 4(βT

2 X)2ε,(15)

where the central mean subspace SE{Y |X} is equal to S(β1).
This model is similar to the model in Example 2 of Zhu and
Zeng [25].

As seen from Table 2, MDD and OLS always perform the
best, followed by FMN, and then MAVE, whereas DCOV,
r-pHd and IHT fail. It can be seen that MDD and OLS
deliver comparable results in the linear model (15), which is
favored by OLS. Thus, it indicates that MDD can detect the
linear dependence. In most cases, especially in Designs (B)-
(C), MAVE has worse performance, perhaps because MAVE
may not work well in some heteroscedastic error settings.
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Table 2. The mean (standard deviation) of dist(ŜE{Y |X},SE{Y |X}) for Example 2.

Settings Method n = 100 n = 200 n = 400

Design (A) MDD 0.8484 (0.1348) 0.8245 (0.1334) 0.7312 (0.1504)
DCOV 0.8672 (0.1569) 0.7951 (0.2244) 0.8270 (0.2366)
MAVE 0.9138 (0.1038) 0.9183 (0.1043) 0.8889 (0.1300)
OLS 0.8650 (0.1220) 0.8262 (0.1281) 0.7338 (0.1436)
r-pHd 0.9615 (0.0570) 0.9658 (0.0451) 0.9684 (0.0452)
FMN 0.9118 (0.1013) 0.8665 (0.1195) 0.7764 (0.1506)
IHT 0.9589 (0.0583) 0.9573 (0.0548) 0.9575 (0.0587)

Design (B) MDD 0.9022 (0.1103) 0.8801 (0.1166) 0.8344 (0.1253)
DCOV 0.9467 (0.0899) 0.9735 (0.0635) 0.9901 (0.0210)
MAVE 0.9264 (0.0861) 0.9332 (0.0835) 0.9282 (0.0949)
OLS 0.9094 (0.0981) 0.8901 (0.1051) 0.8397 (0.1159)
r-pHd 0.9693 (0.0463) 0.9735 (0.0425) 0.9744 (0.0373)
FMN 0.9376 (0.0841) 0.9216 (0.0930) 0.8927 (0.1199)
IHT 0.9671 (0.0459) 0.9729 (0.0379) 0.9718 (0.0463)

Design (C) MDD 0.9067 (0.1052) 0.8645 (0.1262) 0.8272 (0.1341)
DCOV 0.9431 (0.0945) 0.9725 (0.0672) 0.9914 (0.0142)
MAVE 0.9375 (0.0802) 0.9351 (0.0880) 0.9254 (0.0955)
OLS 0.9069 (0.1034) 0.8677 (0.1217) 0.8159 (0.1292)
r-pHd 0.9670 (0.0447) 0.9703 (0.0407) 0.9689 (0.0412)
FMN 0.9263 (0.0869) 0.9011 (0.1094) 0.8494 (0.1349)
IHT 0.9628 (0.0518) 0.9680 (0.0479) 0.9677 (0.0451)

Note that, although the DCOV has small means of
dist(ŜE{Y |X},SE{Y |X}) in Designs (A), its standard devi-
ation is very large. Thus, it may have a bad performance.
To illustrate more clearly the results, we further present
the scatterplots of the square of correlation coefficients:
corr2(β1X, β̂X) versus corr2(β2X, β̂X). See, Figure 1. In-
tuitively, a good and consistent estimating method would
yield that its scatters of the correlation coefficients are as
much as possible on the bottom right corner.

Figure 1 presents the scatterplots of the correlation co-
efficients for Design (A) and Design (B) in Example 2 with
n = 400 over 500 replicates. The scatterplots for Design (C)
is similar to those for Design (B), hence we omit it. It can
been seen from Figure 1 that DCOV often fails to estimate
the central mean subspace S(β1). This is due to that DCOV
focuses on the conditional distribution of Y given X.

Example 3. In the example, we consider the following
model with non-smooth link functions

Y =
1

2
log(|βT

1 X|) + 1

2
sign(βT

2 X) + 2ε,(16)

where sign(v) is the sign function.

From Table 3, we can see that MDD and FMN demon-
strate superior performance over other methods when the
link functions are not smooth. Although FMN slightly out-
performs MDD in Design (A), MDD is slightly superior to
FMN in the non-normal cases. MAVE is inferior to MDD
and FMN, which may be due to estimating inaccurately the
non-smooth link functions. Moreover, we can also see that

MDD and FMN perform better than DCOV, which indi-
cates reasonably that MDD and FMN capture effectively
the information about the conditional mean.

Example 4. In this example, we would like to evaluate
the performance of the Bayesian-type information criterion
(12) in estimating the structural dimension of SE(Y |X). We
consider the following two-index model:

Y = (βT
1 X)2 + (βT

2 X) + 0.1ε,(17)

where β1 = (1, 0, 0, 0, 0)T and β2 = (0, 0, 0, 0, 1)T . The pre-
dictors are generated from the following two cases:

Case (i): Xj ∼ N(0, 1), j = 1, 2, · · · , 5;
Case (ii): X3, X4 ∼ Poisson(1) and Xj ∼ N(0, 1), j �= 3, 4.

The error term ε follows N(0, 1), independent of the covari-
ates.

Table 4 reports the frequencies of the estimated struc-
tural dimensions in 500 replications with Cn = logn/n. The
simulation results indicate that the BIC works reasonably
and the performance becomes better as the sample size in-
creases.

To illustrate how to effect the estimation of the struc-
tural dimension for different Cn, we consider to estimate
d0 for Example 2 with Cn = log n/(2n), logn/n and
(p − d) log n/n in Table 5. From Table 5, we can see that
Cn = (p− d) log n/n is more better in this case. The results
also confirm that the order of Cn in Theorem 2 is reasonable.
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Figure 1. the square of correlation coefficients: corr2(β1X, β̂X) versus corr2(β2X, β̂X) for Design (A) and Design (B) in
Example 2 with n = 400.

5. REAL DATA ANALYSIS

In this section, we apply our method to the Boston

housing dataset. The data set consists of the median

value of owner-occupied homes (MEDV) in 506 US cen-

sus tracts in the Boston area in 1970, as well as thir-

teen other predictors. The dataset can be downloaded from

http://lib.stat.cmu.edu/datasets/boston.

Among the thirteen predictors, there are two discrete
variables: Charles River (CHAS) (= 1 if tract bounds river;
0 otherwise) and index of accessibility to radial highways
(RAD). The other 11 predictors are respectively: crime rate
(CRIM), proportion of area zoned with large lots (ZN), pro-
portion of non-retail business acres per town (INDUS), ni-
tric oxides concentration (NOX), average number of rooms
per dwelling (RM), proportion of owner-occupied units built
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Table 3. The mean (standard deviation) of dist(ŜE{Y |X},SE{Y |X}) for Example 3.

Settings Method n = 100 n = 200 n = 400

Design (A) MDD 0.9418 (0.0814) 0.8897 (0.1255) 0.7546 (0.1945)
DCOV 0.9443 (0.0792) 0.9155 (0.1061) 0.8198 (0.1769)
MAVE 0.9487 (0.0719) 0.9182 (0.1013) 0.8078 (0.1764)
OLS 0.9165 (0.0553) 0.8939 (0.0515) 0.8763 (0.0443)
r-pHd 0.9659 (0.0464) 0.9598 (0.0539) 0.9577 (0.0556)
FMN 0.9464 (0.0706) 0.8747 (0.1209) 0.7370 (0.1539)
IHT 0.9536 (0.0616) 0.9158 (0.0984) 0.8489 (0.1343)

Design (B) MDD 0.9407 (0.0935) 0.9135 (0.0996) 0.8375 (0.1503)
DCOV 0.9498 (0.0705) 0.9252 (0.0926) 0.8797 (0.1297)
MAVE 0.9490 (0.0831) 0.9257 (0.0911) 0.8744 (0.1322)
OLS 0.9381 (0.0744) 0.9365 (0.0499) 0.9350 (0.0453)
r-pHd 0.9568 (0.0744) 0.9561 (0.0532) 0.9397 (0.0745)
FMN 0.9488 (0.0641) 0.9245 (0.0843) 0.8481 (0.1268)
IHT 0.9541 (0.0586) 0.9265 (0.0819) 0.8561 (0.1194)

Design (C) MDD 0.9440 (0.0871) 0.9154 (0.0985) 0.8305 (0.1605)
DCOV 0.9463 (0.0681) 0.9252 (0.0954) 0.8702 (0.1360)
MAVE 0.9568 (0.0703) 0.9340 (0.0839) 0.8814 (0.1327)
OLS 0.9413 (0.0656) 0.9322 (0.0523) 0.9326 (0.0450)
r-pHd 0.9640 (0.0627) 0.9542 (0.0609) 0.9378 (0.0796)
FMN 0.9466 (0.0684) 0.9180 (0.0890) 0.8439 (0.1273)
IHT 0.9506 (0.0625) 0.9225 (0.0869) 0.8384 (0.1278)

Table 4. Frequency (%) of the estimated dimension d for
Example 4.

Examples Sample size d̂ = 1 d̂ = 2 d̂ ≥ 3

Case (i) n = 400 0.1304 0.7600 0.1096
n = 600 0.0825 0.8557 0.0618
n = 800 0.0653 0.9067 0.0280

Case (ii) n = 400 0.1605 0.7380 0.1015
n = 600 0.1093 0.8400 0.0507
n = 800 0.0560 0.9040 0.0400

prior to 1940 (AGE), weighted distances to five Boston em-
ployment centers (DIS), property tax rate (TAX), pupil-
teacher ratio by town (PTRATIO), black population pro-
portion town (B), and lower status population proportion
(LSTAT).

By the BIC in (12), we use two directions to estimate
the central mean subspace. To compare our method with
other methods, we adopt the bootstrap method described
in Sheng and Yin [19] and then calculate the distance in
(13). Specifically, we first obtain the estimated subspace
ŜE{Y |X} based on all the data. Then, we randomly re-
sample from the data to generate 500 bootstrap samples
and derive the estimate of SE{Y |X} based on the boot-

strap samples, denoted by Ŝb
E{Y |X}, b = 1, · · · , 500. Fi-

nally, we can obtain the distances dist(ŜE{Y |X}, Ŝb
E{Y |X}),

b = 1, · · · , 500. Table 6 reports the mean and standard devi-
ation (SD) of dist(ŜE{Y |X}, Ŝb

E{Y |X}) over 500 simulations
for each method. The results show that MDD has the small-
est mean.

As seen from Table 6, although the mean for OLS is big-
ger, it is reasonable and the variability is very small. This

Table 5. Frequency (%) of the estimated dimension d for Example 2.

Cn Sample size d̂ = 1 d̂ = 2 d̂ ≥ 3

logn/(2n) n = 200 0.8056 (0.3961) 0.1383 (0.3455) 0.0561 (0.2304)
n = 400 0.8136 (0.3898) 0.1623 (0.3691) 0.0240 (0.1534)

logn/n n = 200 0.8397 (0.3673) 0.1263 (0.3325) 0.0341 (0.1816)
n = 400 0.8437 (0.3635) 0.1363 (0.3434) 0.0200 (0.1403)

(p− d) logn/n n = 200 0.8938 (0.3084) 0.0882 (0.2838) 0.0180 (0.1332)
n = 400 0.9038 (0.2952) 0.0782 (0.2687) 0.0180 (0.1235)
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Table 6. Summary of dist(ŜE{Y |X}, Ŝb
E{Y |X}) for the Boston housing data.

Method MDD DCOV MAVE OLS r-pHd FMN IHT

Mean 0.2972 0.3673 0.3675 0.4154 0.9859 0.3664 0.4937
SD 0.3191 0.2699 0.2883 0.0925 0.0269 0.2221 0.2269

Figure 2. The response Y plotted against the first two MDD directions for the Boston housing data.

suggests that there may exist strong linear patterns between

the response and the first two directions. To illustrate the

relations, we present the scatterplots of the response ver-

sus the first two MDD directions in Figure 2. This results

indicate the obvious linear trends between Y and β̂1X or

β̂2X.

6. CONCLUSIONS

This paper proposes a model-free SDR method based

on the martingale difference divergence to recover the cen-

tral mean subspace. This method enjoys many merits, in-

cluding model free property and consistent in non-normal

and discrete distributions. Under mild conditions, we es-

tablish asymptotic properties of the proposed estimators.

A Bayesian-type information criterion is proposed to deter-

mine the structural dimension. However, how to choose an

optimal Cn for the BIC is a challenging and open problem.

The simulation studies and real data example show that

MDD is able to extract efficiently information about the

conditional mean dependence of the response on predictors

APPENDIX

Proof of Proposition 1. Let S⊥(B0) be the orthogonal com-
plement space of S(B0) and B0⊥ ∈ Rp×(p−d0) be a ba-
sis matrix of S⊥(B0) with (B0⊥)

TΣxB0⊥ = Ip−d0 and
BT

0 ΣxB0⊥ = 0.
For any A ∈ Rp×d0 with ATΣxA = Id0 , there exist two

matrices C1 ∈ Rd0×d0 and C2 ∈ R(p−d0)×d0 , such that

A = B0C1 +B0⊥C2.

Moreover, CT
1 C1 +CT

2 C2 = Id0 . Consider

MDD(Y |ATX)2

(A.1)

=

∫
Rd0

|E{Y ei<s,ATX>} − E{Y }E{ei<s,ATX>}|2ω(s)ds

=

∫
Rd0

|E{E{Y |X}ei<s,ATX>}

− E{Y }E{ei<s,ATX>}|2ω(s)ds

=

∫
Rd0

|E{E{Y |BT
0 X}ei<s,XT (B0C1+B0⊥C2)>}
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− E{Y }E{ei<s,XT (B0C1+B0⊥C2)>}|2ω(s)ds

=

∫
Rd0

|E{ei<s,XTB0⊥C2>}|2|E{Y ei<s,XTB0C1>}

− E{Y }E{ei<s,XTB0C1>}|2ω(s)ds

≤
∫
Rd0

|E{Y ei<s,XTB0C1>}

− E{Y }E{ei<s,XTB0C1>}|2ω(s)ds
= MDD(Y |CT

1 B
T
0 X)2,

where the third equality follows from model (2), which im-
plies E{Y |X} = E{Y |BT

0 X}, the fourth inequality follows
the assumption PT

B0
X |=QT

B0
X.

Consider the singular-value decomposition of C1, given
by

C1 = UΣVT ,(A.2)

where U and V are d0 × d0 orthogonal matrices and Σ =
diag{λ1, · · · , λd0}. Note that CT

1 C1 + CT
2 C2 = Id0 . Thus,

0 ≤ λj ≤ 1, for j = 1, 2, · · · , d0. Moreover, λj = 1 holds for
all j = 1, 2, · · · , d0, if and only if CT

2 C2 = 0. This, together
with (4) and (A.2), yields that

MDD(Y |CT
1 B

T
0 X)2

= −E{[Y − E{Y }][Y ′ − E{Y ′}]‖CT
1 B

T
0 [X−X′]‖}

= −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

×
(
[X−X′]TB0U diag{λ2

1, · · ·, λ2
d0
}UTBT

0 [X−X′]
)1/2}

≤ −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

×
(
[X−X′]TB0B

T
0 [X−X′]

)1/2}
= MDD(Y |BT

0 X)2.

Note that the equality holds if and only if λj = 1 for all
j = 1, · · · , d0, namely, CT

1 C1 = Id0 and thus C2 = 0.
Combining this with (A.1), we obtain that the maximum
of MDD(Y |ATX)2 is achieved if only and if A = B0C1

with CT
1 C1 = Id0 .

In order to prove Theorem 1, a technique based on
manifold theories will be used. This method is similar to
that used by Chen et al. [1]. We first introduce some no-
tation. Denote the Stiefel manifold St(p, d) as St(p, d) =
{Γ ∈ Rp×d : ΓTΓ = Id}. Define the projection operator
R : Rp×d → St(p, d) onto the manifold St(p, d) as

R(Γ) = argmin
W∈St(p,d)

‖Γ−W‖2.

The tangent space TΓ(p, d) at Γ ∈ St(p, d) is

TΓ(p, d) = {Z ∈ Rp×d :

Z = ΓA+ Γ⊥B,A ∈ Rd×d,A+AT = 0,B ∈ R(p−d)×d},

where Γ⊥ ∈ Rp×(p−d) satisfies [Γ,Γ⊥]
T [Γ,Γ⊥] = Ip.

Note that Γ ∈ St(p, d) implies S(Γ) ∈ Gr(p, d), where
Gr(p, d) stands for the Grassmann manifold. Note that
Ln(Γ) satisfies Ln(Γ) = Ln(ΓQ) for any orthogonal matrix
Q ∈ Rd×d. Thus, Ln(Γ) should be minimized on Gr(p, d)
rather than on St(p, d).

To prove Theorem 1, the following lemma is needed. See,
Chen et al. [1].

Lemma 1. Assume that Z ∈ TΓ(p, d) and Γ ∈ St(p, d),
then we have

(i) tr(ZTΓC) = 0 for any symmetric matrix C ∈ Rd×d;
(ii) R(Γ+ tZ) = Γ+ tZ− 1

2 t
2ΓZTZ+O(t3).

Let Γ = Σ̂
1/2
x B and Γ0 = Σ

1/2
x B0. Thus, by Proposi-

tion 1, we have
(A.3)
Γ0 = argmin

ΓTΓ=Id0

{L(Γ)} = argmin
ΓTΓ=Id0

{−MDD(Y |ΓTΣ−1/2
x X)2},

where L(Γ) = −MDD(Y |ΓTΣ
−1/2
x X)2. Maximizing (9) is

equivalent to search for a local minimizer Γ̂ of Ln(Γ), given
by

(A.4) Ln(Γ) = −MDDn(Y |ΓT Σ̂−1/2
x X)2,

subject to ΓTΓ = Id0 .

Proof of Theorem 1. To solve the Grassmann manifold opti-
mization problem, it is necessary to define the concept of the
neighborhood of S(Γ0). For an arbitrary matrix W ∈ Rp×d0

and scaler δ ∈ R, the perturbed point around S(Γ0) in
Grassmann manifold can be expressed by S(R(Γ0+δW)). It
follows from Chen et al. [1] that S(R(Γ0+δW)) = S(R(Γ0+
δΓ0⊥B)), where B ∈ R(p−d0)×d0 depends on W. This im-
plies that the movement from S(Γ0) in the near neighbor-
hood only depends on the Γ0⊥B. Furthermore, as suggested
by Chen et al. [1], we can consider perturbed points like
R(Γ0 + δZ) in the following proofs, where Z ∈ TΓ0

(p, d0)
satisfies ‖B‖F = C for some given C.

For any given ε > 0, we will show that there exists a
constant C such that
(A.5)

P

{
inf

Z∈TΓ0
(p,d0):‖B‖F=C

Ln(R(Γ0+n−1/2Z))>Ln(Γ0)

}
≥1−ε.

This implies with probability at least 1 − ε that there
exists a local minimizer Γ̂ of Ln(Γ), such that ‖Γ̂ −
Γ0‖F = Op(n

−1/2), which implies that
∥∥B̂nB̂

T
n−B0B

T
0

∥∥
F
=

Op(n
−1/2). By Lemma 1 and Taylor expansion, we obtain

n{Ln(R(Γ0 + n−1/2Z))− Ln(Γ0)}
(A.6)

= n
{
Ln(Γ0 + n−1/2Z− 1

2
n−1Γ0Z

TZ)− Ln(Γ0)
}

× {1 + op(1)}
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=
{
n1/2tr(ZTL′

n(Γ0))−
1

2
tr(ZTZΓT

0 L
′
n(Γ0))

}
× {1 + op(1)}.

Next, we consider the two terms in the right-hand side of
(A.6). To study the order of n1/2tr(ZTL′

n(Γ0)), we first con-
sider the following Lagrange function for the optimization
problem (A.3)

�(Γ,Λ) = L(Γ) + tr(Λ(ΓTΓ− Id0)),

where Λ ∈ Rd0×d0 is the Lagrange multiplier. By Propo-
sition 1, Lagrange multiplier technique suggests that there
exists a symmetric matrix Λ0 ∈ Rd0×d0 , such that

L′(Γ0) + 2Γ0Λ0 = 0.

By the similar argument of Proposition 3.4 in Park et al.
[15], we can obtain that

‖E{L′
n(Γ0)} − L′(Γ0)‖ = O(n−1).

This, together with Lemma 1, yields that

n1/2tr(ZTL′
n(Γ0))

(A.7)

= n1/2tr(ZT [L′
n(Γ0)− E{L′

n(Γ0)}]) + n1/2tr(ZTL′(Γ0))

+ n1/2tr(ZT [E{L′
n(Γ0)} − L′(Γ0)])

= n1/2tr(ZT [L′
n(Γ0)− E{L′

n(Γ0)}]) + n1/2tr(ZTL′(Γ0))

+Op(n
−1/2)

= n1/2tr(ZT [L′
n(Γ0)− E{L′

n(Γ0)}]) + 2n1/2tr(ZTΓ0Λ0)

+Op(n
−1/2)

= n1/2tr(ATΓT
0 [L

′
n(Γ0)− E{L′

n(Γ0)}])
+ n1/2tr(BTΓT

0⊥[L
′
n(Γ0)− E{L′

n(Γ0)}])
+Op(n

−1/2)

= OP (‖B‖F × ‖n1/2(L′
n(Γ0)− E{L′

n(Γ0)})‖F ),

where Z = Γ0A + Γ0⊥B. The last equality follows from
tr(ATΓT

0 [L
′
n(Γ0)−E{L′

n(Γ0)}]) = 0, because ΓT
0 [L

′
n(Γ0)−

E{L′
n(Γ0)}] is symmetric and A is skew-symmetric.

By the Law of Large Numbers, we have

‖L′
n(Γ0)− L′(Γ0)‖F ≤ ‖L′

n(Γ0)− E{L′
n(Γ0)}‖F

+ ‖E{L′
n(Γ0)} − L′(Γ0)‖F

= op(1),

where

L′(Γ0) = Σ−1/2
x E

{
(Y − E[Y ])(Y ′ − E[Y ′])

× (X−X′)(X−X′)T

|ΓT
0 Σ

−1/2
x (X−X′)|

}
Σ−1/2

x Γ0

and (X′, Y ′) is independent of (X, Y ). Following the argu-
ment in the proof of Theorem 1 in Shao and Zhang [17], it
can be shown that

−ΓT
0 L

′(Γ0) = −ΓT
0 Σ

−1/2
x E

{
(Y − E[Y ])(Y ′ − E[Y ′])

× (X−X′)(X−X′)T

|ΓT
0 Σ

−1/2
x (X−X′)|

}
Σ−1/2

x Γ0

is strictly positive definite matrix. Then, we have

− 1

2
tr(ZTZΓT

0 L
′
n(Γ0))

(A.8)

= −1

2
tr(ZTZΓT

0 L
′(Γ0)){1 + op(1)}

=
1

2

{
− tr(ATAΓT

0 L
′(Γ0))− tr(BTBΓT

0 L
′(Γ0))

}
× {1 + op(1)}

≥ 1

2
λmin{−ΓT

0 L
′(Γ0)}‖B‖2F + op(1),

where λmin{−ΓT
0 L

′(Γ0)}(> 0) is the smallest eigenvalue of
−ΓT

0 L
′(Γ0).

By (A.7)–(A.8) and choosing a sufficiently large C, the
first term in the right-hand side of (A.6) is dominated by
the second term, which is positive. Hence, for the sufficiently
large C, (A.5) holds. This completes the proof.

Proof of Proposition 2. For A ∈ Rp×d with ATΣxA = Id,
by a similar decomposition of A in the proof of Proposi-
tion 1, we have

A = B0C1 +B0⊥C2,(A.9)

with C1 ∈ Rd0×d and C2 ∈ R(p−d0)×d. Then, CT
1 C1 +

CT
2 C2 = Id. Under the condition PT

B0
X |=QT

B0
X, we have

MDD(Y |ATX)2

(A.10)

=

∫
Rd0

|E{ei<s,XTB0⊥C2>}|2|E{Y ei<s,XTB0C1>}

− E{Y }E{ei<s,XTB0C1>}|2ω(s)ds

≤
∫
Rd0

|E{Y ei<s,XTB0C1>}

− E{Y }E{ei<s,XTB0C1>}|2ω(s)ds
= MDD(Y |CT

1 B
T
0 X)2.

(i) We first prove that (11) holds for any d < d0. By the
singular-value decomposition theorem, there exist matrices
U ∈ Rd0×d0 and V ∈ Rd×d such that

C1 = UΣVT , with Σ =

(
diag{λ1, · · · , λd}

0(d0−d)×d

)
∈ Rd0×d.
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Then, we have C1C
T
1 = UΣΣTUT . Since CT

1 C1+CT
2 C2 =

Id, we obtain 0 ≤ λj ≤ 1, j = 1, 2, · · · , d. This leads to

MDD(Y |CT
1 B

T
0 X)2

(A.11)

= −E{[Y − E{Y }][Y ′ − E{Y ′}]‖CT
1 B

T
0 [X−X′]‖}

= −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

(
[X−X′]TB0U

× diag{λ2
1, · · · , λ2

d, 0, · · · , 0︸ ︷︷ ︸
d0−d

}UTBT
0 [X−X′]

) 1
2
}

≤ −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

×
(
[X−X′]TB01B

T
01[X−X′]

) 1
2
}

< −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

×
(
[X−X′]TB0B

T
0 [X−X′]

) 1
2
}

= MDD(Y |BT
0 X)2,

where B0 = [B01,B02] with B01 ∈ Rp×d and B02 ∈
Rp×(d0−d). Then, combining (A.10) and (A.11), we have
MDD(Y |ATX)2 < MDD(Y |BT

0 X)2 for any d < d0.
(ii) We now prove that (11) holds in the setting of d > d0

and S(B0) � S(A). By the singular-value decomposition of
C1 in (A.9), we have

C1 = UΣVT ,

where U ∈ Rd0×d0 , V ∈ Rd×d and Σ = (diag{λ1, · · · , λd0},
0d0×(d−d0)) ∈ Rd0×d with λj ≥ 0, j = 1, 2, · · · , d0. Then, we
obtain that

C1C
T
1 = U diag{λ2

1, · · · , λ2
d0
}UT .(A.12)

When d > d0 and S(B0) � S(A). In this setting, we have
rank(C1) < d0. Thus, there exists at least one singular value,
denoted by λj∗ , such that λj∗ = 0. In addition, it follows
from CT

1 C1 +CT
2 C2 = Id that 0 ≤ λj ≤ 1, j = 1, 2, · · · , d0.

This, together with (A.10)–(A.12), yields that

MDD(Y |CT
1 B

T
0 X)2

(A.13)

= −E{[Y − E{Y }][Y ′ − E{Y ′}]‖CT
1 B

T
0 [X−X′]‖}

= −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

(
[X−X′]TB0U

× diag{λ2
1, · · · , λ2

j∗ , · · · , λ2
d0
}UTBT

0 [X−X′]
) 1

2
}

< −E
{
[Y − E{Y }][Y ′ − E{Y ′}]

×
(
[X−X′]TB0B

T
0 [X−X′]

) 1
2
}

= MDD(Y |BT
0 X)2.

Thus, combining (A.10) with (A.13), we can obtain that
MDD(Y |ATX)2 < MDD(Y |BT

0 X)2.
(iii) When d > d0 and S(B0) ⊆ S(A). In this setting, we

have rank(C1) = d0. By a similar argument of above (A.13),
we can obtain that

MDD(Y |CT
1 B

T
0 X)2 � MDD(Y |BT

0 X)2.(A.14)

Thus, combining (A.10) with (A.14), we have
MDD(Y |ATX)2 � MDD(Y |BT

0 X)2.

Proof of Theorem 2. When d < d0,

Gn(d)−Gn(d0) = log{MDDn(Y |B̂T
d0
X)2}

(A.15)

− log{MDDn(Y |B̂T
d X)2}+ Cn{d− d0}

= log{MDD(Y |B̂T
d0
X)2}

− log{MDD(Y |B̂T
d X)2}+ op(1)

+ Cn{d− d0}.

By Proposition 2(i), we have

log{MDD(Y |B̂T
d X)2} < log{MDD(Y |B̂T

d0
X)2}.

This, together with (A.15), implies that

Gn(d) > Gn(d0), for d < d0,(A.16)

in probability, if Cn → 0.
When d > d0, the following Taylor expansion holds

Gn(d)−Gn(d0)

(A.17)

= − log
{
1 +

MDDn(Y |B̂T
d X)2 −MDDn(Y |B̂T

d0
X)2

MDDn(Y |B̂T
d0
X)2

}
+ Cn{d− d0}

= −
MDDn(Y |B̂T

d X)2 −MDDn(Y |B̂T
d0
X)2

MDD(Y |BT
d0
X)2

{1 + op(1)}

+ op(1) + Cn{d− d0}.

By the triangle inequality, for B ∈ Rp×d with BTΣxB = Id,
we have

‖BT (X−X′)‖ ≤ ‖BT
1 (X−X′)‖+ ‖BT

2 (X−X′)‖,

where B = (B1,B2), B1 ∈ Rp×d0 and B2 ∈ Rp×(d−d0).
This, together with (4), yields that

MDDn(Y |B̂T
d X)2(A.18)

≤ max
BT

1 Σ̂xB1=Id0

{MDDn(Y |BT
1 X)2}

+ max
BT

2 Σ̂xB2=Id−d0
,

B̂T
d0

Σ̂xB2=0

{MDDn(Y |BT
2 X)2}
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= MDDn(Y |B̂T
d0
X)2

+ max
CTC=Id−d0

{MDDn(Y |(B̂d0⊥C)TX)2},

where C ∈ R(p−d)×(d−d0). By a similar argument of Propo-
sition (A.1), we have

MDD(Y |(B0⊥C)TX)2 = 0, for any C ∈ R(p−d)×(d−d0).

Thus, by Theorem 4 in Shao and Zhang [17], we can show
that

MDDn(Y |(B0⊥C)TX)2 = Op(
1

n
).

This, together with (A.18), yields

MDDn(Y |B̂T
d X)2 −MDDn(Y |B̂T

d0
X)2 = Op(

1

n
).(A.19)

By (A.17) and (A.19), we have

Gn(d) > Gn(d0), for d > d0,(A.20)

in probability, if nCn → ∞. Consequently, Theorem 2 fol-
lows from (A.16) and (A.20).
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