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A comparison between two approaches of Singular Spec-
trum Analysis (SSA) methodology is presented: the Basic
and the Toeplitz SSA. These approaches differ in assump-
tions about some SSA properties. Toeplitz SSA assumes
time-series stationarity, which means that the process needs
to be mean-reverting. However, such assumption is not a
necessary condition for the Basic SSA. Therefore, the appli-
cability of the Toeplitz SSA to non-stationary signals is still
an under discussion subject. In this paper both approaches
are applied to this kind of signal. Similarities and differences
between these techniques are addressed. The frequency do-
main interpretation of eigenvectors as well as forecasting
performance are presented for both methodologies. Several
computer simulations involving both synthetic and actual
data time-series, using the same parameters, were executed
in order to compare the studied SSA approaches. The ob-
tained results suggest the Toeplitz SSA should not be used
for non-stationary time-series before removing their trend
component.
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1. INTRODUCTION

Singular Spectrum Analysis (SSA) is a nonparametric ap-
proach and, as so, there are no major restrictions on the
data for its use. In this manner, SSA-based methods can
be applied for decomposing a time-series into components
of trends, oscillations and noise [1], each having meaningful
interpretation. These capabilities have made it widely used
in time-series analysis [2]. It has been applied to several
knowledge fields, including earth sciences [3], biomedical [4]
and financial [5] time-series.

Despite the fact that several approaches for the SSA have
been presented in the literature [6, 7, 8, 9, 10, 11, 12, 13],
two specific approaches of the SSA method are discussed in
this paper: the “Basic” SSA [14, 15, 16]; and the “Toeplitz”
SSA [3, 17, 18]. These two versions can also be called BK and
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VG, respectively, as they were first named by their original
papers [19, 20].

The main differences between the Basic and Toeplitz ap-
proaches concern assumptions made in the study of the SSA
properties [1]. For the Toeplitz, the stationarity of the ana-
lyzed time-series is assumed. Moreover, the analyzed series
is represented according a “signal plus noise” model. Nev-
ertheless, in the Basic approach, the main reasoning is ori-
ented to the “separability” issue of time-series components,
and no assumptions about its stationarity or its model are
made. Golyandina [1] stated that using Toeplitz SSA in non-
stationary time-series may yield to wrong results. Ghil et al.
[17], on the other hand, argued that the difference between
the Basic and Toeplitz approaches of SSA – when dealing
with non-stationary time-series – is marginal. In this case,
however, the author refers to climatic time-series, in which
the adoption of a pre-processing stage for trend removing is
a common practice for data analysis. Therefore, the applica-
bility of the Toeplitz SSA to non-stationary signals is still an
under discussion subject and it is the main focus of this pa-
per. An in-depth investigation concerning trend estimation
in financial time-series comparing these two methodologies
were carried out in Leles et al. [21].

This paper addresses theoretical and application aspects
of these two SSA approaches focused on non-stationary sig-
nals with any kind of pre-processing step before time-series
analysis. Several computer simulations were conducted con-
cerning synthetic and real data time-series. The results show
that the dominant structure of non-stationary signals were
lost when Toeplitz SSA was applied, and consequently, its
usage is discouraged for such signals.

2. METHODOLOGY

A definition of stationarity is revised and the two con-
cerned approaches of the SSA are briefly exposed: Basic and
Toeplitz. The frequency domain interpretation of SSA eigen-
vectors is presented, followed by the forecasting algorithm.

2.1 Stationary signals

An infinite time-series x∞ = x1, x2, · · · , xN , · · · , is sta-
tionary if, for all non-negative values of k and m, the limit
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is satisfied [16, Section 1.4.1]:

(1) lim
N→∞

1

N

N∑
j=1

xj+k xj+m = R(k −m)

where the function R(.) represents the covariance function.
Additionally, for any value of k, it is assumed that

(2) lim
N→∞

1

N

N∑
j=1

xj+k = 0.

This means the time-series has zero-mean.
Stationarity can also be defined considering a finite time-

series. A time-series xk,k ∈ Z, where Z is an integer set,
is stationary if: its variation is finite, its first moment is
constant and its second moment only depends on (k − m)
and not on k nor m [22].

2.2 Basic SSA methodology

A brief description of the Basic SSA methodology is pre-
sented, based on Golyandina and Zhigljavsky [14], Golyan-
dina et al. [16].

2.2.1 Embedding

Let the time-series x = (x0, x1, · · · , xn, · · · , xN−1)
T , of

length N , represent the analyzed signal. The mapping of
this signal into a matrix A, of dimension L ×K, assuming
L ≤ K, is called immersion, and can be defined as:

(3) A =

⎡
⎢⎢⎢⎣

x0 x1 · · · xK−1

x1 x2 · · · xK

...
...

...
xL−1 xL · · · xN−1

⎤
⎥⎥⎥⎦ .

L is the window length, or embedding dimension, and K =
N − L+ 1. A in equation 3 is called the trajectory matrix.

2.2.2 Singular value decomposition

The Singular Value Decomposition (SVD) of the trajec-
tory matrix yields to:

(4) A = UΣVT =
R∑

r=1

σrurv
T
r ,

where R = rank(A) ≤ L. U and V are unitary matrices. Σ
is a diagonal matrix, whose diagonal elements {σr} are the
singular values of A. The main components are obtained by:

(5) wr = σrvr = ATur,

where wr is a K × 1 vector. The r-th elementary matrix,
Ar, an unitary rank L×K matrix, can be written as

(6) Ar = σrurv
T
r = urw

T
r .

Equation 4 can be then rewritten as

(7) A =
R∑

r=1

urw
T
r .

Additionally, σ2
r = ‖Ar‖2 and ‖A‖2 =

R∑
r=1

σ2
r , where ‖.‖2

represents the Frobenius norm. A coefficient Cr, defined as

(8) Cr = σ2
r/

R∑
m=1

σ2
m,

is called the contribution of the elementary matrix Ar to
the trajectory matrix A.

2.2.3 Grouping

The grouping step is the procedure of arranging the R
elementary matrices into M disjoint subsets Im. For a set
of elementary matrices {Ar | r ∈ Im}, the resulting matrix
from this grouping is:

AIm =
∑
r∈Im

Ar = A{.},

where {.} designates the indexes of the Im set. Each group is
intended to represent an additive component of the original
signal, such as a trend, an oscillatory component or noise.

2.2.4 Diagonal averaging

The purpose of this step is to recover a time-series, x̃r,
of length N , from an elementary matrix Ar. The diagonal
averaging in N anti-diagonals of Ar can be computed ac-
cording to [18]:
(9)

x̃(r)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n+1

n∑
i=0

u
(r)
i w

(r)
n−i for 0 ≤ n < L− 1,

1
L

L−1∑
i=0

u
(r)
i w

(r)
n−i for L− 1 ≤ n < K,

1
N−n

N−K∑
i=n−K+1

u
(r)
i w

(r)
n−i for K ≤ n < N.

This procedure can be easily extended to any matrix re-
sulting from the grouping process [16, Section 1.2.4].

2.3 Toeplitz SSA methodology

It should be noticed that in this methodology, a mean-
corrected or zero-centered data is used. In contrast, such
correction is not necessary for the Basic SSA.

In the Toeplitz approach, the covariance matrix is esti-
mated as a Toeplitz matrix, C̃, whose elements c̃ij , 1 ≤
i, j ≤ L, can be defined as [18]:

(10) c̃ij =
1

N − |i− j|

N−|i−j|∑
m=1

xm xm+|i−j|.

528 M. C. R. Leles et al.



Although there are several ways of calculating the covari-
ance matrix estimate, in this paper Equation (10) was used,
which can be considered the standard approach [23, Sec-
tion 8.2].

From the Toeplitz covariance matrix C̃, the orthonormal
eigenvectors e1, e2, · · · , eL are computed (assuming that C̃
has full rank), and the trajectory matrix is decomposed as:

(11) A =

L∑
l=1

elq
T
l

It can be noticed that the equation (11) is very similar to
equation (7). τl = ‖ql‖2 is often referred to as “squared
Toeplitz singular values” and they are usually different from
the eigenvalues of C̃.

Equation (11) shows that the trajectory matrix A can
be decomposed in the same way as for Basic SSA. However,
it is important to emphasize that this approach does not
benefit from SVD optimality properties, as the covariance
matrix C̃ replaces C = AAT at the decomposition stage.
Grouping and diagonal averaging procedures are the same
as in the Basic approach.

2.4 SSA in frequency domain

Tome et al. [24] showed that the SSA eigenvectors
(closed) frequency-response, for K ≤ n ≤ N − L+ 1, is:
(12)

Hr(f) =

L−1∑
l=−(L−1)

υ
(r)
l ej2πlf = υ

(r)
0 +

L−1∑
l=1

2υ
(r)
l cos(2πlf).

The coefficients υ
(r)
l are the result of the convolution sum

of two polynomials (ur for Basic SSA; er, for Toeplitz SSA)
with the same coefficients in inverse order of the powers, i.e.,

υ
(r)
l = υ

(r)
−l , l = 1, 2, · · · , L− 1.

Equation (12) represents the analytical solution for the
frequency response of SSA eigenfilters. This filter is known
as the middle point filter, which produces a zero-phase re-
sponse, which implies in a zero delay between input and re-
sulting signal. Leles et al. [2] provided a review of frequency
domain interpretation of SSA filters. For n outside the range
[L,N − L+ 1], there is a wider set of filters, as can be seen
in Golyandina et al. [16, Section 2.9].

2.5 SSA forecasting

SSA forecasting algorithm can only be applied to a time-
series y which fits a linear recurrent model:

(13) yN−n =

L−1∑
l=1

al yN−n−l, 0 ≤ n ≤ N − L

According to Golyandina et al. [16, Chapter 2], there
is a wide variety of systems that satisfy this condition.
It can be proved that the coefficient zL of a vector z =
(z1, z2, · · · , zL)T is a linear combination of the L − 1 for-
mer coefficients: zL = a1zL−1 + a2zL−2 + · · ·+ aL−1z1. The

coefficients a = (a1, a2, · · · , aL−1) can be expressed as:

(14) a =
1

1− ν2

R∑
r=1

υru
∇
r .

where υr is the last component of vector ur, ν
2 = υ2

1 +υ2
2 +

· · ·+υ2
r+ · · ·+υ2

R, and u∇
r ∈ �L−1 is the vector consisting of

L− 1 former terms of ur. The eigenvector adopted depends
on the SSA version used. Therefore, ur is concerned by the
Basic, whereas er is concerned by the Toeplitz approach.

Let b be the number of forecast points. Set pr, of length

N + b, as the SSA forecast series, whose elements p
(r)
k , k =

1, 2, · · · , N + b, are given by [16, Section 2.1]:

(15) p
(r)
k =

⎧⎪⎨
⎪⎩
x̃
(r)
k , k = 1, · · · , N

L−1∑
l=1

alp
(r)
k−l, k = N + 1, · · · , N + b

Equation (15) shows that the first N points of series
pr were obtained from time-series synthesis, x̃(r), and the

points p
(r)
N+1, · · · , p

(r)
N+b are the b SSA forecast points.

3. APPLICATION

In this section some computer simulation results are pre-
sented in order to compare the Basic and Toeplitz SSA be-
havior when treating non-stationary time-series. Both ap-
proaches are applied to synthetic and experimental datasets.
In section 3.1.1, an exponential modulated harmonic time-
series is used. An example of real data time-series is pre-
sented in section 3.2.

The reconstruction and forecasting performances can be
quantified by standard error metrics, such as the Mean Ab-
solute Error (MAE), according to:

(16) MAE =
1

N

N−1∑
n=0

|xn − x̃n|,

where xn is an original time-series’ sample at instant n, x̃n

is the corresponding reconstructed sample and N indicates
the series length.

3.1 Synthetic time series

In this section two different analyses are conducted based
upon synthetic time-series, as follows.

3.1.1 Case 1

Three different time-series are concerned in this section,
described by their equations as follows:

x1 = 0.99n (cos(2πn/20) + ε) ;(17)

x2 = (cos(2πn/20) + ε);(18)

x3 = 1.015n (cos(2πn/20) + ε) .(19)
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Figure 1. Reconstruction and forecasting results for both SSA approaches, using L = 150 and two different groups of
elementary matrices. The first 300 points generated for each series, x1, x2 and x3, were used for reconstruction. Then 100
more points were computed through the SSA forecasting method. In every situations, the results showed that Basic approach
accomplished a much better time-series approximation in both synthesis and forecasting procedures. The Toeplitz approach,
on the other hand, failed in the synthesis and forecasting procedures in (a), (e) and (f). Although in (b) the synthesized series

were quite equivalent for both approaches, the Toeplitz presented a deviation from the original time-series for long-term
forecasting.

Time-series x1 is a sinusoidal variation with a decreasing
amplitude, x2 is a sinusoidal variation with constant am-
plitude and x3 is a sinusoidal variation with an increas-
ing amplitude. All signals have the same frequency and
are zero-mean, with ε ∼ N (0, σ2

ε ), and σ2
ε = 0.01. x1

and x3 are actually amplitude modulated signals, with a
known exponential modulating wave. For this reason, they
do not satisfy the stationarity requirements for a time-
series.

These time-series were presented in Golyandina [1, Sec-
tion 8.2]. However, a deeper investigation is conducted here,
especially concerning the frequency characteristics of eigen-
filters and their pairwise scatterplots.

In Figure 1, the results obtained by both approaches for
each synthetic time-series are depicted. The first 300 points
generated for each series, x1, x2 and x3, were used for re-
construction. Then, 100 more points were computed through
the SSA forecasting method. A vertical dashed line was in-
serted in order to discriminate these two parts of resulting
time-series.

Table 1 exhibits the reconstruction and forecasting MAE
for Basic and Toeplitz approaches, considering every syn-
thetic signals, x1, x2 and x3.

Table 1. Mean Absolute Error – MAE. A{a} means A{1,2};
A{b} means A{1,2,...,10}

Reconstruction Error Forecasting Error

Basic Toeplitz Basic Toeplitz
A{a} A{b} A{a} A{b} A{a} A{b} A{a} A{b}

x1: 0.02 0.02 0.08 0.02 0.00 0.00 0.06 0.01
x2: 0.08 0.07 0.08 0.07 0.09 0.09 0.09 0.09
x3: 1.44 0.96 6.26 1.63 22.36 24.88 116.11 98.07

Figure 2 illustrates the eigenvalues contributions for the
series variance – Equation1 (8) – for every time-series and
both methods.

Figure 3 illustrates the pairwise scatterplot of every an-
alyzed time-series, synthesized by both Basic and Toeplitz
SSA. Each point on the plot consists of a pair of correspond-
ing elements of eigenvectors x1 and x2.

The synthetic time-series spectral estimation obtained
from both SSA approaches, and also from the classic DFT
method, are shown in Figure 4.

1To compute this contribution for the Toeplitz SSA σ2 in equation (8)
is replaced by τ .
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Figure 2. Eigenvalues percent contributions for the time-series
variance according to both Basic and Toeplitz approaches.
(a) The graphs show close results for the contributions of
eigenvectors obtained from the Basic approach, for all the

time-series. Moreover, the biggest contribution is
concentrated on eigenvectors u1 and u2. (b) The results

obtained from Toeplitz approach are quite different from one
time-series to another, and have spanned from eigenvectors

u1 to u4 for the amplitude modulated time-series.

Figure 3. Pairwise scatterplots u1 × u2. The black circle
indicates the starting point and the white diamond the end

point. The results displayed by the scatterplots obtained from
Basic SSA made possible the time-series behavior

identification. In (a), the decreasing amplitude of modulated
time-series is portrayed by the shrinking spiral. The opposite
happens for the increasing amplitude series in (c). In (b), a
circle represents a constant amplitude sinusoidal time-series.
In contrast, the scatterplots obtained from Toeplitz SSA were
unable to discriminate the time-series amplitude behavior, as
depicted in (d), (e) and (f). In particular the scatterplots (d)

and (f) did not show a clear spiral.

3.1.2 Case 2

This section aims to extend the simulated example pro-
posed in Golyandina et al. [25, Section 2.2.3.3], focused on
the forecasting performance comparison. The MAE is com-
puted for the forecasts based on both SSA approaches as a
function of the window length (L) and the modulating signal
damping factor (α).

Figure 4. Log scale charts of time-series normalized spectra
estimated by: (a) DFT; (b) Basic SSA eigenfilters frequency

response; and (c) Toeplitz SSA eigenfilters frequency
response. In both SSA approaches the eigenvectors (u1 and
u2) were taken into account. The estimated spectra in (a)
and (b) were quite similar and displayed a smooth spread of
energy around the fundamental frequency for the amplitude
modulated series, x1 and x3, and more concentrated response
for the sinusoidal time-series. The estimated spectra in (c),
however, showed very close frequency content for all the

analyzed time-series, coincident with those obtained for the
pure sinusoidal time-series on (a) and (b).

Let xn be a new time-series described by:

(20) xn = e(αn)sin(2πn/7),+σεn

where σ = 0.5 and ε ∼ N (0, 1). For all α �= 0, xn is a
non-stationary time-series.
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Figure 5. MAE for short- and long-term forecasting results obtained from Basic and Toeplitz SSA. h means the number of
steps ahead for the current forecast. The error behavior of SSA approaches are quite different, as can be observed by
comparing (a) and (b), (d) and (e), (g) and (h). Basic SSA seems to be insensitive to the damping factor (α), which

emphasizes its ability to deal with non-stationary time-series. Toeplitz, on the other hand, displays an increasing MAE as α
increases. The window length (L) did not significantly influence the forecasting error, as can be observed in every images,

which might be a particular characteristic of the simple analyzed time-series. In conclusion, the MAE differences corroborate
with the possible insensitiveness to α previously pointed out. Actually, images (c), (f) and (i) are pretty similar to those in (b),
(e) and (h), except for a light reduction of intensity, which can be explained by the almost constant error surfaces in (a), (d)

and (g) produced by Basic SSA forecasts.

By varying α from 0 to 0.01, and L from 30 to 50,
the h steps ahead forecasts are computed and then the
MAEs for each pair (α, L) are calculated. The results are
summarized by the images at Figure 5, which allow the
easy comparison between error performance on forecast-
ing.

Each row in figure displays the image, as shades of gray,
corresponding to the MAEs obtained from Basic SSA (BE),
figures 5(a), 5(d) and 5(g); followed by those resulting from
Toeplitz SSA (TE), figures 5(b), 5(e) and 5(h); and then
the difference between them (TE − BE), figures 5(c), 5(f)
and 5(i).
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Figure 6. CO2 atmospheric concentration (ppm) data and
analysis results. The original series was plotted together with
the reconstructed ones using both Basic and Toeplitz SSA.

A predicted interval was also plotted, after the vertical dashed
line at 1997, equally using both approaches. The main

observed difference among the distinct eigenvectors groups is
related to the ability to describe short-period variations. In

(a), both approaches described the long-term trend. However,
a deviation from the series trend can be clearly observed for
the Toeplitz synthesized data before 1967 and after 1987. In

(b) and (c), both approaches were able to describe the
short-period variations, but the deviation from original data is
clearly greater for the Toeplitz SSA in the forecast stage. In

conclusion, it is clear that the forecasts from Toeplitz
approach have lost the series trend, in contrast to Basic,

which showed a plausible evolution.

3.2 Real data time series

The experimental time-series shows the atmospheric CO2

concentration in ppm from 1959 to 1997, collected by the
Mauna Loa Observatory, Hawaii. This time-series was an-
alyzed in [26]. In this paper, the simulations carried out
compares the synthesis and forecasting results in a different
perspective.

Figure 6 illustrates CO2 concentration together with the
reconstructed and forecast SSA time-series approaches, us-
ing three different groups and the same embedded dimen-
sions. Figure 7 shows the eigenvalues contributions for the
series variance according to both SSA approaches.

Table 2 shows the values of MAE, for six different ex-
periments, which consisted of a whole year forecasting (12
months) following the periods:

Figure 7. Eigenvalues spectra. In both graphs the eigenvalues
of u1 were omitted to improve readability. (a) At least two
pairs of adjacent eigenvalues with approximately equal values
could be identified: (u2,u3) and (u5,u6). They are clear
indications of harmonic components in the series. (b) Only
one pair of adjacent eigenvalues with close amplitude could
be noticed: (u5,u6). In Toeplitz SSA, the values of τl are
equal to the contribution values. However, the sorting of
eigenvectors is performed through the covariance matrix

eigenvalues.

Figure 8. Forecasting error (MAE) for 1 to 144 steps ahead
prediction (h). The time-series was interrupted at December,

1986. Basic SSA forecasting showed a low and almost
constant MAE as h increases. Toeplitz SSA forecasting, on
the other hand, displayed an increasing MAE as h increases.

– Period I – 1959 to December, 1996;

– Period II – 1959 to December, 1994;

– Period III – 1959 to December, 1992;

– Period IV – 1959 to December, 1990;

– Period V – 1959 to December, 1988;

– Period VI – 1959 to December, 1986.

In Figure 8 the obtained MAE for the experiment VI is

depicted using 1 ≤ h ≤ 144.

Although Basic and Toeplitz SSA have exhibited great

performances on trend estimation, it is important to men-

tion that the Toeplitz approach needs additional processing

steps. In order to obtain the results in Figure 6 it is necessary

to subtract the series mean before the covariance matrix cal-

culation. Moreover, after SSA computations, it is necessary

to add the previously subtracted mean to the reconstructed

signal.
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Table 2. MAE. Groups of elementary matrices A{1,4}, A{1,2,...,6} and A{1,2,...,20} are represented, respectively, as A{a}, A{b}
and A{c}

Reconstruction Error Forecasting Error

Basic Toeplitz Basic Toeplitz
Aa Ab Ac Aa Ab Ac Aa Ab Ac Aa Ab Ac

I: 1.75 0.28 0.16 2.75 0.58 0.18 1.79 0.40 0.31 13.42 3.48 2.05
II: 1.74 0.29 0.16 2.73 0.58 0.18 1.91 1.02 0.58 15.14 4.93 2.65
III: 1.76 0.30 0.17 2.93 0.58 0.18 1.88 0.27 0.22 15.07 3.70 2.00
IV: 1.77 0.30 0.16 2.91 0.56 0.19 2.33 1.26 0.74 14.46 2.88 1.91
V: 1.79 0.34 0.16 2.72 0.56 0.18 1.95 1.20 0.18 14.12 3.80 2.20
VI: 1.79 0.34 0.16 2.69 0.58 0.18 1.98 0.23 0.52 14.60 4.21 2.12

4. DISCUSSION

4.1 Synthetic data

The results from Figure 1 showed that the Basic SSA has
successfully decomposed, synthesized and predicted, based
on two eigenfilters, all the analyzed time-series, stationary
and non-stationary. Toeplitz SSA, on the other hand, was
unable to describe the non-stationary time-series. In Figure
1(a) and 1(c), eigenfilters u1 and u2 were selected. In such
cases, both reconstruction and forecasting intervals deviated
significantly from the original data. In 1(d) and 1(f), eigenfil-
ters u1 to u10 were employed, and led to good reconstruction
results, but one more time, deficient forecast achievements.
Table 1 evidences that for x1 and x3, the MAEs obtained
from Basic SSA are smaller than those produced by Toeplitz
SSA. For x2, a stationary time-series, both SSA approaches
display close MAE results.

According to SSA theory, a pair of eigenfilters is required
for describing a harmonic oscillation. The results from Fig-
ure 2 not only confirm this statement for Basic SSA, but
also show that they can represent an exponential amplitude
modulation. In Figure 2(a), it can be noticed that eigen-
filters u1 and u2 are actually the main responsible for the
time-series variance. However, Toeplitz SSA results diverted
one more time, attributing to eigenfilters u3 to u6 part of
the series variability, as depicted in Figure 2(b).

The effect of exponential amplitude modulation becomes
more clear by analyzing Figure 4. In 4(a) the frequency con-
tent of the analyzed time-series in a log-scale is displayed,
obtained through DFT. As x2 is a harmonic oscillation, a
single frequency is indicated by the main peak at 0.05 Hz
surrounded by a spurious response due to the finite window-
length and noise. The modulated series x1 and x3 display a
continuous and smooth decreasing around the main compo-
nent located at 0.05 Hz, resulting from the frequency con-
volution of harmonic and exponential Fourier Transforms2.

Figure 4(b) depicts the Basic SSA eigenfilters u1 and u2

frequency response for each time-series, in log-scale. The re-

2F{u(t) e−αt cos(ω0t)} = 1
α+jω

∗ π[δ(ω + ω0) + δ(ω − ω0)] =
α+jω

ω2
0+(α+jω)2

. F{.}: Fourier transform. u(t): time-domain unit step

function. δ(w): frequency-domain Dirac delta function.

sults are very similar to those obtained from DFT. Figure
4(c) illustrates the same results reached by Toeplitz SSA. In
this case, however, the frequency responses for every time-
series are similar to those obtained for x2 by Basic SSA,
which is related to a non-modulated harmonic variation.
This is a clear indication that Toeplitz SSA was not ca-
pable of identifying the exponential amplitude modulation
when the eigenvectors u1 and u2 was employed. Figure 3
confirms this statement. The spiral trajectory in 3(a) de-
scribes a decreasing amplitude while in 3(c) an increasing
amplitude is depicted. In contrast, the corresponding tra-
jectories obtained by the Toeplitz SSA, Figures 3(d) and
3(f) do not show a spiral trajectory, but several turns of a
circular trajectory with some radius variation.

A set of experiments concerning the forecasting perfor-
mance of both SSA methodologies was carried out, as de-
scribed in Section 3.1.2. The exponential modulating signal
makes possible the damping factor (α) variation, which can
be useful for quantifying the effects of non-stationarity. Fig-
ure 5 summarizes these results. In summary, Basic SSA ex-
hibited a superior performance compared to Toeplitz SSA,
since it did not show significant error variations as a con-
sequence of damping factor variation. Toeplitz SSA, on the
other hand, showed an increasing error behavior as α in-
creases, which can be understood as a fragility to non-
stationary data. Neither Basic nor Toeplitz methods showed
a significant error variation as a function of window length
(L).

4.2 Real data

The results illustrated in Figure 6 showed that Toeplitz
SSA failed in several aspects for both synthesizing and fore-
casting procedures. In Figure 6(a), the time-series trend was
successfully retrieved by the Basic SSA. However, a notice-
able deviation can be observed, for Toeplitz SSA, before
1967 and after 1990. In the forecasting section, the devia-
tion is still worse.

Figures 6(b) and 6(c) showed that Basic SSA succeeded
in the time-series reconstruction, trend and harmonic com-
ponents, and also in forecasting section. The same did not
happen for the Toeplitz SSA, which was capable of synthe-

534 M. C. R. Leles et al.



sizing the series components, but showed a noticeable devi-
ation from the original data in the forecasting section. By
comparing Figures 6(b) and 6(c), it can be observed that
increasing the eigenvectors set (u1 to u20) did not produce
noticeable improvement to Toeplitz based forecasting. By
inspecting Figure 8, one can recognize that Basic SSA fore-
casting showed a superior error performance.

The Basic SSA results observed in Figure 6 can be ex-
plained by the eigenvalues contributions illustrated in Fig-
ure 7(a). The series trend was attributed to eigenvector u1,
which represents a great part of its variability. At least two
harmonic components could be identified by the eigenvalues
plateaus, (u2,u3) and (u5,u6).

The identification of trend and oscillatory components
based on Toeplitz eigenvalues is not a straightforward pro-
cedure. In order to achieve good results in time-series syn-
thesizing, a large number of eigenvectors must be taken into
account.

5. CONCLUSION

This paper addresses theoretical and application aspects
of Toeplitz and Basic SSA approaches focused on non-
stationary signals with any kind of preprocessing step before
time-series analysis.

Several aspects related to synthesized and forecast time-
series were analyzed: the eigenfilters frequency responses;
the pairwise scatterplots; and the error performance for syn-
thesis and forecasting. Actual and synthetic data were em-
ployed.

In conclusion, the analyses results indicate that Toeplitz
SSA should not be used for non-stationary time-series, which
usually results in an increased number of elementary matri-
ces necessary to achieve an accurate reconstruction. An anal-
ogous could be made to the problem of overfitting in some
models identification procedures. Additionally, the domi-
nant structure of non-stationary series was lost in forecast-
ing section.

Although Toeplitz SSA is considered the mainstream SSA
version, the results obtained in this paper recommends its
usage only if the series under analysis is stationary or if a
pre-processing stage (which includes trend removing proce-
dure) is applied to a non-stationary signal. Thus, Toeplitz
SSA may be seen as a particular case of the Basic approach,
in which no assumptions are made about time-series sta-
tionarity. Finally, it should be noted that if the time-series
under analysis is stationary, Golyandina [1] and Ghil et al.
[17] agree that best choice is the Toeplitz SSA.
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