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A method of Q-matrix validation based on
symmetrised Kullback-Leibler divergence for the
DINA model
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Q-matrix validation is one of the most vital parts in cogni-
tive diagnosis, as the misspecification of Q-matrix may seri-
ously influence the model fit and lead to incorrect classifica-
tions of examinees. In this paper, we propose a symmetrised
Kullback-Leibler divergence- (SKLD-) based method to val-
idate misspecified Q-matrix with a combination of K-means
clustering. Three simulation studies are conducted to eval-
uate the sensitivity and specificity of the proposed method
compared with that based on log odds ratio (LOR) and
item discrimination index (IDI). The results show that the
SKLD-based method could efficiently identify and validate
misspecified elements in Q-matrix, and at the same time
retain those correct ones. What’s more, two real data sets
are employed to further illustrate the performance of SKLD-
based method.
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1. INTRODUCTION

The traditional test theories, such as Classical Test The-
ory (CTT) and Item Response Theory (IRT), usually aim
to measure and evaluate the unidimensional trait of exam-
inees, which are more applicable for selection examination,
ignoring the examinees’ cognitive structure, skills, strate-
gies or knowledge. In contrast, cognitive diagnosis models
(CDMs) are the combination of cognitive psychology and
modern measurement theory which can overcome the short-
comings of traditional test theories, providing a fine-grained
assessment of examinees’ skills profiles. The purpose of cog-
nitive diagnosis is to make accurate classifications of ex-
aminees based on the response data and thus offers proper
and detailed suggestions. Accordingly, CDMs can provide
detailed information about strengths and weaknesses of stu-
dents, which can make it possible to teach them in accor-
dance with their aptitude.

In this procedure, one of the key elements in CDMs is
Q-matrix, which describes the relations between items and
attributes. Specifically, Q-matrix is a loading matrix that
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indicates which attributes are required for each item in the
test. In general, Q-matrix is assumed to be correct and usu-
ally defined by domain experts according to their experi-
ences and knowledge. However, there are various opinions
on the specification of Q-matrix for the same items. So it
is difficult to specify the Q-matrix exactly. In most cases,
the misspecification of Q-matrix can seriously influence the
model fit and thereby lead to incorrect classifications of ex-
aminees.

Realizing the significance of correctly specifying Q-
matrix, several methods have been proposed by scholars and
researchers. One of the most general methods is δ-method
proposed in [9], that maximizes the difference of proba-
bilities of correct response between examinees who mas-
ter all the required attributes and those who don’t. The
performance of δ-method was evaluated by a simulation
study and two real data examples. The results of simula-
tion study showed that δ-method is effective. Although the
results performed well, the performance of the method is
affected by the cut-off points in practice. Meanwhile it is
a little difficult to choose a reasonable cut-off point. More-
over, there are some other methods of Q-matrix validation
(e.g. [1, 4, 7, 12, 18]). But the robustness and applicability
of those methods are still problems.

In this paper, we propose a SKLD-based method to vali-
date misspecified Q-matrix. The proposed method is estab-
lished on the rational that correct Q-matrix can distinguish
latent groups with different ideal response patterns to the
maximum extent. The rest of this paper is organized as fol-
lows. The proposed method and related calculation proce-
dure are introduced in Section 2. In Section 3, three sim-
ulation studies are conducted to evaluate the performance
of the proposed method. Two real experimental data sets
are used to illustrate the proposed methods in Section 4.
Finally, some issues that need to be resolved are addressed
and further research directions are discussed in Section 5.

2. SKLD-BASED METHOD

In this section, we introduce SKLD-based method for
validating Q-matrix. Assume that K is the number of at-
tributes in the test. And there are I examinees, each of
whom responds to J items. Letαi = (αi1, · · · , αik, · · · , αiK)
denote the ith examinee’s attribute pattern, where αik ∈
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{0, 1}. And αik = 1 indicates that the ith examinee masters
the kth attribute. There are 2K possible attribute patterns
for all the examinees.

Q is a J × K matrix with binary entries qjk, called Q-
matrix. The element qjk is used to describe whether or not
the kth attribute is measured by jth item. For each j and
k, qjk = 1 means that the jth item requires the kth at-
tribute and qjk = 0 otherwise. Actually, there are 2K − 1
alternative q-vectors for each item, which are less 1 than
attribute patterns, because (0, 0, · · · , 0) can be an attribute
pattern rather than an alternative q-vector. And there are
two common kinds of misspecification for q-entries, over-
specification, that q-entries of 0 are modified into 1, and
underspecification, that q-entries of 1 are misspecified as 0.

2.1 DINA model

Deterministic, input, noisy “and” gate (DINA) model [15]
is one of the most important and widely used CDMs for
there are only two parameters in this model and it signifi-
cantly fits real data well [8].

For DINA model, it usually assumes that an examinee
can not answer an item correctly unless all the required at-
tributes have been mastered.

Based on these assumptions, DINA model is one of the
noncompensatory CDMs, which means that one attribute
can’t be compensated by any other attributes.

Let Xij be the response of the ith examinee to the jth
item. Xij is a dichotomous variable, that is, an examinee
gets the item either right or wrong. For DINA model, item
response function takes the following form,

P (Xij = 1 |αi ) = (1− sj)
ηijgj

1−ηij ,

where ηij is the ideal response of the ith examinee to the
jth item,

ηij =

K∏
k=1

α
qjk
ik .

ηij takes the two values, 0 and 1. Because the product is de-
fined over all attributes, ηij = 1 occurs only when all prod-
uct terms are 1, which means that all required attributes
for the jth item have been mastered by the ith examinee.
Through above analysis, we can see that DINA model di-
vides examinees into two mastery classes for each item: those
who have mastered all required attributes (group ηj = 1)
and those who are lacking at least one required attribute
(group ηj = 0). What’s more, sj = P (Xij = 0 | ηij = 1)
and gj = P (Xij = 1 | ηij = 0) are the slipping and guessing
parameters of the jth item, respectively. In details, sj is a
specific item parameter to illustrate the probability of incor-
rectly answering the jth item for examinees in group ηj = 1,
when they should have correctly answered the item, that is,
slipping. And it is always assumed that this probability is
only indexed by item and is independent of the individuals.
In other words, for any examinee in group ηj = 1, they have

the same slipping probability. Similarly, gj is used to specify
the probability of answering correctly when in fact, exami-
nees lack at least one required attribute and are supposed
to answer that incorrectly, that is, guessing.

2.2 SKLD-based method

Kullback-Leibler divergence (KLD) is used to measure
the difference between two probability distributions. Spe-
cially, for two discrete probability distributions F and G
defined on the same probability space, the KLD between F
and G is defined as

(1) KLD(F,G) =
∑
n

F (n) log
F (n)

G(n)
.

In fact, the larger this KLD is, the more easily the two dis-
tributions could be distinguished.

Actually, KLD is not rare in cognitive diagnosis. Tat-
souka and Ferguson used KLD as item selection index for
computer-adaptive tests in CDMs [22]. What’s more, KLD
was discussed by Henson and Douglas for test construction
in [13]. And it was also studied for application in cogni-
tive diagnosis by Xu, Chang, and Douglas [25]. Moreover,
KLD is also viewed as relative (Shannon) entropy in in-
formation systems and called Kullback-Leibler information
(KLI). Compared with other informations, such as Fisher
information, it can deal with both continuous and discrete
distributions. Further more, it is a global information while
Fisher information is local [13]. So KLD is more commonly
used in cognitive diagnosis.

The purpose of cognitive diagnosis measurement is mak-
ing diagnostic classifications for examinees based on re-
sponse data and Q-matrix. Naturally, only when Q-matrix is
correctly specified, the diagnostic classifications can be ac-
curate. As previously mentioned, for each item, DINA model
divides examinees into group ηj = 1 and ηj = 0. Basically,
when Q-matrix is correctly specified, DINA model should
maximize the difference between the two groups. That is, the
KLD of conditional distributions of response given ηij = 1
and ηij = 0 should reach its highest when the Q-matrix is
correct.

However, the KLD is asymmetric, which means that,
KLD(F,G) and KLD(F,G) are not always equal. Consid-
ering the symmetry of group ηj = 1 and ηj = 0, SKLD is
taken into account, which is the original divergence proposed
by [17]. In fact, SKLD is often used for feature selection in
classification problems. Formally, it has the following form
for the two distributions F and G:

(2) SKLD(F,G) = KLD(F,G) +KLD(G,F )

The SKLD satisfies the following two properties:
(1) SKLD(F,G) ≥ 0, for ∀ F andG, and SKLD(F,G) =

0 if and only if F = G almost everywhere.
(2) SKLD(F,G) = SKLD(G,F ).
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In the proposed method, SKLD is employed to describe
the difference between group ηj = 1 and ηj = 0. Specifi-
cally, the conditional distributions of response given the two
groups are considered. If the q-vector of item j is qj , SKLD
between the two distributions can be written as:

SKLDj(g0, g1|qj) = KLDj(g0, g1|qj) +KLDj(g1, g0|qj),
(3)

where g0 and g1 denote the group corresponding to ηj = 1
and ηj = 0, respectively. In Equation (3), KLDj(g0, g1|qj)
has the following form:

KLDj(g0, g1|qj) = P (Xij = 1|ηij = 1) log
P (Xij = 1|ηij = 1)

P (Xij = 1|ηij = 0)

+ P (Xij = 0|ηij = 1) log
P (Xij = 0|ηij = 1)

P (Xij = 0|ηij = 0)
,

Accordingly, Equation (3) can be simplified as

SKLDj(g0, g1|qj) = [P (Xij = 1|ηij = 1)− P (Xij = 1|ηij = 0)]

· log P (Xij = 1|ηij = 1)P (Xij = 0|ηij = 0)

P (Xij = 1|ηij = 0)P (Xij = 0|ηij = 1)
.

(4)

Equation (4) leads to an interesting phenomena that
SKLD is the product of IDI and LOR. In details,

P (Xij = 1|ηij = 1)− P (Xij = 1|ηij = 0)

happens to be IDI defined in δ-method. And

log
P (Xij = 1|ηij = 1)P (Xij = 0|ηij = 0)

P (Xij = 1|ηij = 0)P (Xij = 0|ηij = 1)

is the LOR of Xij and ηij exactly, which is used to quanti-
tatively describe the association between Xij and ηij . The
positive LOR indicates the positive correlation of that two
variables. Moreover, the larger positive LOR is, the stronger
the positive association is.

Actually, SKLD is obviously superior to the two single
indexes, LOR and IDI. An example is given in Table 1 to
illustrate this point. For q1 and q2, they have the same IDI,
0.7. If q1 and q2 both are the alternative q-vectors for the
same item, the δ-method couldn’t determine which one is
better. However, if the SKLD is used, LOR will be taken
into account to describe the divergence from another angle.
The LORs of q1 and q2 are log 36 and log 54. Thus the
latter is more likely to be chosen as the correct q-vector. And
similarly, the LORs of two different alternative q-vectors
may be equal, such as q3 and q4 in Table 1, with the same
LOR log 21. At this point, IDI needs to be considered. So
q4 is more reasonable than q3. Accordingly, the SKLD is a
perfect combination of IDI and LOR. From this perspective,
using SKLD as the validation index seems more reasonable.

Formally, the rationale of SKLD-based method is that
the correct q-vector should give the largest SKLD between

Table 1. Example

Alternative
p11 p10 IDI LOR SKLD

q-vectors

q1 0.9 0.2 0.7 log 36 0.7 log 36
q2 0.95 0.25 0.7 log 54 0.7 log 54
q3 0.9 0.3 0.6 log 21 0.6 log 21
q4 0.875 0.25 0.625 log 21 0.625 log 21

Note. p11 and p10 refer to the probabilities of not slipping and
guessing when ql is the alternative q-vector for l = 1, 2, 3, 4.

the response distributions of group ηj = 1 and ηj = 0. That
is, the q-vector for jth item is correctly specified if

qj = argmax
{αl,l=1,··· ,2K−1}

[SKLDj(g0, g1|αl)]

= argmax
{αl,l=1,··· ,2K−1}

{[P (Xij = 1|ηil = 1)− P (Xij = 1|ηil = 0)]

· log P (Xij = 1|ηil = 1)P (Xij = 0|ηil = 0)

P (Xij = 1|ηil = 0)P (Xij = 0|ηil = 1)
},

(5)

for i = 1, 2, · · · , I. Note that ηil is the ideal response of
ith examinee to jth item when the q-vector is αl. That
is, ηil =

∏K
k=1 α

αlk

ik . So ηil is similar but not identical to
previously mentioned ηij . And ηil = 1 means that examinee
i belongs to group ηj = 1 whenαl is the alternative q-vector.

Especially, for DINA model, only when the q-vector for
the jth item is correctly specified, P (Xij = 1|ηil = 1) = 1−
sj and P (Xij = 1|ηil = 0) = gj .

In the proposed method, we choose the q-vector q1 over
q2 as correct q-vector, when one of the following conditions
is satisfied:

(1) SKLDj(g0, g1|q1)>SKLDj(g0, g1|q2).
(2)

∑k=K
k=1 q1k<

∑k=K
k=1 q2k and SKLDj(g0, g1|q1) =

SKLDj(g0, g1|q2).
In other words, the correct q-vector should satisfy the

following conditions:
(1) Its corresponding SKLD should approximate the max-

imum value.
(2) There are fewer attributes in this q-vector.
Unfortunately, the computation in Equation (5) is time-

consuming for large value ofK. In order to resolve this prob-
lem, cluster analysis is introduced to the method, which will
be shown in the next section.

2.3 The K-means clustering

There are a few clustering algorithms for classification.
Compared with other clustering algorithms, such as hierar-
chical clustering method, K-means method has lower com-
putation complexity but with similar accuracy. K-means
clustering is very popular in data classification, which aims
to partition n observations into K clusters according to spa-
tial extent. In most K-means algorithms, the number of clus-
ters is pre-determined. Once the cluster centers are decided,
data is assigned to corresponding clusters.
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K-means clustering algorithm is used to search the correct
q-vector in SKLD-based method. Using K-means clustering,
all the alternative q-vectors could be divided into two clus-
ters based on their SKLDs. One is underspecified and the
other one includes correct or overspecified ones. The latter
cluster has higher SKLDs. Within this cluster, correct one
has less required attributes than overspecified ones, so the
correct one could be selected.

The detailed algorithm to find out the final q-vector is as
follows:

Step 1: Estimate parameter sjl = P (Xij = 0|ηil = 1) and
gjl = P (Xij = 1|ηil = 0) based on EM algorithm for DINA
model [10].

Step 2: Figure out the corresponding SKLDj(g0, g1|αl)
for all 2K − 1 alternative q-vectors based on examinees’ re-
sponse data.

Step 3: Generate two initial cluster centers randomly
within the set C = {SKLDj(g0, g1|αl), l = 1, · · · , 2K − 1},
labeled as SKLD

(0)
1 and SKLD

(0)
2 (SKLD

(0)
1 >SKLD

(0)
2 ).

Step 4: Create two clusters by associating every SKLD

value with the nearest centers, C
(0)
1 and C

(0)
2 .

Step 5: Update the cluster centers.

SKLD
(1)
1 =

1

#C
(0)
1

∑
C

(0)
1

SKLDj(g0, g1|α1),

SKLD
(1)
2 =

1

#C
(0)
2

∑
C

(0)
2

SKLDj(g0, g1|α1)

where “#” denotes the number of elements in the set.
Step 6: Repeat Step4 and Step5 until convergence has

been reached. The number of iterations is marked as s.
Step 7: Obtain the final q-vector for jth item.

qj = argmin
αl

{
K∑

k=1

αlk, SKLDj(g0, g1|α1) ∈ C
(s)
1 }

3. SIMULATION STUDIES

Three simulation studies are conducted to compare the
performances of the Q-matrix validation methods based on
SKLD, LOR, IDI (δ-method) indexes. As the δ-method re-
lies on the cut-off points, 5 different cut-off points are con-
sidered in the simulation studies.

3.1 Simulation Study 1

Simulation Study 1 is used to investigate the sensitivities
of those three methods. In the context of Q-matrix valida-
tion, sensitivity is the precondition of using related valida-
tion methods, which is evaluated via the true positive rate.

3.1.1 Design

In the simulation studies, the number of items is set as
J = 30. The slipping and guessing parameters are set to
0.20 for all items. And the number of attributes is set as

K = 3, 4, 5. The true Q-matrices with different number of
attributes in the simulations are shown in Table 2.

The number of examinees takes four values, I = 500,
1000, 2000, 4000. We sample random vectors α1, · · · ,αI

independently and identically, where αik is from B(1, pk),
for i = 1, · · · , I, k = 1, · · · ,K. To make DINA model iden-
tifiable, pk is set as 0.5 for all k.

Based on the examinees’ attribute patterns and true Q-
matrix, the simulated item responses under DINA model are
generated. And then the true Q-matrix is also set as initial
Q-matrix in the validation methods. At last, the true posi-
tive rates at Q-matrix or q-entries level would be calculated
to evaluate the recovery. Simply speaking, let Q = {qjk}J×K

be the true Q-matrix and Q̂(t)(Q) = {q̂(t)jk (Q)}J×K be its val-
idation at replication t, t = 1, · · · , T , where T is the number
of replications. The true positive rates at Q-matrix and q-
entries levels could be estimated by

TPQ =

∑T
t=1 I(Q̂

(t)(Q) = Q)

T
,

TPq =

∑T
t=1

∑J
j=1

∑K
k=1 I(q̂

(t)
jk (Q) = qjk)

T ∗ J ∗K ,

where I(·) is the indicator function. Actually, the true pos-
itive rate at Q-matrix level measures the percentage of en-
tirely recovered Q-matrix across all replications. And the
true positive rate at q-entries level indicates the proportions
of correct q-entries, which is more fine-grained.

In addition, T = 1000 is set in the simulation studies.

3.1.2 Results

The sensitivity results of the three validation methods
are presented in Table 3.

For the SKLD-based method, its performance on sensitiv-
ity is near-perfect across all 12 conditions. More concretely,
at q-entries level, its true positive rates are always higher
than 0.995. It is hardly surprising that the true positive
rate at Q-matrix level is much lower than that at q-entries
level under the same conditions. One possible explanation
is that the recovery at Q-matrix level may be too strict.
Because if just only one q-entry in the Q-matrix isn’t recov-
ered, the Q-matrix will be viewed as not recovered. What’s
more, at the same level, much lower true positive rates are
found when the number of attributes is more and the num-
ber of examinees is less, especially for (K = 4, I = 500),
(K = 5, I = 500) and (K = 5, I = 1000). Based on the
nature of CDMs, the sample size of some latent classes is
not enough and sufficient to analysis under those 3 condi-
tions. Taking (K = 5, I = 500) as an example, there are
25 = 32 latent classes for all 500 examinees, so each class
has about 16 examinees on average. In some extreme cases,
there would exist some empty latent classes, which may even
cause the unidentifiability of model [2].

For the LOR-based method, a similar conclusion could
be drawn from Table 3. A small difference is that its
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Table 2. True Q-matrices in the simulation studies

Item K = 3 K = 4 K = 5

1 1 0 0 1 0 0 0 1 0 0 0 0
2 0 1 0 0 1 0 0 0 1 0 0 0
3 0 0 1 0 0 1 0 0 0 1 0 0
4 1 0 0 0 0 0 1 0 0 0 1 0
5 0 1 0 1 0 0 0 0 0 0 0 1
6 0 0 1 0 1 0 0 1 0 0 0 0
7 1 0 0 0 0 1 0 0 1 0 0 0
8 0 1 0 0 0 0 1 0 0 1 0 0
9 0 0 1 1 1 0 0 0 0 0 1 0
10 1 0 0 1 0 1 0 0 0 0 0 1
11 0 1 0 1 0 0 1 1 1 0 0 0
12 0 0 1 0 1 1 0 1 0 1 0 0
13 1 1 0 0 1 0 1 1 0 0 1 0
14 1 0 1 0 0 1 1 1 0 0 0 1
15 0 1 1 1 1 0 0 0 1 1 0 0
16 1 1 0 1 0 1 0 0 1 0 1 0
17 1 0 1 1 0 0 1 0 1 0 0 1
18 0 1 1 0 1 1 0 0 0 1 1 0
19 1 1 0 0 1 0 1 0 0 1 0 1
20 1 0 1 0 0 1 1 0 0 0 1 1
21 0 1 1 1 1 1 0 1 1 1 0 0
22 1 1 0 1 1 0 1 1 1 0 1 0
23 1 0 1 1 0 1 1 1 1 0 0 1
24 0 1 1 0 1 1 1 1 0 1 1 0
25 1 1 1 1 1 1 0 1 0 1 0 1
26 1 1 1 1 1 0 1 1 0 0 1 1
27 1 1 1 1 0 1 1 0 1 1 1 0
28 1 1 1 0 1 1 1 0 1 1 0 1
29 1 1 1 1 1 1 0 0 1 0 1 1
30 1 1 1 1 1 0 1 0 0 1 1 1

Table 3. The sensitivity results

K I
TPQ TPq

SKLD LOR
IDI (Cut-off points)

SKLD LOR
IDI (Cut-off points)

0 0.01 0.05 0.10 0.20 0 0.01 0.05 0.10 0.20

3

500 0.936 0.813 0.814 0.881 0.996 0.873 0 0.999 0.998 0.998 0.999 1.000 0.997 0.870
1000 0.998 0.964 0.982 0.990 1.000 0.981 0 1.000 1.000 1.000 1.000 1.000 1.000 0.868
2000 1.000 0.980 1.000 1.000 1.000 0.999 0 1.000 1.000 1.000 1.000 1.000 1.000 0.867
4000 1.000 0.987 1.000 1.000 1.000 1.000 0 1.000 1.000 1.000 1.000 1.000 1.000 0.867

4

500 0.562 0.353 0.063 0.146 0.643 0.795 0 0.995 0.990 0.979 0.985 0.996 0.997 0.839
1000 0.950 0.681 0.217 0.428 0.941 0.980 0 1.000 0.997 0.988 0.993 0.999 1.000 0.835
2000 0.999 0.885 0.544 0.767 0.995 1.000 0 1.000 0.999 0.995 0.998 1.000 1.000 0.833
4000 0.998 0.870 0.528 0.779 0.998 1.000 0 1.000 0.999 0.995 0.998 1.000 1.000 0.833

5

500 0.278 0.098 0.008 0.048 0.550 0.739 0 0.990 0.973 0.966 0.976 0.995 0.996 0.873
1000 0.762 0.388 0.102 0.295 0.936 0.977 0 0.998 0.993 0.981 0.990 0.999 1.000 0.868
2000 0.965 0.651 0.447 0.762 0.999 0.999 0 1.000 0.997 0.993 0.998 1.000 1.000 0.867
4000 0.975 0.645 0.477 0.747 0.995 1.000 0 1.000 0.997 0.994 0.998 1.000 1.000 0.867

true positive rates are lower than that of SKLD-based
method under the same conditions, especially at the q-
entries level.

Table 3 also shows that the sensitivity of δ-method differs
greatly for different cut-off points. Specially when its cut-off
point is 0.2, the true positive rates at Q-matrix level are al-

ways 0, and that at q-entries level are almost no more than
0.9, which means that its sensitivity is relatively low. For
cut-off points at 0.05 and 0.1, their true positive rates at
both q-entries and Q-matrix level are usually higher than
that under other cut-off points. When the cut-off points
are 0 or 0.01, the sensitivity is slightly lower. It indicates
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Table 4. The specificity results

K I R
TNQ TNq

SKLD LOR
IDI (Cut-off points)

SKLD LOR
IDI (Cut-off points)

0 0.01 0.05 0.10 0.20 0 0.01 0.05 0.10 0.20

3

500
10% 0.851 0.742 0.748 0.838 0.986 0.881 0 0.998 0.997 0.997 0.998 1.000 0.997 0.868
20% 0.741 0.670 0.716 0.825 0.980 0.890 0 0.997 0.995 0.996 0.998 1.000 0.997 0.863

1000
10% 0.973 0.945 0.949 0.974 1.000 0.988 0 1.000 0.999 0.999 1.000 1.000 1.000 0.865
20% 0.852 0.869 0.935 0.967 0.999 0.983 0 0.998 0.998 0.999 1.000 1.000 1.000 0.862

2000
10% 0.991 0.981 0.995 0.999 1.000 1.000 0 1.000 1.000 1.000 1.000 1.000 1.000 0.866
20% 0.934 0.962 0.996 0.999 1.000 1.000 0 0.999 1.000 1.000 1.000 1.000 1.000 0.867

4000
10% 0.993 0.977 0.998 0.999 1.000 0.999 0 1.000 1.000 1.000 1.000 1.000 1.000 0.866
20% 0.939 0.958 0.989 0.998 1.000 1.000 0 0.999 1.000 1.000 1.000 1.000 1.000 0.862

4

500
10% 0.436 0.128 0.004 0.012 0.412 0.778 0 0.991 0.978 0.960 0.970 0.993 0.996 0.835
20% 0.283 0.044 0 0 0.094 0.506 0 0.984 0.965 0.927 0.943 0.981 0.992 0.832

1000
10% 0.853 0.304 0.012 0.042 0.711 0.972 0 0.998 0.987 0.971 0.979 0.997 1.000 0.830
20% 0.780 0.135 0 0 0.235 0.869 0 0.997 0.976 0.937 0.952 0.989 0.998 0.826

2000
10% 0.970 0.483 0.011 0.079 0.927 1.000 0 1.000 0.992 0.977 0.985 0.999 1.000 0.830
20% 0.960 0.169 0 0 0.397 0.979 0 0.999 0.980 0.942 0.954 0.993 1.000 0.819

4000
10% 0.971 0.487 0.014 0.079 0.922 1.000 0 1.000 0.992 0.977 0.985 0.999 1.000 0.830
20% 0.960 0.176 0 0 0.357 0.976 0 1.000 0.980 0.942 0.954 0.992 1.000 0.820

5

500
10% 0.068 0.014 0 0 0.042 0.039 0 0.982 0.965 0.929 0.943 0.977 0.977 0.861
20% 0.074 0.012 0 0 0.066 0.111 0 0.978 0.957 0.940 0.953 0.981 0.980 0.865

1000
10% 0.481 0.180 0 0 0.050 0.142 0 0.995 0.985 0.941 0.952 0.983 0.986 0.855
20% 0.442 0.106 0 0.001 0.121 0.248 0 0.994 0.978 0.951 0.961 0.986 0.986 0.862

2000
10% 0.843 0.364 0 0 0.072 0.299 0 0.999 0.991 0.943 0.954 0.986 0.990 0.854
20% 0.830 0.242 0 0 0.197 0.358 0 0.999 0.986 0.957 0.964 0.989 0.990 0.860

4000
10% 0.855 0.362 0 0 0.059 0.313 0 0.999 0.991 0.943 0.954 0.986 0.991 0.854
20% 0.852 0.245 0 0 0.170 0.331 0 0.999 0.986 0.957 0.964 0.988 0.989 0.860

Note. R refers to the proportion of misspecified q-entries.

that this method could specify correct q-entries efficiently

only if an appropriate cut-off point is chosen. On the whole,

the true positive rate increases as the number of exami-

nees increases and decreases as the number of attributes

increases.

Through above analysis, to some extent, all the three

methods could effectively retain the correct q-entries in the

Q-matrix. However, the sensitivity of δ-method may highly

rely on its cut-off point. So choosing an appropriate cut-

off point becomes particularly important when δ-method

is used. Unlike δ-method, the sensitivities of the validation

method based on SKLD and LOR are independent of any

additional condition, which means that they could work well

and are easy to implement. So these two methods are more

sensitive and applicable.

3.2 Simulation Study 2

Simulation Study 2 is used to explore the specificities

of the three methods. Specificity is the core of validating

misspecified Q-matrices, which is measured by the true neg-

ative rates. And it indicates the proportions of misspecified

Q-matrices and q-entries that are correctly identified and

calibrated.

3.2.1 Design

The design is very similar but not identical to Simula-
tion Study 1. Specially, the setting of true parameters is
same. The only difference is about the input Q-matrices.
For specificity, misspecified Q-matrices are regarded as the
initial matrix. Misspecified Q-matrices are conducted by al-
tering 10% or 20% of q-entries from 1 to 0 or 0 to 1 in
true Q-matrices. Similar to Simulation Study 1, the recov-
ery rates—true negative rates at Q-matrix or q-entries level
would be recorded. Let Qm = {qmjk}J×K be a misspecified

Q-matrix and Q̂(t)(Qm) = {q̂(t)jk (Q
m)}J×K be its validation

at replication t, t = 1, · · · , T . The true negative rates at
Q-matrix and q-entries levels could be estimated by

TNQ =

∑T
t=1 I(Q̂

(t)(Qm) = Q)

T
,

TNq =

∑T
t=1

∑J
j=1

∑K
k=1 I(q̂

(t)
jk (Q

m) = qjk)

T ∗ J ∗K .

3.2.2 Results

Table 4 summaries the specificity results of the three
methods.

For the SKLD-based method, the true negative rates at
q-entries level range from 0.978 to 1.000, indicating the
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encouraging validating performance. Similar to Simulation
Study 1, the true negative rates at Q-matrix level are lower
than that at q-entries level, especially when (K = 4, I =
500), (K = 5, I = 500) and (K = 5, I = 1000). Under those
conditions, there are more attributes and less examinees
which make it more difficult to detect the misspecification
in Q-matrix. What’s more, if the numbers of attributes and
examinees are fixed, the specificity of SKLD-based method
is little affected by the proportions of misspecified q-entries.

For the LOR-based method, its true negative rates are
always lower than that of the SKLD-based method at both
q-entries and Q-matrix level. In particular, when K is 5,
the true negative rates of LOR-based method at Q-matrix
level are always no more than 0.4, even when the number
of examinees is 4000. Maybe LOR-based method couldn’t
apply to the condition that the number of attributes is too
large.

For the δ-method, when K is 3, the true negative rates
at both q-entries and Q-matrix level turn out satisfactory
except the condition when its cut-off point is 0.2. However,
the specificity is affected by the number of attributes greatly.
Specially, when K is large, such as K = 5, the true negative
rates of δ-method at Q-matrix level are very low and even
close to 0. In comparison, when the cut-off point is 0.10, the
specificity is higher than that under other cut-off points,
nevertheless, not better than SKLD-based method.

When the Q-matrix is misspecified, the above results
show that the validation methods based on LOR and IDI
may be no longer valid when K is large. However, the
SKLD-based method can still deal with this more challeng-
ing Q-matrix misspecification, even though the number of
attribute is much larger.

3.3 Simulation Study 3

Simulation Study 3 is used to explore the relationship
between the performances of the three methods and noise
level.

3.3.1 Design

Following the idea of Culpepper [5], five different noise
levels are considered in the simulation: Case 1, a low noise
level, sj = gj = 0.1; Case 2, the slipping parameter is lower
than the guessing parameter, sj = 0.1, gj = 0.3; Case 3,
a medium noise level, sj = gj = 0.2; Case 4, the slipping
parameter is higher than the guessing parameter, sj = 0.3,
gj = 0.1; Case 5, a high noise level, sj = gj = 0.3. And only
the Q-matrix with K = 4 is taken in the simulation study.
And the Q-matrix with 20% misspecified q-entries is used
to evaluate the specificity. The settings of examinees are the
same as Simulation Study 1.

3.3.2 Results

Figure 1 shows the performances of the three methods
under different noise levels. From the results, under Case
1, 2, 3, 4, δ-method with cut-off point 0.1 performs better

than other cut-off points basically. And the performance of
SKLD-based method is very close to that condition. How-
ever, under Case 5, δ-method with cut-off point 0.1 performs
badly, while SKLD-based method performs stably and well.
Even though the true positive rates at Q-matrix level of
all the methods is 0, SKLD-based method do well at q-
entries level. And under all cases, LOR-based method per-
forms worse than SKLD-based method mainly.

Additionally, it’s hardly surprising that all three methods
performed better under lower noise level than under higher
noise level. Actually, 1 − sj − gj is exactly the global item
discrimination index under DINA model where an item with
higher this index could discriminate different examinees bet-
ter [20].

On the whole, δ-method highly depends on its cut-off
points, and LOR-based method has worse sensitivity and
specificity on some conditions. K-means algorithm is em-
ployed to avoid choosing cut-off points. In addition, SKLD,
the product of IDI in δ-method and LOR, is considered to
improve the recovery. So the SKLD-based method is a per-
fect combination of IDI and LOR, which is more stable and
flexible.

4. REAL-DATA EXAMPLES

Besides the simulation studies, two real-data examples
are considered to further evaluate the performance of SKLD-
based method.

4.1 Example 1: fraction subtraction data

4.1.1 The data set

The data set used in this section is binary responses of
536 middle school students to 11 fraction subtraction items.
The data set is a subset of data originally described and used
by K.Tatsuoka in [23], and more recently by C.Tautsuoko in
[21], de la Torre and Douglas in [8], Henson, Templin and
Wilse in [14], and Decarlo in [6]. For this data set, several
Q-matrices are available. The Q-matrices used in this article
are Q1 and Q2, which are shown in Table 5. Specifically, Q1

was defined by Henson, Templin and Wilse in [14], which

Table 5. The Q-matrices of fraction subtraction items

Item number Item Q1 Q2

1 3 1
2
− 2 3

2
1 1 0 0 1 0

2 3− 2 1
5

1 0 1 0 0 1
3 3 7

8
− 2 1 0 1 0 0 1

4 4 4
12

− 2 7
12

1 0 0 1 0 0
5 4 1

3
− 2 4

3
1 1 0 0 1 0

6 11
8
− 1

8
1 1 0 0 1 0

8 2− 1
3

1 0 1 0 0 1
9 4 5

7
− 1 7

4
1 1 1 0 0 1

10 7 3
5
− 4

5
1 0 0 1 0 0

11 4 1
10

− 2 8
10

1 0 0 1 0 0
13 4 1

3
− 1 5

3
1 1 0 0 1 0
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Figure 1. The performances of the three methods under different noise levels.

contains 3 attributes: (1) borrowing from a whole number,

(2) separating a whole number from a fraction and (3) deter-

mining a common denominator. Q2 is a modified Q-matrix

of Q1, contained in R package CDM. Unfortunately, Q1 is

not a complete Q-matrix as the completeness requires that

at least one item just requiring one attribute is contained

in the test for any attributes. This incompleteness would

lead to the model unidentifiablity and further influence on

544 J. Guo et al.



Table 6. The parameter estimations for DINA model based on Q1 and Q2

Item Q1 Q2

number guessing slipping RMSEA guessing slipping RMSEA

1 0.216 0.121 0.033 0.217 0.121 0.046
2 0.104 0.177 0.015 0.042 0.199 0.023
3 0.508 0.153 0.073 0.501 0.188 0.100
4 0.031 0.251 0.115 0.035 0.232 0.070
5 0.067 0.069 0.009 0.070 0.070 0.014
6 0.530 0.047 0.059 0.532 0.047 0.118
8 0.131 0.088 0.016 0.051 0.099 0.025
9 0.521 0.054 0.131 0.482 0.064 0.136
10 0.032 0.149 0.112 0.035 0.126 0.056
11 0.110 0.158 0.003 0.128 0.154 0.085
13 0.008 0.176 0.024 0.008 0.175 0.022

the performance of the validation method. So it is usually
recommended to use a complete Q-matrix [2].

4.1.2 Method and results

The idea about the validations of Q1 and Q2 is follow-
ing [4]. That is, both Q1 and Q2 are assumed to be correct.
Before validation, model parameters need to be estimated
firstly using the fraction subtraction data set by EM algo-
rithm. And then generate the new response data sets based
on the parameters estimates. Next, we construct the mis-
specified Q-matrix as follows. For matrix Q1, randomly alter
q-entries from 0 to 1 or from 1 to 0, whereas for Q2, only
alter q-entries from 0 to 1 because the q-vectors in Q2 only
have one q-entry of 1. Finally, based on the above steps, the
proposed method can be employed to validate the misspec-
ified Q-matrices similar to Simulation Study 2.

The results of parameter estimation under the two Q-
matrices are present in Table 6. According to the results,
the guessing parameters of Item 3 exceed 0.5 under both
the two Q-matrices, leading to g3 > 1 − g3. Apparently, it
is unreasonable that the correct response probabilities are
higher than the incorrect response probabilities for exami-
nees who have not mastered all required attributes. What’s
more, a good fit among the diagnostic assessment design,
the response data, and the postulated DINA model is at-
tained when the estimates of the slipping and guessing pa-
rameters both are small [24]. From this point of view, DINA
model fits the data bad for some items, such as Item 3 and
4. Moreover, the root mean square error of approximations
(RMSEAs) of some items are over 0.10, which also indicates
the model could not fit data very well.

The results of validation Q-matrix show that about 53%
misspecified q-entries have been validated for Q1 and about
79% for Q2. As mentioned earlier, the performance may be
affected by the incompleteness of Q1. Though Q2 is com-
plete, it is somewhat too simple for every q-vector just has
only one q-entry of 1. To some extent, the poor fitness of
some items would result in the slightly worse recovery.

Table 7. The Q-matrix for SDA6 dataset

Item
Q-matrix

α1 α2 α3 α4

1 1 0 0 0
2 0 1 0 0
3 1 0 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 1 0
9 0 0 0 1
10 0 0 1 0
11 0 0 0 1
12 0 0 1 0
13 1 0 0 0
14 0 0 1 0
15 0 0 0 1
16 0 0 1 0
17 1 0 0 0

4.2 Example 2: SDA6 data

4.2.1 The data set

The Sociocultural Dimension Assessment version 6

(SDA6) dataset is provided by Jurich and Bradshaw in

[16]. The dataset contains 17 items to test 1710 examinees.

For the dataset, Q-matrix requires 4 attributes: (1) critique

whether a study’s methods address the research questions

(short for “critique methods”), (2) identify improvements

that could strengthen inferences made from a study (short

for “identify improvements”), (3) evaluate whether research

methods protect a participant’s well-being (short for “pro-

tect participants”), and (4) discern the study’s generaliz-

ability (short for “discern generalizability”). The Q-matrix

is shown in Table 7.

A method of Q-matrix validation in cognitive diagnosis 545



4.2.2 Method and results

DINA model is used to fit the response data provided in
the SDA6 dataset. And SKLD-based method is employed to
validate the Q-matrix in Table 7. This Q-matrix is used as
the initial Q-matrix in the SKLD-based method. The results
show that the proposal Q-matrix is the same as the initial
Q-matrix. At the same time, we alter the q-entries of 0 in
the Q-matrix to 1 randomly as the misspecified Q-matrices
repeating 1000 times. And then SKLD-based method is used
to validate those altered Q-matrices. About 68% of misspec-
ified Q-matrices are correctly revised.

5. DISCUSSION

Q-matrix validation has become a vital part in cognitive
diagnosis for misspecified Q-matrix may involve many fate-
ful consequences in model fit. We propose a SKLD-based
method to validate misspecified Q-matrix in this paper. Ac-
tually the proposed method also is a perfect combination of
IDI and LOR. The process of this method is divided into
the following steps: (1) estimating the guessing and slipping
parameters based on EM algorithm for DINA model, (2)
figuring out the SKLD values for all alternative q-vectors,
(3) dividing all alternative q-vectors into two classes based
on K-means cluster analysis algorithm, (4) selecting the
SKLD values approximating the maximum but with fewer
attributes as the correct q-vector. Simulation studies with
high rates of misspecification are designed to evaluate the
performance of the proposed method. The results of simu-
lations indicate that SKLD-based method is able to iden-
tify and correctly validate misspecified q-vectors, and at the
same time retain those correct ones.

Despite such promising results, there are some other is-
sues in need of deep thinking. The first one is whether the
proposed method could be extended to more complicated
CDM models, such as Higher-Order DINA model proposed
by [8] and generalized DINA model in [11]. Second, it’s un-
clear whether the number of clusters can be changed to im-
prove the performance. More simulation studies should be
conducted to test and verify the effect of the number of clus-
ters. Third is whether the proposed method could provide
accurate estimation rather than validation of the Q-matrix
based on the response data. Finally, the number of attributes
is assumed known and correct. It is still a considerable issue
to extend the proposed method to specify the number of at-
tributes. In conclusion, to generalize the proposed method,
there is a deal of work to be done.
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