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Assessing the change in the relative performance of com-
peting systems across a factor space generated by a combi-
nation of input variables is a common problem in decision
making. We propose a new metric to assess the sensitivity
of the performance rankings of a set of options when input
variables are changed. The proposed metric is useful in fore-
seeing the impact of changing values of input variables on an
output metric in complex systems through computer simula-
tion experiments. Numerical characteristics of the proposed
metric are illustrated and discussed and an application is
provided to illustrate use of our metric in decision support.
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1. INTRODUCTION

Computer simulation experiments involve modeling of a
process or a system in a way that the model mimics the
response of the actual (physical) experiments which are too
costly or even impracticable. Computer experiments are re-
quired in many fields as a decision support tool for pre-
dicting behavior of systems under different input settings
and quantifying and ranking the effects of input variables
on the response (Fang et al., 2005). Moreover, when there
are several systems to compare, assessing the relative per-
formance given the input variables is also of interest. Some
examples include the comparison of different dynamic opti-
mization algorithms with several parameters (del Amo and
Pelta, 2013), assessment of effect of different factors on the
relative performance of different classifiers used in machine
learning (Villacorta and Sáez, 2015), and ranking of the op-
erational effectiveness of alternative military options in a
combat simulation (Chau et al., 2017).

In addition to ranking the performance, decision makers
often need to know how the performance rankings of com-
peting systems change as the input variables change. For ex-
ample, consider a combat simulation that seeks to compare
three military options A, B, and C over a factor space com-
posed of many different combinations that might affect the
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performance metric (e.g., lethality). For a given factor com-
bination (or scenario), the performance of the options could
be ranked as A>B>C where as for a different scenario, per-
formance rankings could be B>C>A. In such cases, decision
makers would be interested in identifying how sensitive the
rankings of the options are across the entire factor space and
across a range of metrics. This can be seen as a sensitivity
analysis of performance rankings of the options as the input
variables change.

In this paper, our purpose is to propose a metric to mea-
sure the sensitivity of the relative performance of competing
systems across the entire input/factor space. For this pur-
pose, we measure the relative performance of the competing
systems using a statistical ranking of the systems based on
the all pairwise comparisons as given by del Amo and Pelta
(2013) and Villacorta and Sáez (2015). Then, we propose a
distance based sensitivity metric to assess the change in the
performance rankings of the competing systems across the
factor space. This approach utilizes the statistical ranking of
the competing systems (del Amo and Pelta, 2013; Villacorta
and Sáez, 2015) along with the properly defined weighted
Spearman Footrule distance among the factor space. Using
the normalization of this distance metric, a new similarity
metric called “weighted rank sensitivity” is introduced and
evaluated numerically. The proposed metric is shown to be
sensitive to the changes in the ranking vectors as inputs
change and has a calibrated interpretation. Without loss of
generality, we specifically focus on the sensitivity of the ef-
fect of a set of options on the output metric across a set of
scenarios defined by the input variables to illustrate use of
our sensitivity metric.

This paper is organized as follows. In section 2, the mo-
tivation of the paper is provided via a military context. In
section 3, the proposed sensitivity metric is introduced and
illustrated over a toy example. An algorithm used to evalu-
ate the proposed metric is explained and the interpretations
of the proposed metric is given in section 4. The sensitivity
metric is then illustrated on a combat team attack mission in
section 5 before general conclusions are drawn in section 6.

2. MOTIVATION

Combat simulations are used to estimate and compare
the operational effectiveness of alternative military options
using an experimental format. These simulation experiments
are distinct from traditional experiments in a way that they
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are stochastic, have a very large parameter space and often
compare a large number factors (e.g., default speed of a ve-
hicle, ambient light level, etc.) across multiple performance
metrics (e.g., lethality, survivability, mobility, etc.). In the
evidence-based decision making of Defence projects, com-
parison of the operational effectiveness of alternative mili-
tary options and identifying how sensitive the relative per-
formance of options are across the entire factor space are
often of interest.

Consider a combat simulation setting, where a set of
military options, Oj (j = 1, 2, . . . ,M) are evaluated
against a set of independent performance metrics, Mt (t =
1, 2, . . . ,m), over an experimental design composed of k fac-
tors (f1, f2, . . . , fk) having N combinations, each of which
we refer to as a scenario Si, i = 1, 2, . . . , N . In the experi-
mental setting, we replicate all options for each scenario n
times. This problem framework is illustrated in Figure 1.

Figure 1. Summary of problem framework.

In the general sense, our focus is to propose a metric that
measures the similarity between two scenarios based on the
given factor space over the replications of a set of available
options. Each design of experiment (DOE) methodology ap-
plied here provides a different factor space, and correspond-
ingly, we get a different bunch of scenarios out of each factor
space. This factor space can be created using full factorial,
fractional factorial, orthogonal arrays, supersaturated de-
signs, etc. to decrease its size in an appropriate way. The
sensitivity metric introduce in this study is generically ap-
plicable under any DOE methodology.

The desired main features of a useful similarity metric are
that i) it should distinguish the scenarios based on their sen-
sitivity to the measured dependent variable – military met-
rics in the example; ii) it should take into account the mag-
nitude of the change in the metric across the scenarios; iii) it
should be a calibrated metric in terms of its interpretation.

The problem reduces to ranking of option means under
each scenario and then comparing the rank vectors corre-

sponding to each scenario with each other to give a con-
clusion about the similarity between the scenarios. There-
fore, we have two sub-problems here: i) how the options are
ranked under each scenario? ii) how the rank vectors are
combined together to construct a sensitivity metric?

We will use a toy example to explain the development
process of our metric. Suppose we have three options Oj ,
j = 1, 2, 3 and seven scenarios Si, i = 1, . . . , 7, which come
out of a DOE methodology. For a given scenario Si, we have
the artificially created mean performance values (Ō1, Ō2,
and Ō3) given in Table 1.

Table 1. Option mean – Scenario combinations for the toy
example

Si Ō1 Ō2 Ō3

1 40 30 20
2 80 50 20
3 40 20 30
4 30 40 20
5 20 30 40
6 20 40 30
7 30 20 40

We further assume for each scenario that every pairwise
comparison of the options returned a statistically significant
result. In the second scenario, only the magnitude of option
means increase compared to the first scenario. In the rest of
the scenarios, the magnitude of the change is determined by
the changing ranks of options.

3. THE WEIGHTED RANK SENSITIVITY
METRIC

In this section, we first discuss the ranking of the op-
tion space, and then, we introduce our weighted sensitivity
metric for the comparison of two scenarios in terms of their
sensitivity.

3.1 Statistical ranking of the option space

For a given scenario Si, assume that options can be
ranked according to their performance metric. The ranking
straightforwardly can take place between options depending
on the absolute values of the performance metrics yijr mea-
sured in the scenario i, option j, and replication r. However,
one of the important requirements is to quantify the statisti-
cal rankings of the options according to a performance met-
ric. A ranking scheme given by Villacorta and Sáez (2015)
that depends on all pairwise multiple comparisons of options
in a given scenario fulfills this requirement. For each pairwise
comparison (of options), this approach assigns a score from
{−1, 0, 1} to the options according to the statistical signif-
icance criteria and the final rankings of the options (xij –
the rank of option j for scenario i) are calculated as the sum
of all scores received from all possible pairwise comparisons.
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Therefore, xij ’s store the result of how many options are bet-
ter, equal or worse than the option being tested, where the
decision on each pairwise comparison is made by a pairwise
nonparametric multiple comparison test. In this perspective,
this algorithm analyses the relative performance of options
rather than the absolute performance (Villacorta and Sáez,
2015). The implementation of this ranking approach is done
by the R package SRCS (Villacorta, 2015). From now on,
we will refer the ranking approach of Villacorta and Sáez
(2015) as the VS approach.

To illustrate the VS ranking approach, we refer to the
example of Section 2. The rankings of the options according
to the VS approach are given in Table 2. Note that in this
table, the first and second scenarios will have the same rank-
ings for the options, while other scenarios will have different
rankings.

Table 2. Option mean for each scenario and corresponding
rank vector assigned by the VS approach

Option means VS rankings

Si Ō1 Ō2 Ō3 xi1 xi2 xi3

1 40 30 20 2 0 -2
2 80 50 20 2 0 -2
3 40 20 30 2 -2 0
4 30 40 20 0 2 -2
5 20 30 40 -2 0 2
6 20 40 30 -2 2 0
7 30 20 40 0 -2 2

The VS ranking scheme is plausible for our problem in
the sense that it uses a statistical decision criteria while
assigning ranks to the options. We can assess whether one
option is statistically better or worse than another using this
approach. The strength of this approach is in its computa-
tional efficiency as it uses a simple ranking algorithm. How-
ever, it should be noted that, this ranking scheme does not
take into account the absolute differences between options;
hence, we cannot figure out how much Oj is better than Ol.
Moreover, the selection of pairwise comparison test would
have a substantial effect on the option rankings. Therefore,
the most powerful pairwise comparison tests should be used
while assessing significance (Demirhan et al., 2010; Dolgun
and Demirhan, 2017).

3.2 Sensitivity of scenarios

For a given scenario Si, we first generate the rank vec-
tor xi = (xij) corresponding to M options employing the
VS approach of section 3.1. When we have M options to be
compared, there will be

(
M
2

)
possible pairwise comparisons.

After we assign the scores to the options, the maximum score
attainable by an option will be M − 1, which means it out-
performs the rest, and the minimum is −(M − 1), meaning
it is outperformed by the rest. As this score stores the ag-
gregated information of how many times one option outper-
formed another option or is outperformed by another one,

they provide a suitable basis for a weighted rank similarity
metric.

For each scenario, possible values of ranks assigned by the
VS approach are −(M−1), . . . ,−1, 0, 1, . . . ,M−1. When we
consider the scenarios as pairs, a strong similarity between
two scenarios implies a strong agreement between the rank
vector assigned to the scenarios while a weak similarity im-
plies a weak agreement between two rank vectors. Thus, we
can consider the ranks as the ordinal ratings and approach
the problem from the perspective of measuring the agree-
ment of two raters (see Gwet (2014) for the details of inter-
rater agreement studies). Note that the existing statistics
for measuring associations between ranks, such as Kendall’s
τ coefficient and Spearman’s rank correlation coefficient are
not suitable to capture the similarity in our context as they
would only take into account the ranking orders of two rank
vectors.

The common approach in inter-rater agreement studies
is to attach weights to the difference between ordinal rat-
ings in order to capture the severity of the disagreements. In
our context, these ordinal ratings correspond to the possible
values of ranks assigned by the VS approach. The magni-
tudes of linear, quadratic, and radical weights defined in
inter-rater agreement studies rely on the scores attached to
the ordinal ratings (Gwet, 2014). We propose use of the
ranks assigned by the VS approach in place of scores in
these weighting approaches. Then, a weighted metric using
the linear, quadratic, and radical weights will capture the
effect of the magnitude of difference between ranks on the
similarity of the scenarios Si and Sl when they are used
to combine rank vectors xi and xl over a distance mea-
sure.

For each scenario pair (Si, Sl), maximum distance be-
tween scores of scenarios will be (M − 1) − (−(M − 1)) =
2(M − 1) and the minimum distance between scores of sce-
narios will be 0. Then, for a given option j, the distance
between the scores of scenarios relative to the maximum
achievable distance gives us the vector of linear weights
ω′

il = (w′
ilj) for the scenario pair (Si, Sl):

(1) w′
ilj =

|xij − xlj |
2(M − 1)

,

where 0 ≤ w′
ilj ≤ 1 and j = 1, . . . ,M . Note that in Eq. (1),

xij ’s refer to the rank scores (i.e., [-2, 0, 2]) instead of ranks
(i.e, [1,2,3]). Linear weights are based on the magnitude of
the absolute difference of two scores relative to the range of
all possible values of scores.

In a similar way, quadratic weights are defined as follows:

(2) w′
ilj =

(
xij − xlj

2(M − 1)

)2

.

The quadratic weights are generally smaller than the linear
weights in value and they follow a quadratic pattern for
increasing values of absolute difference (Cohen, 1968).
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The radical weights are defined as follows:

(3) w′
ilj =

√
|xij − xlj |
2(M − 1)

.

Lastly, we multiply the preliminary weights defined in Eq.
(1)–(3) by an additional weight that accounts for the change
in the rank order of options between scenarios:

(4) wilj = w′
ilj · (uilj)

1/M ,

where

(5) uil =
1

2
(ri + rl),

r· =� x· � and� · � returns a vector including the ranks
of elements of inner vector such as � [−2, 0, 2] �= [1, 2, 3].
The additional weight uilj increases the effect of each weight
according to the order of swapping options in the compared
scenarios. The exponent in the additional weight smooths
the effect of it to account for the increasing amount of in-
formation when we have a large number of options. Then,
the additional weight is based on the average rank index
corresponding to each option. This definition ensures the
symmetry in the comparison of scenarios in terms of the
proposed metric.

The next stage is to attach the weights to a distance mea-
sure to complete the sensitivity metric with desired proper-
ties. We used the Spearman Footrule distance as the dis-
tance metric because it measures the total distance between
two rank vectors (Deza and Deza, 2009) instead of minimum
number of swaps to achieve a complete match between vec-
tors (i.e., Kendall’s and Cayley’s distance metrics). When
we incorporate the weights in the formulation of Spearman
Footrule distance, we get the following weighted Spearman
Footrule distance between the scenarios Si and Sl:

(6) ΔFω

il =

M∑
j=1

wilj |xij − xlj |.

Note that the unweighted version of the Spearman
Footrule distance is obtained by using identity weights
wilj = 1 in Eq. (6). A drawback of the measure obtained
in Eq. (6) is that it is not normalized. So, we normalize the
weighted Spearman Footrule distance using the maximum
value of that distance to produce a sensitivity measure that
has a range of [−1, 1] as follows:

(7) ρFω

il = 1− 2

∑M
j=1 wilj |xij − xlj |
max(ΔFω )

,

where ΔFω = (ΔFω

il ).
Table 3 presents the sensitivity metrics with identity

weights (Spearman Footrule distance with ωilj = 1) for the
data given in Table 2.

Table 3. Sensitivity matrix using identity weights for the
scenarios in Table 2

ρFL
il S1 S2 S3 S4 S5 S6 S7

S1 1
S2 1 1
S3 0 0 1
S4 0 0 -1 1
S5 -1 -1 -1 -1 1
S6 -1 -1 -1 0 0 1
S7 -1 -1 0 -1 0 -1 1

It is clear from Table 3 that the unweighted version does
not capture the changes in the values of rank scores and gives
a vague inference since it has only the values of −1, 0, and 1.
This situation causes a high rate of false positive decisions
in favour of high sensitivity of scenarios when they are not
actually.

The linearly weighted Spearman Footrule sensitivity met-
rics calculated using Eq. (7) with the weights in Eq. (1) are
calculated for the same scenarios and given in Table 4.

Table 4. Sensitivity matrix with linear weights for the
scenarios in Table 2

ρFL
il S1 S2 S3 S4 S5 S6 S7

S1 1.00 1.00 0.55 0.46 -1.00 -0.50 -0.50
S2 1.00 1.00 0.55 0.46 -1.00 -0.50 -0.50
S3 0.55 0.55 1.00 -0.50 -0.50 -1.00 0.46
S4 0.46 0.46 -0.50 1.00 -0.50 0.55 -1.00
S5 -1.00 -1.00 -0.50 -0.50 1.00 0.46 0.55
S6 -0.50 -0.50 -1.00 0.55 0.46 1.00 -0.50
S7 -0.50 -0.50 0.46 -1.00 0.55 -0.50 1.00

We get ρFL
12 = 1 for the exact same rankings for (S1, S2)

pair, and we have ρFL
36 = −1 for (S3, S6) pair which has the

maximum change in the values of ranks. So, the proposed
ρFL

il consistently captures the similarity in relation to the
magnitude of change in the rank vectors corresponding to
the scenarios. The values of ρFL

il close to −1 imply a strong
sensitivity and those tend to 1 show a strong insensitivity
between the scenarios. It is possible to compare sensitivity
of two pairs of scenarios by comparing the corresponding
values of ρFL

il and ρFL

jk since the proposed metric is a cali-
brated measure; hence, smaller values imply more sensitiv-
ity between the considered scenarios. For example, when we
compare ρFL

13 = 0.55 to ρFL
34 = −0.50, we can conclude that

the degree of sensitivity for passing S4 from S3 is more than
the sensitivity of passing from S1 to S3. Also, consistently
to this inference, it shows a moderate amount of sensitivity
with ρFL

13 = 0.55.
Besides the change in the rankings of the options, the

proposed weighted sensitivity metric (in terms of distance
and similarity) incorporates weights and has a reasonable
interpretation within a normalized range (i.e., [−1, 1] for the
weighted similarity measure.
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Table 5. Sensitivity matrix with quadratic weights for the
scenarios in Table 2

ρ
FQ

il S1 S2 S3 S4 S5 S6 S7

S1 1.00 1.00 0.77 0.73 -1.00 -0.25 -0.25
S2 1.00 1.00 0.77 0.73 -1.00 -0.25 -0.25
S3 0.77 0.77 1.00 -0.25 -0.25 -1.00 0.73
S4 0.73 0.73 -0.25 1.00 -0.25 0.77 -1.00
S5 -1.00 -1.00 -0.25 -0.25 1.00 0.73 0.77
S6 -0.25 -0.25 -1.00 0.77 0.73 1.00 -0.25
S7 -0.25 -0.25 0.73 -1.00 0.77 -0.25 1.00

Table 6. Sensitivity matrix with radical weights for the
scenarios in Table 2

ρFR
il S1 S2 S3 S4 S5 S6 S7

S1 1.00 1.00 0.36 0.24 -1.00 -0.70 -0.70
S2 1.00 1.00 0.36 0.24 -1.00 -0.70 -0.70
S3 0.36 0.36 1.00 -0.70 -0.70 -1.00 0.24
S4 0.24 0.24 -0.70 1.00 -0.70 0.36 -1.00
S5 -1.00 -1.00 -0.70 -0.70 1.00 0.24 0.36
S6 -0.70 -0.70 -1.00 0.36 0.24 1.00 -0.70
S7 -0.70 -0.70 0.24 -1.00 0.36 -0.70 1.00

The sensitivity matrices obtained by using the quadratic
and radical weights through the proposed measure are given
in Table 5 and 6.

When we use the quadratic weights, we get similar infer-
ences with the case of linear weights. The difference in the
sensitivity results with the linear and quadratic weights is
that we have an increased resolution in the sensitivity ma-
trix. The magnitude of sensitivity/insensitivity is the same
across the pairs, for example, (S1, S3) (ρFL

13 = 0.55) and
(S1, S6) (ρFL

16 = −0.50) when the linear weights are used.

However, the magnitude of sensitivity (ρ
FQ

16 = −0.25) is less

than that of insensitivity (ρ
FQ

13 = 0.77) for the same pairs of
scenarios with quadratic weights. The radical weights also
give different magnitudes for sensitivity/insensitivity for the
considered pairs of scenarios. However, when compared to
the quadratic weights, they tend to behave in favour of sen-
sitivity as radical weights produce a smaller value for the
(S1, S3) pair (ρ

FR
13 = 0.36) and a larger (absolute) value for

the (S1, S6) pair (ρFR
16 = −0.70). When compared to the

linear weights, radical weights gives the magnitude of sensi-
tivity closer to the end points of the interval [−1, 1].

If we focus on the pairs (S1, S5) and (S1, S6) for which
the total absolute difference between the ranks are the same
with different rank orders, we see that the proposed met-
ric gives different magnitudes of sensitivity; hence, it simul-
taneously captures the change in the values of ranks and
the changing order of the ranks with any of the linear,
quadratic, or radical weights. However, quadratic weights
assign a smaller (absolute) value to the (S1, S6) pair than
the other weights.

In the next section, we present a numerical analysis of
the behavior of the proposed weighted metric.

4. A NUMERICAL EVALUATION AND
INTERPRETATION

In this section, we will discuss numerical features of
the proposed metric to measure sensitivity of the scenarios
across two cases with four and five options. The VS rank-
ing scheme is based on the the number of the options to be
considered. We have the following constraints for the ranks
assigned by the VS method:

•
∑M

j=1 rij = 0 ∀i,
•

(
||rij = (M − 1)|| ∧ ||rij = −(M − 1)||

)
≤ 1,

where i = 1, . . . , N , j = 1, . . . ,M , and || · || is the number
of cases with inner condition is satisfied. Under these condi-
tions, it is possible to generate all possible rank vectors and
all possible pairs of rank vectors.

We apply the following algorithm to generate the popu-
lation of all possible comparisons.

Algorithm 1.

1. Generate all possible combinations of ranks that can
be assigned to M options under the constraints given
above. Let the number of all possible combinations gen-
erated be Ñ .

2. Set Ñ to the number of scenarios and assign a scenario
to each combination of ranks.

3. Create all pairs of Ñ scenarios.

In practice, any set of scenarios is a sample taken with
replacement from the set of scenarios created by the Algo-
rithm 1. Note that Algorithm 1 does not allow repeating
rank vectors. Values of any metric calculated over the pairs
of scenarios generated by Algorithm 1 correspond to the
population of the metric (all possible values of that metric)
for a specific number of options. Therefore, any inference
drawn over the scenarios resulting from Algorithm 1 can be
generalized for the considered number of options. We use
this approach to figure out the characteristics of the pro-
posed sensitivity metric.

To work out the effect of our weighting approach, we cal-
culate normalised Spearman Footrule distance in Eq. (7)
over the pairs generated by Algorithm 1 for the cases of
M = 4 and M = 5. Corresponding kernel density estimates
of probability distribution function (pdf) of unweighted and
weighted normalised Spearman Footrule distances are given
in Figure 2 for the cases of M = 4 and M = 5. Imple-
mentation of Algorithm 1 for M > 5 is computationally
troublesome due to the memory limitations.

The pdf of unweighted normalised Spearman Footrule
distance is slightly skewed to left for both of M = 4 and
M = 5 cases. So, proportions of very similar or dissimilar
ranking schemes are very small and most of the rankings
are moderately different from each other. Near symmetry
in the population pdf of unweighted normalised Spearman
Footrule distance confirms that it treats each unit change
in ranks equally in terms of sensitivity. However, in our
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Figure 2. Population distributions of normalised Spearman
Footrule distance.

combat simulation setting, the effect of one, two, three,...
unit changes in ranks are not equal across the possible val-
ues of ranks. Another drawback of the unweighted metric
is that due to its low resolution, it qualifies a considerable
amount scenario pairs as highly sensitive. Therefore, the pdf
of unweighted metric has a thicker right tail implying that
false positive rate of it is significantly high. Therefore, it
is not suitable to use the unweighted normalised Spearman
Footrule distance directly.

For both of M = 4 and M = 5 cases, all the population
pdf’s of the proposed metric are left-skewed for all weights.
In accordance with the weighting schemes, the metric with
radical weights has a thicker left tail than those with lin-

Figure 3. Population cumulative distribution functions of
normalised Spearman Footrule distance.

ear and quadratic weights; hence, this measure is the most
liberal measure in terms of detecting sensitivity. The metric
with the quadratic weights is the most conservative one in
this sense. It qualifies more than half of the possible com-
parisons as either mildly sensitive or insensitive. The linear
weights are in between radical and quadratic weights.

Because the distribution of the proposed metric is not
symmetric, a perfectly symmetric interpretation over the
[−1, 1] range is not appropriate. To provide a clear and
suitable interpretation for the proposed metric with each
weighting scheme, we use cumulative distribution functions
(cdf’s) of sensitivity metric, which are given for unweighted
and weighted metrics in Figure 3.
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Table 7. Interpretation of the proposed metric

Interpretation Linear Quadratic Radical

Sensitive [−1, 0.23) [−1, 0.43) [−1, 0.11)
Neutral [0.23, 0.73) [0.43,0.87) [0.11, 0.60)

Insensitive [0.73, 1] [0.87, 1) [0.60, 1]

We divide the probability range [0, 1] into three inter-
vals such that [0, 1] = [0, 0.25)∪ [0.25, 0.75]∪ (0.75, 1]. Each
interval corresponds to the regions where the pairs of sce-
narios are qualified as “Sensitive”, “Neither sensitive nor in-
sensitive (Neutral)”, and “Insensitive”. Alternatively, these
intervals can be divided into subintervals to increase the
resolution of interpretation. Based on this approach, Table
7 gives the inferences and corresponding limits of the met-
ric for each weight. The limits are found using the inverse
cdf for each weights at the boundary points of the intervals
[0, 0.25), [0.25, 0.75], and (0.75, 1].

5. SENSITIVITY OF COMBAT TEAM
ATTACK SCENARIOS

In this application, we focus on making decisions based
on the sensitivity of scenarios in a combat team attack mis-
sion where the set of military options being compared are
represented by four different vehicles: A, B, C and D; hence,
in our setting, O1 =A, O2 =B, O3 =C, and O4 =D. The fol-
lowing three (m = 3) primary metrics are used to compare
the four options:

• “MissionSuccess” (M1): A binary indicator as to
whether Blue was able to successfully complete the mis-
sion.

• “RedVehiclesDamaged” (M2): A discrete value indicat-
ing how many Red vehicles were damaged.

• “RedInfantryDefeated” (M3): A discrete value indicat-
ing how many Red infantry were defeated.

A full factorial design was conducted to explore the impact
of uncertainty surrounding the following three (k = 3) mod-
elling factors on the rankings of the options:

• “Plan” (f1): Two different sets of tactics (making a di-
rect or indirect advance to the area of interest).

• “Range” (f2): Withdrawal range (in metres) of vehicle
entities after an engagement (only the upper and lower
range of values were modelled: 75m and 25m).

• “Protection” (f3): Fidelity / complexity of the al-
gorithms which model vehicle survivability (High,
Medium, Low).

All factors and combinations of factors were considered to
be equally plausible. In total, n = 200 replications were run
for each of the N = 12 different plausible scenarios given in
Table 8.

The problem we focus on in this decision problem is to
compare sensitivity of each combination of levels of Plan,

Table 8. Scenarios in the combat team attack problem

Scenario Plan Range Protection

S1 Direct 75m High
S2 Indirect 75m High
S3 Direct 25m High
S4 Indirect 25m High
S5 Direct 75m Medium
S6 Indirect 75m Medium
S7 Direct 25m Medium
S8 Indirect 25m Medium
S9 Direct 75m Low
S10 Indirect 75m Low
S11 Direct 25m Low
S12 Indirect 25m Low

Range, and Protection factors to the selection of vehicles A,
B, C, and D. For each metric, we compute our sensitivity
metric with linear, quadratic and radical weights over Eq.
(1)–(7), as well as using identity weights (i.e., wilj = 1).

We summarize the results using heatmap plots with den-
dograms to be able to draw inferences for decision sup-
port. Heatmaps for the sensitivity matrices corresponding
to MissionSuccess, RedVehiclesDamaged, and RedInfantry-
Defeated metrics are given in panels (a), (b), and (c) of
Figures 4–7, respectively.

Figures 4–7 present the heatmap plots of the sensitiv-
ity matrices computed using identity, linear, quadratic and
radical weights, respectively. As a general rule wI

ilj ≥ wR
ilj ≥

wL
ilj ≥ wQ

ilj , where wI
ilj , w

R
ilj , w

L
ilj , w

Q
ilj represent the iden-

tity, radical, linear and quadratic weights assigned. When
we compare the sensitivity matrices obtained by different
weighting schemes, we observe that using identity weights al-
ways produces highest sensitivity values (i.e., sensitivity val-
ues close to -1, see Figure 4) because they assign more con-
tribution to unit changes than the other weighting schemes.
The second and the third highest sensitivities are observed
in sensitivity matrices obtained using radical and linear
weights (see Figures 7 and 5). On the other hand, the lowest
sensitivities (i.e. sensitivity values close to 1) are observed
in the quadratic ones (see Figure 6) as quadratic weights
assign less contribution to the same amount of change.

Throughout this section we only interpret the sensitivity
matrices using linear weights (i.e., see Fig. 5) as they pro-
vide a weighting scheme in between identity and quadratic
weights. One can also use identity, radical or quadratic
weights depending on the amount of contribution to be as-
signed to a unit change.

For the success of mission (MissionSuccess metric), the
sensitivity of choosing different vehicles is maximized when
we change the combination of factors from S1 to S10 or from
S7 to S10. In practice, the performance rankings of the four
vehicles is highly sensitive with respect to the success of the
mission when the combat team makes an indirect advance
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Figure 4. Heatmap plots of the sensitivity matrices that are
computed using identity weights (unweighted) for the

considered metrics.

Figure 5. Heatmap plots of the sensitivity matrices that are
computed using linear weights for the considered metrics.
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to the area of interest with a low fidelity protection algo-
rithm, instead of a direct advance to the area of interest
with a high fidelity protection algorithm (Panel (a) of Fig-
ure 5). Also, for example, the performance rankings of the
four vehicles is totally insensitive with respect to the suc-
cess of the mission when the withdrawal range is changed
from 75m to 25m due to close to zero sensitivity values of
pairs (S1, S3) and (S2, S4) for high protection; (S5, S7) and
(S6, S8) for medium protection; and (S9, S11) and (S10, S12)
for high protection.

In terms of the number of enemy vehicles destroyed, the
sensitivity of the performance rankings of the four vehicles
is maximized when we change the combination of factors
from S2 to S7, from S7 to S10, and from S7 to S12. The
scenario seven is highly or moderately sensitive when paired
with S2, S4, S6, S8, S10, and S12 in terms of the effect of the
performance rankings of the four vehicles with respect to the
the number of enemy vehicles destroyed. The deviances from
the strategy that the combat team makes a direct advance to
the operation area with a withdrawal range of 25m under a
medium fidelity protection algorithm creates high sensitivity
of the performance rankings of the four vehicles.

For the number of enemy infantry defeated, the sensitiv-
ity of the performance rankings of the four vehicles is max-
imized when we change the combination of factors from S4

to S5 and from S4 to S7. When we change the advance plan
to the area of operation from indirect to direct along with
changing the protection algorithm from high to medium, the
effect of the performance rankings of the four vehicles is one
of the highest levels of sensitivity.

Overall, the scenario S7 is in the pairs which constitute
highly sensitive cases in terms of the sensitivity of the ef-
fect of vehicle choice on all three success metrics. Use of
heatmaps provide this information in a clearer way show-
ing the highly sensitive and insensitive scenarios in clus-
ters. In terms of number of damaged enemy vehicles, the
performance rankings of the four vehicles will be very sen-
sitive upon changing the approach plan to direct from in-
direct (Figure 5) since scenario pairs including the direct
approach plan (S1, S3, . . . , S11) and indirect approach plan
(S2, S4, . . . , S12) constitute highly sensitive pairs; and hence,
included in the same (right) arm of the hierarchical classifi-
cation provided on top the heatmap.

For the mission success metric, changing the protection
algorithm fidelity from medium to low creates high sensitiv-
ity in terms of the performance rankings of the four vehi-
cles unless the team advances to the area directly in a 25m
withdrawal range with low protection (S7 and S11) since the
pairs (S5, S9), (S6, S10), and (S8, S12) are all either insensi-
tive or mildly sensitive.

In terms of the number of destroyed enemy vehicles, vari-
ations from the seventh scenario are highly important on the
effect of the performance rankings of the four vehicles when
the plan is changed to indirect from direct since S7 con-
stitutes highly sensitive pairs with the scenarios including

Figure 6. Heatmap plots for the sensitivity matrices for the
considered quadratic metrics.
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indirect approach plan. Also, when the approach strategy
to the operation area is changed from direct to indirect, the
effects of the protection algorithm fidelity and withdrawal
range are important on the performance rankings of the four
vehicles since nearly all the scenarios including direct ap-
proach constitute highly or moderately sensitive pairs with
scenarios including direct approach.

For the number of enemy infantry defeated, we have
a similar sensitivity scheme for the effect of the perfor-
mance rankings of the four vehicles on this metric, with
the change of plan for approaching the operation area being
important since the scenarios (S2, S4, S6, S8, S10, S12) and
(S1, S3, S5, S7, S9, S11) are separated into two subsets at the
top level of hierarchical clustering.

6. DISCUSSION

In this article, we focus on evaluating the change in the
relative performance of competing systems across a factor
space generated by the design of experiment methodology.
It is different from the usual problems arising from design of
experiments in the sense that we have an additional set of
options to be considered and each run in the factor space is
considered as a different scenario. The set of options is an-
other factor that is considered along with the factor space
and we need to compare the sensitivity of runs over the set
of options. When we consider each run as a different strategy
in a decision making problem, our focus turns into finding a
sensitivity metric to assess the sensitivity of different strate-
gies under different options to provide decision support.

In this paper, we propose a weighted sensitivity metric
based on the rankings of options according to a dependent
variable. The proposed metric is useful in predicting the
impact of changing values of input variables on an output
metric in complex systems through computer simulation ex-
periments. Since we can figure out the effect of switching be-
tween alternative options on the target variable under the
presence of related factors, decision makers can assess the
cost of each decision more accurately by using our mea-
sure and end up with choosing the optimal option for each
case.

The effect of identity, linear, quadratic, and radical
weighting strategies are discussed. In terms of detecting sen-
sitivity, the radical weights are found to be the most lib-
eral weights and linear weights are in between radical and
quadratic weights in this sense. We explore distributional
properties of the proposed metric for the cases with four
and five options. Based on distributional properties, we cal-
ibrated the interpretation of the proposed metric.

An application of the proposed sensitivity metric is given
for a combat team attack operation in a military setting.
Based on the results of the sensitivity analysis of scenarios
in the combat team attack operation, we show how perfor-
mance rankings of the vehicles are affected by changes in the
scenarios composed of approach plan, withdrawal range, and
protection algorithm fidelity.

Figure 7. Heatmap plots for the sensitivity matrices for the
radical weight considered metrics.
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As future research, we are planning to link the sensitivity
matrices to the factor space to be able to apply screening
procedure and reduce the size of the factor space based on
the sensitivity of runs.
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