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Bayesian longitudinal multilevel item response
modeling approach for studying individual growth
differences
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∗
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A longitudinal multilevel item response model is proposed
for measuring changes in individual growth over time. To es-
timate the model parameters, a combined Bayesian proce-
dure is developed. The deviance information criterion (DIC)
and the widely applicable information criterion (WAIC) are
used to assess the competing models. The simulation results
show that the combined Bayesian estimation method per-
forms perfectly in terms of recovering model parameters un-
der various design conditions. Finally, a longitudinal dataset
about the development of achievement in mathematics illus-
trates the significance and implementation of the proposed
procedure.
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1. INTRODUCTION

Longitudinal studies have attracted interest in many
fields, such as the health, social and behavioral sciences
([5, 8, 22, 25, 31]). Specifically, in educational and psycho-
logical research, changes over time are often investigated
through longitudinal analysis of observations collected at
several time points. The purpose of such investigation is not
only to study the achievement of individuals over time, but
also to explore differences in individual growth trajectories
among individuals of varying genders, family socioeconomic
statuses, etc. There is a rich literature on the longitudinal
studies in educational and psychological research, including
[2, 3, 4, 8, 13, 24, 25, 31, 42].

Although the longitudinal studies in educational and psy-
chological research have been deeply studied, there are still
some deficiencies in the existing literature. Next, we com-
pare the existing longitudinal models with our model and
analyze the advantages of our model from multiple aspects.
(1) A hierarchical modeling approach for measuring growth
change provides a way to account efficiently for dependence
resulting from the fact that the same individuals are assessed
repeatedly, as in the case for random-effect and growth curve
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models ([8, 25, 31]). The two approaches dealing with la-
tent traits are based on linear models for continuous re-
sponses that can be approximately normally distributed,
where responses are typically obtained as simple or weighted
sums across items through a particular assessment instru-
ment. However, in many studies of educational psychology,
responses are often discrete. Linear models are no longer
appropriate for relating changes in mean responses to co-
variates. Instead, we construct a time-specific item response
theory (IRT; [27, 40]) model to describe the relathionship
between individual and item at different time points through
the binary responses. The time-specific IRT(TS-IRT) model
overcomes a number of potential problems that linear mixed
models bring about by using a simple aggregate score for in-
vestigating change (such as paradoxical reliability of change
scores, spurious negative correlations of change with initial
status) ([24]). Moreover, the TS-IRT model also solves in-
consistent scale units for change encountered in linear mixed
models, so that the latent traits of different time points are
transformed into a single scale ([24]). (2) Numerous studies
on longitudinal IRT models have been conducted to mea-
sure individual growth. For example, [2] proposed an ex-
tended Rasch model for the repeated administration of the
same items over time points where item responses given on
each occasion are modeled with a unidimensional IRT model
and where the latent traits of each occasion are correlated.
However, statistical inference results can present serious de-
viations due to strict assumptions of constant item difficulty
parameters, and thus we cannot distinguish latent trait en-
hancement levels from later learning or the predisclosure of
items (practical effects). Our TS-IRT model overcomes the
deviations of statistical inference results caused by this strict
assumptions, and evaluates the latent trait development by
adopting the method that difficulty parameters are differ-
ent at each time points and the different anchor items are
employed to link multiple time points. (3) [3] extended An-
dersen’s Rasch model to a three-parameter logistic model,
from which they allowed latent traits for different occasions
to follow a multivariate normal distribution so that serial
correlations among latent traits are captured by a covariance
matrix. Although the critical assumptions of strong factorial
invariance over time can be satisfied by constraining all item
parameters for known fixed values, the test cost will increase
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to precalibarate all of the test items at different time points.
However, in our model, all items except anchor items do not
need to be calibrated in advance as known values, and the
unknown item parameters are estimated simultaneously by
Bayesian sampling algorithm. Therefore, it avoids the huge
expense in test items precalibration. (4) The model proposed
by [4] can be viewed as an extension of [3] where several re-
stricted covariance pattern structures are considered to cap-
ture time-specific between-student variability and time het-
erogeneous longitudinal dependencies among latent traits.
At the individual level, the time-specific latent traits are
assumed to be multivariate normally distributed, and the
within-individual correlation structure is modeled using a
covariance pattern model. However, in our paper, each indi-
vidual’s time-specific latent traits is represented by an indi-
vidual growth trajectory that is dependent on a unique set
of parameters at the individual level rather than to assume
to follow a multivariate normally distribution. In addition,
the main purpose of our paper is to explore differences in
individual growth trajectories between individuals of vary-
ing genders and family socioeconomic statuses rather than
to analyze the correlation between the latent traits of multi-
ple dimensions. (5) To relax the assumption of setting item
difficulty parameters as constants, [13] developed a multidi-
mensional Rasch model for learning and change (MRMLC)
to provide parameters for individual differences in change
where the model assumed that on the first occasion (t = 1),
only an initial latent trait is involved in item responses while
for later occasions, latent traits θt (t > 1) quantified by t−1
additional latent traits are involved in performance. Thus,
the increment of the latent trait between successive occa-
sions can be quantified directly. [13] described the growth
of the individual’s latent trait through the increment of la-
tent trait, which was obviously quite different from that by
the growth curve as shown in our study. (6) [42] developed a
mixture longitudinal multidimensional IRT model to explore
whether multidimensional academic growth is homogeneous
across different types of schools. However, the abovemen-
tioned models only consider latent traits as special values
to compare them with other latent traits for different time
points. In this paper, we are more concerned with the na-
ture of latent trait growth trajectory (linear or quadratic
growth) and with whether growth patterns are identical for
different individual background variables (e.g., genders and
socioeconomic statuses).

In this paper, we propose a longitudinal multilevel TS-
IRT(LMTS-IRT) model that measures changes in individ-
ual growth over time. We use a combined Bayesian algo-
rithm that combines the Metropolis-within-Gibbs algorithm
([23, 30, 39]) with the Gibbs algorithm ([15, 20]) to simul-
taneously estimate parameters, and a combined Bayesian
procedure is developed. Specifically, the Metropolis-within-
Gibbs algorithm is used to estimate parameters without con-
jugate priors so that the full conditional distributions are
not available ([21]) while the Gibbs algorithm is used to

estimate other parameters with conjugate priors. Addition-
ally, the DIC and WAIC were used to assess model fit in the
simulation study. Finally, a longitudinal dataset about the
development of achievement in mathematics illustrates the
significance and implementation of the proposed procedure.

The remainder of this paper is organized as follows. In
Section 2, the LMTS-IRT model and its identifiability are
described. This is followed by a description of our combined
Bayesian sampling procedure and a discussion of model se-
lection criteria in Section 3. In Section 4, simulation studies
are conducted to evaluate the performance of our Bayesian
sampling algorithm and of the model assessment method. In
addition, an analysis of the longitudinal education quality
assessment data is given in Section 5. Finally, some conclud-
ing remarks are presented.

2. MODEL AND ITS IDENTIFICATION

A longitudinal multilevel item response model is proposed
that consists of three levels. At level 1, a TS-IRT model is
considered for the measurement of the time-specific latent
traits. At level 2, within-individual dependence is described
by a polynomial growth trajectory model. That is, latent
trait parameters are predicted from an individual growth
curve, which is a polynomial of degree H (H = 1, linear
growth model; H = 2, quadratic growth model). At level 3,
between-individual dependence is explained based on indi-
vidual’s background covariates under the framework of the
multilevel model.

2.1 TS-IRT model (Level 1)

Assume that there are K items and T measurement oc-
casions for a longitudinal assessment. For level 1, the correct
response probability is expressed as

(1) ptik = P (Ytik = 1 |θti, ξtk ) =
exp (atkθti − btk)

1 + exp (atkθti − btk)
.

In Equation (1), Ytik denotes the response of the ith exam-
inee at the tth measurement occasion on the kth item, and
the correct response probability is expressed ptik; θti is the
latent trait of examinee i (i = 1, ..., n) at measurement oc-
casion t (t = 1, ..., T ); and ξtk = (atk, btk)

′
denotes the vec-

tor of item parameters, whereby atk and btk (k = 1, ...,K)
are respectively the discrimination (slope) parameter and
difficulty (intercept) parameter for the kth item at the tth
measurement occasion.

2.2 Longitudinal individual growth model
(Level 2)

Many phenomena related to individual ability changes
can be represented through a two-level model. At level 2,
each individual’s latent trait development is represented
by an individual growth trajectory, that is dependent on
a unique set of parameters. These individual growth pa-
rameters become outcome variables in the level-3 model,
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wherein they can depend on individual background charac-
teristics ([35]). Measurements made at different time points
are regarded as “nested” within individuals. Therefore, the
individual growth trajectory model can be described as fol-
lows:

(2) θti = π0i + π1idti + π2id
2
ti + ...+ πHid

H
ti + eti.

In Equation (2), the latent trait growth level over time
is represented as a polynomial of degree H. The vari-
able dti is the test time parameter at occasion t for ex-
aminee i, and πs denote coefficients of the polynomial
function. Random error terms, etis, are assumed to fol-
low a common normal distribution with mean 0 and vari-
ance σ2. Note that [11] argued that it is defensible to
assume a simple error variance structure (the errors are
uncorrelated between the time points and error variances
are homogeneous), wherein there are a limited number
of time points. In such cases with short time series, this
assumption is very practical and analysis results are ro-
bust.

2.3 Multilevel model (Level 3)

Assume that the growth parameters vary across individ-
uals, thus individual growth trajectory parameters can be
represented by person-level background covariates such as
an individual’s socioeconomic status (SES) and gender. We
formulate the person-level model to explain this variation as
follows:

(3) πhi = βh0 + βh1x1i + βh2x2i + ...+ βhSxSi + uhi.

In Equation (3), xsi is the sth (s = 1, ..., S) person-level
background covariate for examinee i, and βhs is the effect of
xsi on the hth growth parameter. uhi (h = 0, ..., H) is the
level-3 random residual effect for examinee i, and the vector
u = (u0i, u1i, u2i, ..., uHi) is assumed to follow a multivari-
ate normal distribution with mean vector 0 and covariance
matrix Ω(H+1)×(H+1).

2.4 Model identification

To ensure the identification of the single-level two-
parameter IRT model, either the scale of latent traits or
the scale of item parameters have to be restricted ([27, 40]).
One can set the mean and variance of the latent traits to
zero and one, respectively ([7]). Alternatively, one way to re-
strict the scale of item parameters is to impose constraints

of
∏
k

ak = 1 and
∑
k

bk = 0 on model item parameters;

the equivalent form anchors one discrimination parameter
to 1 and one difficulty parameter to 0 ([14]). On the other
hand, as there is overlap between items anchored at different
times (i.e., anchor items) in longitudinal analysis, in this ar-
ticle we restrict the anchor item parameters at different time
points as known and pre-linked to identify the LMTS-IRT
model ([43]).

3. BAYESIAN ESTIMATION AND MODEL
SELECTION

3.1 Bayesian estimation

A combined Bayesian algorithm is used to estimate pa-
rameters of interest. Let Ψ =

(
θ, ξ,π, σ2,β,Ω

)
represent

the set of all item parameters at different time points. Let
denote the time-based loading matrix. The joint posterior
distribution of the parameters given the data can be writ-
ten as follows:

p
(
Ψ
∣∣Y , D,X

)
∝

T∏
t=1

n∏
i=1

K∏
k=1

p
(
Ytik

∣∣θti, ξtk)p(θti∣∣πi, σ
2, dti

)
× p

(
πi

∣∣β,Ω,Xi

)
p
(
β
)
p
(
ξtk
)
p
(
σ2
)
p
(
Ω
)
.(4)

Our combined algorithm requires sampling from the follow-
ing posterior distributions in turn:

• Step 1: Sample the ability parameter θti for the ith
individual for the measurement occasion t from the full
conditional distribution

[
θti
∣∣at·, bt·, dti,πi, σ

2,Y ti

]
.

Here, at· = (at1, at2, · · · , atK), bt· = (bt1, bt2, · · · , btK)
and Y ti = (Yti1, Yti2, · · · , YtiK).

• Step 2: Sample the difficulty parameter btk for the
measurement occasion t from the full conditional distri-
bution [btk |atk,θt·,Y tk ]. Here, θt· = (θt1, θt2, · · · , θtn)
and Y tk = (Yt1k, Yt2k, · · · , Ytnk).

• Step 3: Sample the discrimination parameter atk for
the measurement occasion t from the full conditional
distribution [atk |btk,θt·,Y tk ].

• Step 4: Sample the level-2 random coefficients πi from[
πi

∣∣θi, σ
2,β,Ω

]
. Here, θi � θ·i = (θ1i, θ2i, · · · , θTi)

′
.

• Step 5: Sample the level-3 regression coefficients β
from [β |π,Ω ].

• Step 6: Sample the level-2 residual variance σ2 from[
σ2 |θ,π, v, ω

]
. Here, the prior for σ2 is an inverse-

Gamma(v, ω) distribution.
• Step 7: Sample the level-3 covariance matrix Ω

from [Ω |π,β, λ,Ξ]. Here, the prior for is an inverse-
Wishart(λ,Ξ) distribution.

For Steps 1 to 3, the Metropolis-Hastings Gibbs algo-
rithm is used to draw samples from the full conditional pos-
terior distributions because the parameters of interest do
not have closed form of the corresponding posterior dis-
tribution. Note that since the discrimination parameters
should be positive, we use the log-normal distribution as
the proposal distribution to ensure that the candidate sam-
ples are greater than zero. The proposal distribution of dis-
crimination parameters is assumed as a log-normal distribu-
tion with mean equal to the current estimation and variance
chosen to give an acceptance rate of 25 to 40 percent. For
Steps 4 to 7, it is easy and efficient to use the Gibbs algo-
rithm through the use of conjugate priors. Further detailed
information on the combined Bayesian algorithm is pro-
vided in the Appendix http://intlpress.com/site/pub/files/
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supp/sii/2020/0013/0001/SII-2020-0013-0001-s001.pdf and
the corresponding MATLAB program is available upon re-
quest.

3.2 Model selection

It is well known that two widely used model selection
criteria are the Akaike information criterion (AIC) ([1])
and Bayesian information criterion (BIC) ([37]), which de-
pend on the effective number of parameters in a model as
a measure of model complexity. However, as a drawback
of these measures, they are often difficult to calculate for
random-effect models, as the effective number of parame-
ters is heavily dependent on higher-level variance parame-
ters. When the variance in random effects approaches zero,
all random effects are equal and the model reduces to a sim-
ple linear model with one mean parameter. However, when
the variance goes to infinity, the number of free param-
eters approaches the number of random effects. To over-
come the above problems, [38] proposed the deviance in-
formation criterion (DIC) for conducting model compar-
isons when the number of parameters is not clearly de-
fined in a random-effect model. The DIC is calculated as a
sum of deviance measure and penalty term for the effective
number of parameters based on a measure of model com-
plexity. In the Bayesian IRT literature, DIC is one of the
most popular model comparion methods and widely used
for multilevel models. The penalty term has the following
form:

pD = E (−2 log p (Y |θ,a, b )) + 2 log p
(
Y
∣∣θ,a, b)

= D (Ψ)−D
(
Ψ
)
.(5)

The deviance function is given by D (Ψ) =

−2 log

[
T∏

t=1

n∏
i=1

K∏
k=1

p (Ytik |θti, atk, btk )
]
. D (Ψ) =

(−2) 1
M

M∑
m=1

log

[
T∏

t=1

n∏
i=1

K∏
k=1

p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]
is

the posterior mean deviance and D
(
Ψ
)
is the estimated

deviance for the posterior estimate of Ψ. Only the com-
putation of the first term of its penalty term utilizes the
whole posterior distribution. Then the DIC is given as

(6) DIC =D (Ψ) + pD = 2D (Ψ)−D
(
Ψ
)
.

Within the competing models, those with lower DIC values
are preferred over those with higher DIC values.

Additionally, a more fully Bayesian approach is also used
to the model assessment. That is the widely applicable in-
formation criterion (WAIC; [17, 44, 45]). The penalty term
has the following form:

pWAIC =

T∑
t=1

n∑
i=1

K∑
k=1

varpost [log p (Ytik |θti, atk, btk )]

=

T∑
t=1

n∑
i=1

K∑
k=1

{
1

M − 1

M∑
m=1

[
log p

(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)

− 1

M

M∑
m=1

log p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]2}
(7)

Let̂lppd = the estimate of the log pointwise predictive density

=

T∑
t=1

n∑
i=1

K∑
k=1

log

[
1

M

M∑
m=1

p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]
.

(8)

Therefore, the WAIC can be written as

(9) WAIC = −2
(̂lppd− pWAIC

)
.

The model with a smaller WAIC has a better fit to the
data. As can be seen from equation (7), the computation
of the penalty term utilizes the whole posterior distribution
other than point estimates which is why WAIC is considered
full Bayesian. The theoretical superiority is acknowledged
([29, 41]); how such a strength translates into our simulation
remains unknown.

4. SIMULATION STUDY

4.1 Simulation study 1

Simulation design
The simulation study was conducted to evaluate the re-

covery performance of the combined Markov chain Monte
Carlo (MCMC) sampling algorithm. Three time points were
considered (i.e., t = 1, 2, 3). When estimating model param-
eters, 20% items per occasion were treated as anchor items,
which were assumed to be known and pre-linked. The follow-
ing manipulated conditions were considered: (a) test length
per occasion, K = 20 or 30 (i.e., there were 4 or 6 anchor
items at each measurement occasion); and (b) the number
of individuals, N = 500, 1,000 or 2,000. Fully crossing dif-
ferent levels of these two factors yielded 6 conditions (2 test
lengths × 3 sample sizes). Response data were simulated
using the level-1 TS-IRT model given by Equation (1). For
illustrative purpose, we used the quadratic growth model to
describe the level-2 individual development trajectory, and
the level-3 model that included two explanatory variables
was considered. The structural model can be written as

(10)

⎧⎪⎪⎨⎪⎪⎩
θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,
π1i = β10 + β11x1i + β12x2i + u1i,
π2i = β20 + β21x1i + β22x2i + u2i.

In Equation (10), eti ∼ N
(
0, σ2

)
, t = 1, 2, 3;⎛⎝ u0i

u1i

u2i

⎞⎠ ∼ N

⎛⎝⎛⎝ 0
0
0

⎞⎠ , Ω

⎞⎠ , where Ω=

⎛⎝ τ00 τ01 τ02
τ10 τ11 τ12
τ20 τ21 τ22

⎞⎠
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and dti were the time-specific covariates. True item discrim-
ination parameters atk for different time points were gen-
erated from log(N (exp (1) , 0.15)), t = 1, 2, 3. The item
difficulty parameters bik were respectively generated from
three normal distributions, i.e., b1k ∼ N (0, 0.05), b2k ∼
N (0.25, 0.05), and b3k ∼ N (0.5, 0.05). The ability parame-
ters of individuals θi were generated from the normal dis-
tribution N

(
Aiπi, σ2IT×T

)
, where the true value of the

level-2 residual variance was set to 0.15 (i.e., σ2 = 0.15) and
Di was a time-based loading matrix for examinee i (for fur-
ther details, please see step 4 in the appendix), and where
the level-2 random regression coefficients πi were induced by
a normal distribution with mean vector Xiβ and covariance
matrix Ω. Therefore, to generate πi, we only need to know
the true values of the fixed effect β and covariance matrix Ω
where β = (0 0.15 0.05; 0.35− 0.05 0.5; 0.3 − 0.225 0.15)
and Ω = (0.1 0.05 0.025; 0.05 0.1 0.005; 0.025 0.005 0.1).
Explanatory variables X were drawn from N (0.5, 1).

Prior distributions
We assume that priors of the discrimination and diffi-

culty parameters were taken to be atk ∼ logN (0, 0.5) and
btk ∼ N (0, 2) from [32, 33]. The fixed effect β followed the
normal prior distribution N (0, 100). The prior to the vari-
ance of the level-2 residual was assumed to follow an in-
verse gamma distribution with shape parameter v = 0.001
and rate parameter ω = 0.001. The prior to the level-3 co-
variance matrix Ω was set to be an inverse Wishart distri-
bution with small degrees of freedom λ = 4 and identity
matrix Ξ.

Convergence diagnostics
As an illustation, convergence diagnostics consider a sit-

uation in which the test length was 60 for three time points,
and the individual sample size was set to 1,000. The fol-
lowing two methods were used to check the convergence of
our algorithm: the Gelman-Rubin method ([16, 18]) and the
Raftery-Lewis diagnostic method ([34]). The convergence of
the MCMC sampler was checked by monitoring 5 chain trace
plots of parameters for consecutive sequences of 10,000 it-
erations. The first 2500 iterations were discarded as burn-in
period.

Figures 1 and 2 represented trace and autocorrelation
plots for the fixed-effect parameter vector β, level-2 vari-
ance parameter σ2, and level-3 variance-covariance param-
eter Ω, respectively. The Brooks-Gelman ratio diagnostic
R̂ (as an updated Gelman-Rubin statistic) plots were also
used to monitor the convergence and stability ([9, 16]). From

Figure 3, it can be seen that nine plots of R̂ were all close
to 1 rapidly and finally less than 1.2, which supported the
convergence of the MCMC sampler ([28]).

Parameter recovery
The accuracy of the parameter estimates was measured

by five evaluation criteria, i.e., Bias, Root Mean Squared Er-
ror (RMSE), Standard deviation (SD), Standard error (SE)
and coverage probability (CP) of the 95% highest posterior

Figure 1. The trace and autocorrelation plots for the
fixed-effect parameters β. Note that the first 2500 iterations

are discarded as burn-in time.

density intervals (HPDI) statistics. Let η be the parameter
of interest. Assume that M = 500 data sets were generated.
Also, let η̂(m) and SD(m) (η) denoted the posterior mean and
the posterior standard deviation of η obtained from the mth
simulated data set for m = 1, . . . ,M .

The Bias for parameter η is defined as

(11) Bias (η) =
1

M

M∑
m=1

(
η̂(m) − η

)
,

and the RMSE for parameter η is defined as

(12) RMSE (η) =

√√√√ 1

M

M∑
m=1

(
η̂(m) − η

)2
.

The simulation SE is the square root of the sample variance
of the posterior estimates over different simulated data sets.
It can be defined as
(13)

Simulation SE(η) =

√√√√ 1

M

M∑
m=1

(
η̂(m) − 1

M

M∑
�=1

η̂(�)

)2

.

and the average of posterior standard deviation can be de-
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Figure 2. The trace and autocorrelation plots for the
fixed-effect parameters β, level-2 variance parameter σ2, and
the level-3 covariance parameters Ω. Note that the first 2500

iterations are discarded as burn-in time.

fined as

(14) SD (η) =
1

M

M∑
m=1

SD(m) (η) .

The coverage probability can be defined as
(15)

CP (η)=
#of 95%HPDI containing η in M simulated data sets

M
.

Results
The average Bias, RMSE, SD, SE and CP for discrim-

ination and difficulty parameters at each time point were
shown in Tables 1. From Table 1, the following conclusions
can be obtained. (1) Given the total test length, when the
number of individuals increased from 500 to 2000, the av-
erage Bias, RMSE, SD and SE for discrimination and diffi-
culty parameters obviously decreased. For example, the to-
tal test length was 60 items and the three time points were
considered, when the number of individuals increased from
500 to 2000, the average Bias of all discrimination param-
eters decreased from 0.018 to 0.004, the average RMSE of
all discrimination parameters decreased from 0.013 to 0.067,
the average SD of all discrimination parameters decreased

Figure 3. The sequence of R̂ values of for multilevel model
parameters.

from 0.156 to 0.076, and the average of SE of all discrim-
ination parameters decreased from 0.158 to 0.093. (2) The
average SD were slightly less than the average SE, but they
were very close. This indicated that the fluctuation of pos-
terior mean between different replications was large com-
pared with the fluctuation of posterior mean in each repli-
cation. (3) At different time points, the average CP of the
discrimination and difficulty parameters were about 0.95.
(4) When the total test length increased from 60 to 90,
the average Bias, RMSE, SD and SE shown that the re-
covery results of the discrimination and difficulty parame-
ters were close to the case that total test length was 60,
which indicated that our algorithm was stable and did not
reduce the accuracy due to the increase in the number of
items.

The recovery performance of structure parameters for six
kinds of simulation design was shown in Table 2. From Ta-
ble 2, it can be found that the Bias of the fixed effect pa-
rameters (βs) had a range of −0.011∼0.006 under all six
conditions. The Bias had a range of −0.021∼ −0.016 for the
level-2 variance parameter

(
σ2
)
, and −0.039∼0.094 for the

level-3 covariance parameters (τ). The RMSE had a range
of 0.009∼0.100 for the fixed effect parameters, 0.021∼0.024
for the level-2 variance parameter, and 0.008∼0.101 for the
level-3 covariance parameters. Additionally, the SD of the
fixed effect parameters had a range of 0.010∼0.101. The SD
had a range of 0.014∼0.021 for the level-2 variance parame-
ter, 0.007∼0.067 for the level-3 covariance parameters. The
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t. SE had a range of 0.009∼0.100 for the fixed effect parame-

ters, 0.007 ∼0.013 for the level-2 variance, and 0.007∼0.036
for the level-3 covariance parameters. Moreover, the CP of
the fixed effect parameters had a range of 0.914∼0.966 un-
der six different design conditions. The CP had a range
of 0.784∼0.926 for the level-2 variance parameter. The CP
had a range of 0.802∼0.958 for the level-3 covariance pa-
rameters. In summary, it is obvious that the Bayesian sam-
pling algorithm provided accurate estimates of the item and
structure parameters in term of five indexes evaluation re-
sults.

4.2 Simulation study 2

The purpose of this simulation was to show our Bayesian
sampling algorithm was effective to recover various prior
distributions of the item parameters, where the sensitivity
analysis based on item parameter prior distribution with a
larger variance was addressed.

Simulation Design
As an illustration, the number of individuals was fixed on

1000. Three time points were considered and test length per
occasion was K = 20 (i.e., there were 4 anchor items at each
measurement occasion). Response data were generated from
the level-1 time-specific IRT model given by Equation (1).
The growth model and the level-3 model were same as the
simulation study 1. The true values of parameters were also
same as the simulation study 1. Next, the four types of priors
were given by the following: (i) aj ∼ logN (0, 0.5) and bj ∼
N (0, 0.5); (ii) aj ∼ logN (0, 1) and bj ∼ N (0, 1); (iii) aj ∼
logN (0, 10) and bj ∼ N (0, 10); (iv) aj ∼ logN (0, 100) and
bj ∼ N (0, 100).

Results
The Bayesian sampling algorithm was iterated 10,000

times. The first 2,500 iterations were discarded as burn-in
period. 500 replications were considered in this simulation.
The recovery performance of item parameters for four kinds
of simulation design was shown in Table 3. It can be found
that the average Bias of the discrimination parameters had a
range of 0.008∼0.029 under four conditions (−0.031∼0.004
for difficulty parameters). Additionally, the average RMSE
of the discrimination parameters had a range of 0.095∼0.174
under four conditions (0.067∼0.099 for difficulty parame-
ters). The average SD and SE of the discrimination param-
eters had the range of 0.108∼0.191 and 0.118∼0.201 under
four conditions, and the average SD and SE of the difficulty
parameters had the range of 0.073∼0.110 and 0.087∼0.121
under four conditions. The average SD were slightly less
than the average SE, but they were very close. Moreover,
we found that when the prior variances of the discrimination
and difficulty parameters increased from 0.5 to 10, the av-
erage RMSE of the discrimination and difficulty parameters
increased slightly, which indicated that there was almost no
change in the estimation accuracy when the prior changed
from informative prior to non-informative prior (variance

Bayesian longitudinal multilevel item response modeling approach 7



Table 2. Evaluating the accuracy of the fixed and random effect parameters in simulation study 1

No. of items=60
No. of individuals 500 No. of individuals 1000 No. of individuals 2000

Fixed effect Bias RMSE SD SE CP Bias RMSE SD SE CP Bias RMSE SD SE CP

β00 -0.003 0.053 0.053 0.053 0.946 -0.002 0.040 0.037 0.040 0.914 0.000 0.027 0.026 0.027 0.946
β01 0.005 0.022 0.022 0.021 0.952 0.002 0.016 0.015 0.016 0.958 0.001 0.011 0.011 0.011 0.952
β02 -0.001 0.022 0.022 0.022 0.956 -0.001 0.015 0.015 0.014 0.958 -0.000 0.011 0.011 0.011 0.960
β10 -0.000 0.052 0.051 0.052 0.932 0.002 0.037 0.036 0.037 0.966 0.002 0.026 0.025 0.026 0.940
β11 0.001 0.027 0.028 0.027 0.948 -0.001 0.018 0.020 0.018 0.964 0.000 0.014 0.014 0.014 0.932
β12 -0.011 0.032 0.029 0.030 0.928 -0.003 0.019 0.021 0.019 0.958 -0.002 0.015 0.014 0.014 0.954
β20 0.002 0.100 0.101 0.100 0.928 -0.002 0.075 0.071 0.075 0.928 -0.003 0.051 0.050 0.051 0.940
β21 0.006 0.042 0.040 0.042 0.922 0.003 0.029 0.028 0.029 0.938 0.001 0.020 0.020 0.020 0.952
β22 -0.002 0.039 0.041 0.039 0.950 -0.001 0.030 0.028 0.031 0.938 0.000 0.018 0.020 0.018 0.966

Random effect Bias RMSE SD SE CP Bias RMSE SD SE CP Bias RMSE SD SE CP

σ2 (level-2 var.) -0.016 0.021 0.021 0.013 0.926 -0.019 0.022 0.017 0.011 0.878 -0.019 0.021 0.015 0.009 0.822
τ00 0.020 0.027 0.024 0.018 0.956 0.019 0.024 0.019 0.014 0.936 0.018 0.021 0.016 0.010 0.900
τ10 -0.012 0.018 0.016 0.013 0.902 -0.007 0.013 0.012 0.011 0.924 -0.005 0.010 0.009 0.008 0.926
τ11 0.028 0.035 0.026 0.021 0.896 0.022 0.026 0.020 0.015 0.898 0.018 0.022 0.016 0.012 0.852
τ20 -0.039 0.044 0.031 0.019 0.868 -0.035 0.038 0.026 0.015 0.844 -0.031 0.033 0.022 0.011 0.838
τ21 0.010 0.025 0.028 0.023 0.978 0.008 0.020 0.021 0.019 0.946 0.005 0.015 0.015 0.014 0.952
τ22 0.094 0.101 0.067 0.036 0.894 0.085 0.091 0.058 0.031 0.804 0.076 0.080 0.051 0.026 0.802

No. of items=90
No. of individuals 500 No. of individuals 1000 No. of individuals 2000

Fixed effect Bias RMSE SD SE CP Bias RMSE SD SE CP Bias RMSE SD SE CP

β00 -0.004 0.044 0.045 0.044 0.960 -0.003 0.034 0.032 0.034 0.930 -0.002 0.023 0.023 0.023 0.934
β01 0.005 0.022 0.021 0.021 0.946 0.002 0.015 0.015 0.015 0.932 0.001 0.010 0.010 0.011 0.958
β02 -0.001 0.021 0.021 0.021 0.954 -0.001 0.015 0.015 0.015 0.944 -0.001 0.009 0.010 0.009 0.956
β10 -0.001 0.043 0.044 0.043 0.960 0.000 0.032 0.031 0.032 0.948 0.001 0.021 0.022 0.021 0.946
β11 0.002 0.025 0.026 0.025 0.956 0.001 0.018 0.018 0.018 0.948 0.000 0.013 0.012 0.013 0.940
β12 -0.009 0.028 0.026 0.027 0.936 -0.004 0.019 0.018 0.019 0.938 -0.002 0.013 0.013 0.013 0.960
β20 0.001 0.089 0.085 0.089 0.938 0.001 0.060 0.060 0.060 0.952 0.001 0.043 0.042 0.043 0.952
β21 0.006 0.038 0.037 0.037 0.948 0.002 0.027 0.026 0.027 0.954 0.001 0.018 0.018 0.018 0.936
β22 -0.001 0.039 0.037 0.039 0.954 -0.001 0.026 0.026 0.026 0.946 0.000 0.019 0.018 0.019 0.948

Random effect Bias RMSE SD SE CP Bias RMSE SD SE CP Bias RMSE SD SE CP

σ2 (level-2 var.) -0.021 0.024 0.018 0.011 0.836 -0.021 0.023 0.016 0.009 0.790 -0.020 0.021 0.014 0.007 0.784
τ00 0.016 0.023 0.021 0.015 0.958 0.018 0.021 0.018 0.012 0.928 0.017 0.019 0.015 0.009 0.912
τ10 -0.010 0.016 0.014 0.012 0.902 -0.006 0.011 0.010 0.009 0.922 -0.004 0.008 0.007 0.007 0.916
τ11 0.023 0.029 0.022 0.017 0.928 0.019 0.024 0.018 0.014 0.876 0.017 0.020 0.014 0.010 0.836
τ20 -0.034 0.038 0.027 0.016 0.896 -0.033 0.035 0.023 0.013 0.860 -0.030 0.032 0.021 0.009 0.832
τ21 0.008 0.020 0.024 0.018 0.992 0.005 0.017 0.018 0.016 0.954 0.004 0.013 0.013 0.012 0.950
τ22 0.089 0.095 0.061 0.033 0.854 0.080 0.085 0.054 0.029 0.824 0.073 0.076 0.049 0.021 0.802
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Table 3. Evaluating the accuracy of item parameters based on the different prior distributions in simulation study 2

(i) (ii)
Item parameter Bias RMSE SD SE CP Bias RMSE SD SE CP

Discrimination a1· 0.011 0.108 0.123 0.130 0.954 0.013 0.116 0.128 0.140 0.945
Discrimination a2· 0.022 0.148 0.174 0.173 0.955 0.026 0.166 0.186 0.193 0.943
Discrimination a3· 0.008 0.095 0.108 0.118 0.948 0.009 0.099 0.110 0.123 0.945

Difficulty b1· -0.005 0.090 0.105 0.112 0.954 -0.007 0.097 0.109 0.119 0.948
Difficulty b2· -0.015 0.067 0.073 0.087 0.947 -0.003 0.067 0.074 0.089 0.950
Difficulty b3· -0.031 0.078 0.079 0.090 0.918 -0.004 0.072 0.081 0.094 0.947

(iii) (iv)
Item parameter Bias RMSE SD SE CP Bias RMSE SD SE CP

Discrimination a1· 0.013 0.119 0.130 0.143 0.945 0.013 0.119 0.130 0.143 0.944
Discrimination a2· 0.028 0.173 0.191 0.201 0.940 0.029 0.174 0.191 0.201 0.940
Discrimination a3· 0.009 0.100 0.111 0.124 0.944 0.009 0.100 0.111 0.124 0.945

Difficulty b1· -0.008 0.099 0.110 0.121 0.947 -0.008 0.099 0.110 0.121 0.946
Difficulty b2· 0.001 0.068 0.075 0.091 0.947 0.001 0.068 0.075 0.090 0.948
Difficulty b3· 0.004 0.074 0.082 0.095 0.949 0.004 0.074 0.082 0.095 0.948

Note that the Bias, RMSE, SD, SE and CP denote the average Bias, RMSE, SD, SE and CP for the parameters at each time point.

increased from 0.5 to 10). When the prior variances of the
discrimination and difficulty parameters increased from 10
to 100, the average Bias, RMSE, SD, SE and CP of the dis-
crimination and difficulty parameters were almost the same
for both cases. This indicated that when the prior variance
researchs 10, the prior was “flat” enough to provide rela-
tively little information.

The recovery performance of structure parameters for
four kinds of prior design was shown Table 4. From Table 4,
it can be found that the Bias of the fixed effect parameters
had a range of −0.018∼0.005 under all four conditions. The
Bias had a range of −0.021∼ −0.019 for the level-2 variance
parameter, and −0.034∼0.086 for the level-3 covariance pa-
rameters. The RMSE had a range of 0.014∼0.074 for the
fixed effect parameters, 0.022∼0.024 for the level-2 variance
parameter, and 0.013∼0.091 for the level-3 covariance pa-
rameters. Additionally, the SD of the fixed effect parameters
had a range of 0.015∼0.071. The SD is 0.017 for the level-2
variance parameter under all four conditions, 0.012∼0.058
for the level-3 covariance parameters. The SE had a range
of 0.014∼0.074 for the fixed effect parameters, 0.011∼0.012
for the level-2 variance, and 0.011∼0.031 for the level-3 co-
variance parameters. The recovery results of the structure
parameters were almost the same under the four simulation
conditions.

4.3 Simulation study 3

In this section, simulation study was designed to evaluate
the performance of the two criteria in terms of selection the
true model. We used the DIC and WAIC tools to identify
a TS-IRT model combined with three different longitudinal
multilevel models. The true LMTS-IRT model differed by
(1)whether linear growth or quadratic growth was used as
the true individual growth model; (2)whether significant in-
dividual covariates were included. The simulation study was
described in detail below.

Simulation design

The number of time points was fixed at 3, the total num-
ber of items was set to 60 and there had 20 items including
4 anchor items at each time point. In addition, the number
of individuals (N = 500, 1000, 2000) were considered. The
same true values and the prior distributions were used as
in simulation study 1. Three longitudinal multilevel models
were given by
(16)

Model 1.

⎧⎨⎩ θti = π0i + π1idti + eti,
π0i = β00 + β01x1i + β02x2i + u0i,
π1i = β10 + β11x1i + β12x2i + u1i,

where eti∼N
(
0,σ2

)
,

(
u0i

u1i

)
∼N

((
0
0

)
,

(
τ00 0
0 τ11

))
, and

(17)

Model 2.

⎧⎪⎪⎨⎪⎪⎩
θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,
π1i = β10 + u1i,
π2i = β20 + u2i.

where eti ∼ N
(
0, σ2

)
,

⎛⎝ u0i

u1i

u2i

⎞⎠ ∼ N

⎛⎝⎛⎝ 0
0
0

⎞⎠ ,Ω

⎞⎠, and

(18)

Model 3.

⎧⎪⎪⎨⎪⎪⎩
θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,
π1i = β10 + β11x1i + β12x2i + u1i,
π2i = β20 + β21x1i + β22x2i + u2i.

where eti ∼ N
(
0, σ2

)
,

⎛⎝ u0i

u1i

u2i

⎞⎠ ∼ N

⎛⎝⎛⎝ 0
0
0

⎞⎠ ,Ω

⎞⎠.

Nine simulated datasets (3 sample sizes × 3 growth tra-
jectories) were generated from the TS-IRT model combined

Bayesian longitudinal multilevel item response modeling approach 9



Table 4. Evaluating the accuracy of the fixed and random effect parameters in simulation study 2

(i) (ii)

Fixed effect Bias RMSE SD SE CP Bias RMSE SD SE CP

β00 -0.016 0.041 0.036 0.038 0.898 -0.004 0.040 0.037 0.039 0.924
β01 0.002 0.016 0.015 0.016 0.960 0.003 0.016 0.015 0.016 0.946
β02 -0.001 0.014 0.015 0.014 0.962 -0.001 0.014 0.016 0.014 0.952
β10 -0.018 0.039 0.035 0.034 0.918 -0.001 0.036 0.036 0.036 0.968
β11 -0.001 0.018 0.020 0.018 0.960 -0.001 0.018 0.020 0.018 0.960
β12 -0.003 0.020 0.020 0.019 0.956 -0.004 0.020 0.021 0.019 0.952
β20 -0.003 0.070 0.069 0.070 0.930 -0.003 0.073 0.071 0.073 0.934
β21 0.003 0.029 0.028 0.029 0.938 0.004 0.029 0.028 0.029 0.940
β22 -0.001 0.030 0.028 0.030 0.938 -0.001 0.030 0.028 0.030 0.934

Random effect Bias RMSE SD SE CP Bias RMSE SD SE CP

σ2 (level-2 var.) -0.019 0.022 0.017 0.011 0.864 -0.020 0.023 0.017 0.011 0.858
τ00 0.019 0.024 0.019 0.014 0.934 0.017 0.022 0.019 0.014 0.948
τ10 -0.007 0.013 0.012 0.011 0.922 -0.007 0.013 0.012 0.011 0.934
τ11 0.022 0.027 0.020 0.015 0.890 0.023 0.027 0.020 0.015 0.884
τ20 -0.034 0.038 0.025 0.015 0.858 -0.033 0.037 0.025 0.015 0.868
τ21 0.008 0.020 0.021 0.019 0.956 0.008 0.020 0.021 0.019 0.948
τ22 0.085 0.090 0.058 0.031 0.814 0.085 0.091 0.057 0.031 0.788

(iii) (iv)

Fixed effect Bias RMSE SD SE CP Bias RMSE SD SE CP

β00 -0.000 0.041 0.037 0.040 0.916 -0.000 0.040 0.037 0.040 0.916
β01 0.003 0.016 0.015 0.016 0.950 0.003 0.016 0.015 0.016 0.948
β02 -0.001 0.014 0.015 0.014 0.956 -0.001 0.015 0.015 0.015 0.956
β10 0.005 0.037 0.036 0.036 0.968 0.005 0.037 0.036 0.036 0.968
β11 -0.001 0.018 0.020 0.018 0.960 -0.001 0.018 0.020 0.018 0.962
β12 -0.005 0.020 0.021 0.019 0.954 -0.004 0.020 0.020 0.019 0.954
β20 -0.002 0.074 0.071 0.074 0.928 -0.003 0.074 0.071 0.074 0.930
β21 0.003 0.029 0.028 0.029 0.940 0.004 0.029 0.028 0.028 0.946
β22 -0.001 0.030 0.028 0.030 0.938 -0.002 0.030 0.028 0.030 0.936

Random effect Bias RMSE SD SE CP Bias RMSE SD SE CP

σ2 (level-2 var.) -0.021 0.024 0.017 0.011 0.828 -0.021 0.024 0.017 0.011 0.834
τ00 0.016 0.022 0.019 0.014 0.948 0.016 0.022 0.019 0.014 0.948
τ10 -0.007 0.014 0.012 0.011 0.922 -0.007 0.014 0.012 0.011 0.922
τ11 0.023 0.027 0.020 0.015 0.890 0.023 0.027 0.020 0.015 0.886
τ20 -0.033 0.036 0.025 0.015 0.880 -0.033 0.036 0.025 0.015 0.874
τ21 0.009 0.021 0.021 0.019 0.944 0.009 0.021 0.021 0.019 0.934
τ22 0.085 0.091 0.057 0.031 0.782 0.086 0.091 0.057 0.031 0.786

with longitudinal multilevel models (TS-IRT⊕Model 1, TS-
IRT⊕Model 2 and TS-IRT⊕Model 3). To compare the per-
formances of different model selection methods, we ran 500
replications in each condition and computed the proportion
of times when the generating model was selected as the true
model.

Results

From Table 5, the results indicated that the percent-
ages were fairly consistent between DIC and WAIC. When
data were generated from TS-IRT⊕Model 1, and those chose
TS-IRT⊕Model 1 with probalility higher than 92%. When
data were generated from TS-IRT⊕Model 3, and those chose
TS-IRT⊕Model 3 with probalility higher than 98.2%. How-
ever, When data were generated from TS-IRT⊕Model 2, the
percentages of two criteria cannot easily distinguish mod-

els (TS-IRT⊕Model 2 and TS-IRT⊕Model 3) that differ
by multilevel covariates. This might be because the unre-
markable difference between the TS-IRT⊕Model 2 and TS-
IRT⊕Model 3 in the process of model selection. By calcu-
lating the specific values of the DIC and WAIC, we found
that the DIC was low difference between the two models,
and WAIC was low difference between the two models too.
In the case of three sample sizes (N =500,1000 and 2000),
Figure 4 showed that the medians of DIC differences be-
tween TS-IRT⊕Model 2 and TS-IRT⊕Model 3 were 3.844,
5.053 and 4.172, respectively. The medians of WAIC dif-
ferences between TS-IRT⊕Model 2 and TS-IRT⊕Model 3
were 4.159, 5.444 and 4.673, respectively. Considering the
very low difference, both DIC and WAIC were difficult to
accurately select the true model, additional indexes might
be needed. Other similar kinds of situations also occured in

10 S. Qu, J. Zhang, and J. Tao



Table 5. The percentage of correct selection for the different simulated data sets using DIC and WAIC

The number of individuals N=500

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 92 0 1 93.8 0 1.8
Model 2 0 36 0 0 34 0
Model 3 8 64 99 6.2 66 98.2

The number of individuals N=1,000

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 92.6 0 0 92.8 0 0
Model 2 0 32 0 0 32 0
Model 3 7.4 68 100 7.2 68 100

The number of individuals N=2,000

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 94.1 0 0 95.3 0 0
Model 2 0 38.4 0 0 35.4 0
Model 3 5.9 61.6 100 4.7 64.6 100

Figure 4. Boxpolts of DIC and WAIC based on the true model
2 in the simulation study 3.n=the number of individuals.

educational psychology ([46]). In our simulation study, the
inclusion of covariates were considered, the 95%HPDI of β11,
β12, β21 and β22 can be calculated as a variable selection
index ([46]) to evaluate whether the inclusion of covariates
were needed in the model. This was because TS-IRT⊕Model
2 to TS-IRT⊕Model 3 differ essentially on whether the cer-
tain covariates were included. The proportions of the 95%

HPDI of β11, β12, β21 and β22 contained zero were higher
than 93.4% in the TS-IRT⊕Model 3. The results indicated
that these parameters were not significantly different from
0 and were not included in the model. Therefore, the TS-
IRT⊕Model 2 was an appropriate model to fit the 500 data
sets which were generated from TS-IRT⊕Model 2. In addi-
tion, as the number of individuals increased, the percent-
ages of correct selection increased in most cases. Specifi-
cally, althoughWAIC seemed to perform slightly better than
DIC, there were some conditions in which WAIC perform
slightly worse. For example, when the generating model is
TS-IRT⊕Model 2, DIC has a slightly higher percentage of
choosing the true model.

5. ANALYSIS OF THE LONGITUDINAL
EDUCATION QUALITY ASSESSMENT

DATA

The dataset analyzed came from the Student Develop-
ment Program (SDP) initiated by the Changchun Educa-
tion Bureau that includes short-term and long-term plans.
Compared to the long-term plan (three academic years from
grade 1 to grade 3), the short-term plan (half a semester in
an academic year) used in this study was focused mainly
on the development of achievement in mathematics mea-
sured over a relatively short period of time. The short-term
plan was designed to modify current teaching programs in a
timely manner, and to put forward corresponding teaching
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strategies for different groups (genders or family socioeco-
nomic statuses) of students with different growth trajecto-
ries.

The test data included a two-stage cluster sample of 3,109
students in grade 2 of junior middle schools. The students
were from 16 different schools. The number of enrolled stu-
dents ranged from 124 to 255 for different schools. The sam-
pling population was first classified according to district, and
schools were then selected at random. Second, students were
selected at random from each school. Achievement in math-
ematics was measured over four time points (FSE, the first
sectional examination; MTE, a middle-term exam; TSE, the
third sectional examination; and FE, a final exam). More-
over, all 3,109 students were assessed at exactly the same
time over the course of the study. Students took 24 items
at each time point. Each set of items included 4 anchor
items that do not overlap across time points. This lack of
overlapping items across time points was designed to elim-
inate potential practical effects and to prevent the occur-
rence of security breaches. The anchor items were known
and pre-linked. Here, we focused on a core sample of 2,000
students from 3,109 students. In addition, the level-2 back-
ground covariates of individuals were measured. At the indi-
vidual level, gender (0=male, 1=female) and socioeconomic
status (SES) were measured. The SES was measured based
on the parents’ degrees of education and scaled as five-point
Likert items ranging from 0 to 4 (0=lowest, 4=highest).

5.1 Longitudinal multilevel IRT models

We considered four competing LMTS-IRT models to fit
the real data. The level-1 model was a two-parameter TS-
IRT model used to define the relationship between ob-
servable item responses and latent constructs. The TS-IRT
model was the same but with four different longitudinal mul-
tilevel models.

Model 4 consists of the level-2 linear growth model and
multilevel model. The random intercept π0i in model 4 is
explained by two background variables (SES and Gender)
at level 3. The model has the following form:
(19)

Model 4.

⎧⎨⎩ θti = π0i + π1iTimei + eti,
π0i = β00 + β01Genderi + β02SESi + u0i,
π1i = β10 + u1i.

where the error eti is normally distributed with mean zero
and variance σ2. The error terms at level 3, u0i and u1i,
are bivariate normally distributed with mean vector 0 and
covariance matrix Ω1, and they are independent of the level-
2 residuals.

Model 5 is an extended version of model 4 by including
two variables (SES and Gender) at level 3 to explain the
random slope. Model 5 has the following form:
(20)

Model 5.

⎧⎨⎩ θti = π0i + π1iTimei + eti,
π0i = β00 + β01Genderi + β02SESi + u0i,
π1i = β10 + β11Genderi + β12SESi + u1i.

Model 6 consists of the level-2 quadratic growth model
and level-3 multilevel model. The random intercept π0i and
random slopes for the first (π1i) and second (π2i) order poly-
nomial time effects, where the random intercept is defined
conditionally on the Gender and SES variables. Model 6 is
given by
(21)

Model 6.

⎧⎪⎪⎨⎪⎪⎩
θti = π0i + π1iTimei + π2iTime2i + eti,
π0i = β00 + β01Genderi + β02SESi + u0i,
π1i = β10 + u1i,
π2i = β20 + u2i.

Model 7 is an extended version of model 6 by including
two background variables (SES and Gender) at level 3 to
explain the random slopes. Model 7 has the following form:
(22)

Model 7.

⎧⎪⎪⎨⎪⎪⎩
θti = π0i + π1iTimei + π2iTime2i + eti,
π0i = β00 + β01Genderi + β02SESi + u0i,
π1i = β10 + β11Genderi + β12SESi + u1i,
π2i = β20 + β21Genderi + β22SESi + u2i.

The combined sampling procedure was applied to esti-
mate parameters of various models. For each chain, 10,000
iterations were run with the first 2,500 iterations as the
burn-in period.

5.2 Model selection and parameter
estimation

First, the DIC and WAIC tools were used to identify
the competing LMTS-IRT models. From Table 6, combin-
ing model 7 with the TS-IRT model generated the smallest
effective number of model parameters, which was preferred
given the DIC and WAIC values among the four competing
models. It can be found that the quadratic growth model
was more appropriate for fitting the real data than the lin-
ear growth model. In addition, the level-2 random-effect co-
efficients, which were modeled by individual-level covariates
(level-3 Gender and SES ), led to a serious reduction in the
effective number of model parameters inferred from the pD
and pWAIC values in Table 6.

According to the above model selection results, model 7
combined with the TS-IRT model as the best-fitting model
is used to analyze the real data. The expectation a pos-
teriori estimation, standard deviation, and 95% HPDI of

Table 6. The results of Bayesian model assessment for the
real data

Model specification pD DIC pWAIC WAIC

The linear model

Model 4 5,682.5 142,604.3 5,303.8 142,557.2

Model 5 5,384.6 142,350.1 4,991.9 142,240.4

The quadratic model

Model 6 5,386.3 142,042.5 5,066.0 142,051.3

Model 7 5,035.3 141,721.7 4,748.3 141,710.1
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Table 7. Parameter estimates of the longitudinal multilevel
model parameters for real data

Fixed effect Coefficient SD HPDI

β00 0.027 0.018 [−0.007, 0.061]
β01 −0.041 0.012 [−0.064,−0.018]
β02 0.510 0.012 [0.487, 0.534]
β10 1.459 0.020 [1.431, 1.510]
β11 −0.110 0.011 [−0.132,−0.087]
β12 0.506 0.013 [0.482, 0.532]
β20 0.015 0.016 [−0.014, 0.047]
β21 −0.154 0.011 [−0.175,−0.133]
β22 0.018 0.012 [−0.004, 0.041]

Random effect Coefficient SD HPDI

σ2 (level-2 var.) 0.142 0.008 [0.126, 0.156]
τ00 0.117 0.009 [0.097, 0.135]
τ10 0.058 0.007 [0.045, 0.072]
τ11 0.011 0.009 [0.089, 0.125]
τ20 0.015 0.006 [0.004, 0.027]
τ21 −0.025 0.006 [−0.032,−0.013]
τ22 0.108 0.008 [0.093, 0.125]

Figure 5. Posterior means and 95% HPDIs for the
discrimination and difficulty parameters of SDP data.

the structural parameters were shown in Table 7. Figure
5 represented the posterior means and 95% HPDIs of the
item discrimination and difficulty parameters, respectively.
As the anchor items were known and pre-linked, there were
totally 80 items need to be estimated. Now, we considered
the following two practical issues.

Conditional on the level-3 SES, how should the male
students perform compared to female students in terms
of mathematics performance as measured at the four time
points? Figure 6 showed the differences between male and
female students in terms of mathematics performance given
the level-3 SES (SES=0,...,4). Over time, the male stu-
dents’ mathematics abilities (circle) were generally better

Figure 6. The development trajectories of latent ability for
male and female students given a family SES.

than those of the female students (pentagram). For the first
two time points, differences between the male and female
students in terms of mathematical ability were not remark-
able. The findings revealed that the male students may have
strong logical thinking and spatial thinking capacities that
had not been fully identified through the preliminary assess-
ment. Moreover, improvements in ability for the male and
female students from families of moderate to high SES were
found to occur faster than those of the other three categories
(steeper growth trajectory). In addition, the students who
are of the same Gender but have different SES do have dif-
ferent effects. According to Figure 7, for the male and female
students, the average growth rates of the five curves were not
the same. Over time, all of students’ mathematical abilities
improved. However, the higher one’s SES was, the greater
one’s capacity becomed. Furthermore, the capacities of the
female students with the lowest SES (i.e., SES=0) improved
more slowly than those of the other four categories.

The analysis of growth trajectories may help one gain
a stronger understanding of the development of student
achievement over time. Both educators and students should
properly understand Gender\SES differences and teachers
should consciously manage to improve female student train-
ing in logical thinking and spatial thinking capacities in ju-
nior middle school period.
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Figure 7. The development trajectories of latent ability for
students for different family SES.

6. CONCLUDING REMARKS

The developed LMTS-IRT model has three levels. At level
1, a TS-IRT model is selected to characterize item responses
across time points. At level 2, a latent ability growth model
that takes into account variations in latent traits across
measurement occasions among persons is formulated. In the
latent ability growth model, a polynomial growth curve is
specified to describe how the expected value of a response
variable changes over time. At level 3, a multilevel regres-
sion model is incorporated to describe variations in growth
trajectories between persons. The simulation results show
that our combined Bayesian algorithm provides accurate es-
timates of the model parameters in terms of smaller bias and
RMSE values. Simultaneously, the SD and SE are close to
each other and the CP of 95% HPDI is around 95% for item
parameters and fixed effect parameters. Therefore, the algo-
rithm is effective and can be used to analyze the real data.
In our simulation, DIC and WAIC are used to assess the
competing models.

In the analysis of the longitudinal mathematical achieve-
ment data, some phenomena well worthy of consideration
are revealed: first, male and female students with similar
family SES do not show remarkable differences in ability
during early periods of learning. However, over time, the
mathematical capacities of male students become superior
to those of female students. In addition, family SES has an
important effect on students’ mathematical abilities. The
findings can help educators modify current teaching pro-
grams and put forward corresponding teaching strategies for
different groups (Gender or SES ) of students with different
development trajectories. Therefore, it is expected that the
analysis results may guide the development and improve-
ment of educational quality monitoring mechanisms. The
results of DIC and WAIC are similar, and select the same
best model among a set of candidate models.

The current study has its limitation. Firstly, the CP for
level-2 variance and level-3 covariance parameters were low
to 78%. The Inverse Gamma distribution is generally consid-
ered as an uninformative prior of a single variance (level-2

variance), but studies have shown that when the variance
is very small, Inverse Gamma distribution will indeed lead
to the underestimation of the variance ([10, 19]). This may
be the reason for the low CP value of the level 2 variance.
For level-3 covariance, the typically used Inverse Wishart
prior with small df and identity matrix Ξ is relatively un-
informative. In many cases, this type of prior will have the
smallest impact on the result. When the variances are quite
small, the Inverse -Wishart prior distribution is informative
so that the estimates for the variances will be sensitive to
the Inverse -Wishart prior specification, resulting in over- or
under-estimation for the variances depending on the speci-
fication of the prior distribution ([12, 36]). This may be the
reason for the low CP value of the level 3 covariance matrix.
In education and psychology, covariance structures are of
great interests to researchers. However, forming new types
of priors for covariance matrices can be very difficult. A pop-
ular way to form new priors for a covariance matrix is based
on the matrix decomposition. [6] introduced a separation
strategy to decompose a covariance matrix, and [26] investi-
gated the influence of separation strategy priors. They found
that the use of separation strategy priors took much longer
time than with Inverse-Wishart priors to obtain posterior
samples. Moreover, with the increase of the dimension of co-
variance matrix, the use of separation strategy priors might
cause some practical issues. In the existing educational and
psychological literature, almost all studies have applied the
Inverse -Gamma and Inverse-Wishart priors in Bayesian es-
timation. We will draw more attention to the choice of priors
on the variance and covariance matrix in the future studies.
Secondly, from an empirical perspective, we should assess
the effect of more covariates and explore the effect of miss-
ing data, because longitudinal research with complete data
are rare. Thirdly, more model selection methods can be used
and expanded to select models for those more complex IRT
models.
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