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High-dimensional two-sample precision matrices
test: an adaptive approach through multiplier
bootstrap
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Precision matrix, which is the inverse of covariance ma-
trix, plays an important role in statistics, as it captures the
partial correlation between variables. Testing the equality of
two precision matrices in high dimensional setting is a very
challenging but meaningful problem, especially in the differ-
ential network modelling. To our best knowledge, existing
test is only powerful for sparse alternative patterns where
two precision matrices differ in a small number of elements.
In this paper we propose a data-adaptive test which is pow-
erful against either dense or sparse alternatives. Multiplier
bootstrap approach is utilized to approximate the limiting
distribution of the test statistic. Theoretical properties in-
cluding asymptotic size and power of the test are investi-
gated. Simulation study verifies that the data-adaptive test
performs well under various alternative scenarios. The prac-
tical usefulness of the test is illustrated by applying it to a
gene expression data set associated with lung cancer.
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1. INTRODUCTION

In recent years, Gaussian graphical model has been an
important tool to capture the conditional dependency struc-
ture among variables. The edges of the Gaussian graph-
ical network are characterized by the inverse covariances
for each pair of nodes. To be more specific, for Gaussian
graphical model, the joint distribution of p random vari-
ables (X1, . . . , Xp)

� is assumed to be multivariate Gaussian
N(0,Ω−1), where Ω is the inverse of the covariance matrix
and is called precision matrix. It is known that for Gaus-
sian graphical model, the conditional dependency structure
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is completely encoded in the precision matrix, i.e., for each
pair of nodes Xa and Xb, they are conditionally indepen-
dent given all other variables if and only if the (a, b)-th entry
of Ω is equal to zero. A growing number of literature has
focused on the support recovery and link strength estima-
tion of Gaussian graphical model in high-dimensional set-
ting, see, for example, [16, 25, 9, 24, 1, 3, 14], among many
others. For more detailed discussions and comparisons of
these methods, we refer to [18] and [8]. The works men-
tioned above focus on analyzing one particular Gaussian
graph. However, in some cases, it is of greater interest to
investigate how the network of connected node pairs change
from one state to another. For example, in genomic stud-
ies, it is more meaningful to investigate how the network
of connected gene pairs change from different experimental
condition, which provides deeper insights on an underlying
biological process, e.g., identification of pathways that corre-
spond to the condition change. Indeed, differential network-
ing modeling has drawn much attention as an important tool
to analyze a set of changes in graph structure. The differ-
ential network is typically modeled as the difference of two
precision matrices and this type of model has been used by
[13, 11, 7, 26, 23, 22]. To investigate the differential network,
in the first step, we need to identify whether there exists any
network change, which is equivalent to test the equality of
two precision matrices:,

(1.1) H0 : Ω1 = Ω2.

Although the equality of two precision matrices is equiva-
lent to the equality of two covariance matrices from math-
ematical view, the test problem could be very different
due to the fundamental difference between conditional and
unconditional dependencies. Literatures on testing equal-
ity of two covariance matrices in high-dimensional setting
mainly falls into two categories, sum-of-square type testing
and maximum type testing. The sum-of-square type testing
are particular powerful under dense alternative where the
two covariance matrices differ in a large number of entries
[20, 21, 12] while the maximum type testing are particu-
lar powerful under sparse alternative where the two covari-
ance matrices differ only in a small number of entries [2].
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Literature [28] proposed a unified framework for develop-
ing tests based on U-statistics, which includes testing the
equality of two covariance matrices as a special case. The
tests are powerful against a large variety of alternative sce-
narios. This research area is very active, and as a result,
this list of references is illustrative rather than compre-
hensive. In contrast, literatures on testing equality of two
precision matrices rarely exists. Literature [23] proposed a
maximum-type testing which is powerful against alternative
where Δ = Ω1−Ω2 is sparse. As far as we know, this is the
unique existing work on testing the equality of two precision
matrices in the high-dimensional setting. In other word, a
powerful testing for hypothesis (1.1) under dense alternative
still don’t exist, which urges us to consider such a problem.

In this paper, we propose a testing procedure for hypoth-
esis (1.1) which is powerful against a large variety of alter-
native scenarios in high dimensions. Both theoretical results
and numerical simulation show the advantage of proposed
test against existing methods. The rest of the paper is orga-
nized as follows. In Section 2, we introduce some notations
and briefly review the test statistic proposed by [23]. In Sec-
tion 3 we present our test statistic and the multiplier boot-
strap procedure to obtain the critical value or p-value of the
test. Section 4 gives the theoretical analysis of the test. In
Section 5, we conduct thorough numerical simulation to in-
vestigate the empirical performance of the test. A real gene
expression data set is analyzed to illustrate the usefulness
of the test. At last we discuss possible future directions in
the last section.

2. BACKGROUND

2.1 Notation

For a vector v = (v1, . . . , vd)
� ∈ R

d, let ‖v‖p =(∑d
j=1 |vj |p

)1/p
as the Lp-norm. As p = ∞, we set ‖v‖∞ =

max1≤j≤d |vj |. As p = 0, we set ‖v‖0 =
∑d

j=1 I{vj �= 0}. We

use v(1), v(2), . . . , v(d) to denote the order statistics of the
absolute value of v’s entries with v(1) ≤ v(2) ≤ . . . ≤ v(d).
Apparently, we have v(j) ≥ 0 for j = 1, . . . , d. We define

the (s0, p)-norm of v as ‖v‖(s0,p) =
(∑d

j=d−s0+1(v
(j))p

)1/p
.

As p = ∞, we set ‖v‖(s0,p) = ‖v‖∞ = v(d) for any s0.

We denote S
d−1 := {v ∈ R

d : ‖v‖2 = 1} as the spheri-
cal surface in R

d. For any vector μm ∈ R
d, let μm,−i de-

note the (d− 1)× 1 vector by removing the i-th entry from
μm. For a data matrix U = (U1, . . . ,Un)

� ∈ R
n×d, let

U·,−i = (U1,−i, . . . ,Un,−i)
� with dimension (n × (d − 1)),

U ·,−i = n−1
∑n

k=1 Uk,−i with dimension (d−1)×1, U (i) =

(U1,i, . . . , Un,i)
� with dimension n×1, U (i) = (U i, . . . , U i)

�

with dimension n × 1 where U i = n−1
∑n

k=1 Uk,i and
U (·,−i) = (U ·,−i, . . . ,U ·,−i)

� with dimension n × (d − 1).
For tuning parameter λ, let λnm,i,m represent the i-th tuning
parameter for binary trait m, which depends on the sample
size nm.

For a matrix A = [ai,j ] ∈ R
d×d, we denote the matrix

�1 norm, the matrix element-wise infinity norm and the ma-
trix element-wise �1-norm by ‖A‖ = max1≤j≤d

∑d
i=1 |ai,j |,

|A|∞ = maxi,j |ai,j | and |A|1 =
∑d

i=1

∑d
j=1 |ai,j | respec-

tively. Ai,−j denote the i-th row of A with its j-th entry
removed and A−i,j denote the j-th column of A with its i-
th entry removed. A−i,−j denotes a (d− 1)× (d− 1) matrix
obtained by removing the i-th row and j-th column ofA. We
say A is k-sparse if each row/column has at most k nonzero
entries. For a symmetric matrix A ∈ R

d×d, we use λmin(A)
and λmax(A) to denote the smallest and largest eigenvalues
of A respectively. Besides, we define a d(d− 1)/2-dimension
vector

trivec(A) = (a21, . . . , ad1, a32, . . . , a3d, . . . , a(d−1)d)
�

which is obtained by concatenating the lower triangular part
of A column by column. We use aisjs to denote the s-th
entry of trivec(A).

For two sequences of real numbers {an} and {bn}, we
write an = O(bn) if there exists a constant C such
that |an| ≤ C|bn| holds for all n, write an = o(bn) if
limn→∞ an/bn = 0, and write an � bn if there exist con-
stants c and C such that c ≤ an/bn ≤ C for all n.
For a sequence of random variables {ξ1, ξ2, . . .}, we use
limn→∞ ξn = ξ to denote that the sequence {ξn} converges
in probability towards ξ as n → ∞. For simplicity, we also
use ξn = op(1) to denote limn→∞ ξn = 0. For random vari-
ables ξ and η, we use Cov(ξ, η) and Corr(ξ, η) to denote the
covariance and correlation coefficients between ξ and η. Let
Var(ξ) be the variance of random variable ξ. For a set H,
denote by #{H} the cardinality of H.

2.2 General setup

Let X = (X1, . . . , Xd)
� and Y = (Y1, . . . , Yd)

� be
two d-dimensional random vectors independent of each
other. X1, . . . ,Xn1 are independent and identically dis-
tributed (i.i.d.) random samples from X ∼ N(u1,Σ1)
with Xk = (Xk,1, Xk,2, . . . , Xk,d)

�. Similarly, Y 1, . . . ,Y n2

are i.i.d. random samples from Y ∼ N(u2,Σ2) with
Y k = (Yk,1, Yk,2, . . . , Yk,d)

�. Let X = (X1, . . . ,Xn1)
�

and Y = (Y 1, . . . ,Y n1)
� denote the data matrices. Let

Σm = (σi,j,m) and Ωm = (ωi,j,m) = Σ−1
m for m = 1, 2.

Let βi,1 = (β1,i,1, . . . , βd−1,i,1)
� denote the regression coef-

ficients of Xk,i regressed on the rest of the entries of Xk

and let βi,2 = (β1,i,2, . . . , βd−1,i,2)
� denote the regression

coefficients of Yk,i regressed on the rest of the entries of Y k.
In the Gaussian setting, the precision matrix can be de-

scribed in terms of regression models. Specifically:

(2.1)
Xk,i = αi,1 +X�

k,−iβi,1 + εk,i,1,

Yk,i = αi,2 + Y �
k,−iβi,2 + εk,i,2,

where the error terms εk,i,m follow normal dis-
tribution with mean zero and variance {σi,i,m −
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Σi,−i,m(Σ−i,−i,m)−1Σ−i,i,m} and εk,i,1, εk,i,2 are inde-
pendent of Xk,−i and Y k,−i respectively. Besides, we
have αi,m = μi,m − Σi,−i,mΣ−1

−i,−i,mμ−i,m. The regression
coefficient vectors βi,m and error terms εk,i,m satisfy

βi,m = −ω−1
i,i,mΩ−i,i,m,

ri,j,m = Cov
(
εk,i,m, εk,j,m

)
=

ωi,j,m

ωi,i,mωj,j,m
.

We aim to test the null hypothesis:

H0 : Ω1 = Ω2 or equivalentlly Δ = Ω1 −Ω2 = 0.

Let β̂i,m = (β̂1,i,m, . . . , β̂d−1,i,m)� be estimators of βi,m by
Lasso or Dantzig selector satisfying

(2.2)

max
1≤i≤d

∥∥β̂i,m − βi,m

∥∥
1
= op

{
(log(d))−1

}
,

max
1≤i≤d

∥∥β̂i,m − βi,m

∥∥
2
= op

{
(nm log(d))−1/4

}
.

Under the sparsity conditions max1≤i≤d |βi|0 =
o
(
n1/2/(log(d))3/2

)
, together with with Assumption

(B) in Section 4.1, both the Lasso and Dantzig selector
estimators satisfy the condition in (2.2) according to the
Proposition 4.1 in [14].

With the β̂i,m, define the residuals by

(2.3)
ε̂k,i,1 = Xk,i − X̄i − (Xk,−i − X̄ ·,−i)

�β̂i,1,

ε̂k,i,2 = Yk,i − Ȳi − (Y k,−i − Ȳ ·,−i)
�β̂i,2.

Let r̃i,j,m = (1/nm)
∑nm

k=1 ε̂k,i,mε̂k,j,m be the empirical co-
variance between {ε̂k,i,m : k = 1, . . . , nm} and {ε̂k,j,m : k =

1, . . . , nm}. Similarly, let R̃i,j,m = (1/nm)
∑nm

k=1(εk,i,m −
ε̄i,m)(εk,j,m − ε̄j,m) be the empirical covariance between
{εk,i,m : k = 1, . . . , nm} and {εk,j,m : k = 1, . . . , nm}.
Lemma 2 in [23] shows that

(2.4)

r̃i,j,m =R̃i,j,m − r̃i,i,m(β̂i,j,m − βi,j,m)

− r̃j,j,m(β̂j−1,i,m − βj−1,i,m)

+ op

{
(nm log(d))−1/2

}
.

For 1 ≤ i < j ≤ d, it can be shown that

βi,j,m = −ωi,j,m/ωj,j,m, βj−1,i,m = −ωi,j,m/ωi,i,m.

A bias-corrected estimator of ri,j,m(1 ≤ i < j ≤ d) is ini-
tially proposed by [14]:

(2.5) r̂i,j,m = −
(
r̃i,j,m + r̃i,i,mβ̂i,j,m + r̃j,j,mβ̂j−1,i,m

)
,

For i = j, the Lemma 2 of [23] showed that

(2.6) max
1≤i≤d

∣∣r̃i,i,m − ri,i,m
∣∣ = Op

{
(log(d)/nm)1/2

}
,

which implies that r̂i,i,m = r̃i,i,m is a nearly unbiased esti-
mator of ri,i,m. Thus one can naturally estimate ωi,j,m by

(2.7) Ti,j,m =
r̂i,j,m

r̂i,i,mr̂j,j,m
, 1 ≤ i ≤ j ≤ d,

and test H0 : Δ = 0 based on the estimators T = {Ti,j,1 −
Ti,j,2, 1 ≤ i ≤ j ≤ d}.

Considering the heteroscedasticity of estimators in T ,
Literature [23] proposed the following test statistic for the
null hypothesis H0:

Mn = max
1≤i≤j≤d

W 2
i,j = max

1≤i≤j≤d

(Ti,j,1 − Ti,j,2)
2

θ̂i,j,1 + θ̂i,j,2
,

where

(2.8)

Wi,j =
Ti,j,1 − Ti,j,2

(θ̂i,j,1 + θ̂i,j,2)1/2
,

θ̂i,j,m = V̂ar(Ti,j,m) =
1 + β̂2

i,j,mr̂i,i,m/r̂j,j,m

nmr̂i,i,mr̂j,j,m
.

Literature [23] obtained the asymptotic null distribution
of Mn under suitable conditions, which is type I extreme
value distribution. However, this limiting distribution of
maximum-type statistic based approach has two fatal limi-
tations. Firstly, the convergence rate of extreme-value statis-
tics is notoriously slow and the process of getting the limit-
ing distribution ignores the correlation between coordinates.
Secondly, the maximum-type statistic is particularly power-
ful against large and sparse signal alternatives, however, it
is powerless against small and dense signal alternatives.

In this paper we develop new tests for hypothesis (1.1),
which are adaptive to a large variety of alternative scenar-
ios in high dimensions. We utilize the multiplier bootstrap
method to approximate the asymptotic distribution of the
proposed test statistics and thus overcomes the limitation
of the extreme-value-type statistic Mn.

3. METHODOLOGY

As the extreme-value-type statistic is only powerful
against the sparse large alternatives, we aim to provide a
data-driven adaptive test for the hypothesis (1.1) in this
section. In Section 3.1, a family of tests based on (s0, p)-
norm are proposed. The (s0, p)-norm was first introduced
in [28]. The tests based on different p have different powers
under different alternative scenarios. For example, (s0,∞)-
norm based test are sensitive to large perturbations on a
small number of entries of Ω1 −Ω2. Moreover, (s0, 2)-norm
are sensitive to small perturbations on a large number of
entries of Ω1 − Ω2. By combining a family of (s0, p)-norm
based tests with various p, we present our adaptive test in
Section 3.2
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3.1 The (s0, p)-norm based test statistics

In this section, we provide some (s0, p)-norm based tests.
Recall that we have defined the Wi,j in (2.8). Based on
the statistics in W = {Wi,j , 1 ≤ i ≤ j ≤ d}, define
W = (Wi,j)d×d. we then propose our test statistic based on
(s0, p)-norm of the vector trivec(W). Specifically, we pro-
pose the (s0, p)-norm based test statistic is

(3.1) N(s0,p) =
∥∥trivec(W)

∥∥
(s0,p)

.

With the proposed test statistic, we still need to obtain the
critical value or P -value to test (1.1). To this end, we develop
a multiplier bootstrap method to approximate the limiting
distribution of the test statistic N(s0,p).

In the high dimensional setting, [4] introduced the mul-
tiplier bootstrap method for the sum of independent ran-
dom vectors. In detail, let Z1, . . . ,Zn be independent zero
mean random vectors in R

d with Zk = (Zk1, . . . , Zkd)
�.

The bootstrap sample for the sample mean n−1
∑n

k=1 Zk

then becomes n−1
∑n

k=1 εkZk, where ε1, ε2, . . . , εn are in-
dependent standard normal random variables. Inspired by
the multiplier bootstrap method in [4], we propose a spe-
cific multiplier bootstrap procedure for the problem here.
In detail, we generate independent samples ηb1,1, . . . , η

b
1,n1

and ηb2,1, . . . , η
b
2,n2

from η ∼ N(0, 1) for b = 1, . . . , B.
Similarly, we set the b-th multiplier bootstrap sample for
r̃i,j,m, 1 ≤ i ≤ j ≤ d as

(3.2) r̃bi,j,m =
1

nm

nm∑
k=1

ηbm,k(ε̂k,i,mε̂k,j,m − r̃i,j,m).

Considering the definitions of r̂i,j,m in (2.5), we set its b-th
bootstrap sample as

r̂bi,j,m = −
(
r̃bi,j,m + r̃bi,i,mβ̂i,j,m + r̃bj,j,mβ̂j−1,i,m

)

for 1 ≤ i < j ≤ d and r̂bi,i,m = r̃bi,j,m.

Further, by the definitions of Ti,j,m and Wi,j in (2.7) and
(2.8) respectively, we then get the b-th bootstrap sample of
Ti,j,m and Wi,j as

(3.3)

T b
i,j,m =

r̂bi,j,m
r̂i,i,mr̂j,j,m

, 1 ≤ i ≤ j ≤ d,

W b
i,j =

T b
i,j,1 − T b

i,j,2

(θ̂i,j,1 + θ̂i,j,2)1/2
, 1 ≤ i ≤ j ≤ d.

With W b
i,j , we set Wb = (W b

i,j)d×d and finally obtain the
bootstrap samples of N(s0,p) as

(3.4) N b
(s0,p)

= ‖trivec(Wb)‖(s0,p), b = 1 . . . B.

Given the significance level α, we use tNα,(s0,p) to denote the
oracle critical values ofN(s0,p). Given the bootstrap samples,

we then estimate tNα,(s0,p) by

t̂Nα,(s0,p) = inf
{
t ∈ R :

1

B

B∑
b=1

1{N b
(s0,p)

≤ t} > 1− α
}
.

(3.5)

Therefore, we obtain the (s0, p)-norm based tests for (1.1)
as

(3.6) TN
(s0,p)

= 1
{
N(s0,p) ≥ t̂Nα,(s0,p)

}
.

We reject H0 of (1.1) if and only if TN
(s0,p)

= 1. Accordingly,

we estimate N(s0,p)’s oracle P -values PN
(s0,p)

by

(3.7) P̂N
(s0,p)

=

∑B
b=1 1{N b

(s0,p)
> N(s0,p)}

B + 1
.

Therefore, given a significance level α, we reject H0 of (1.1)

if and only if P̂N
(s0,p)

≤ α.

3.2 Data adaptive combined test

After providing the (s0, p)-norm based tests for each indi-
vidual p, we propose a data-driven adaptive test by combin-
ing a group of the (s0, p)-norm based tests in this section.

Set P = {p1, p2, · · · } as a finite set of positive numbers,
and set the size of P as a finite fixed constant. Then we
combine the (s0, p)-norm based test with p ∈ P by taking
the minimum P -value of these tests. Specifically, we set the
data-adaptive test statistic Nad as

(3.8) Nad = min
p∈P

P̂N
(s0,p)

.

The detail process of getting Nad is in Algorithm 1. The set
{P} can be chosen by users with prior information about the
alternative patterns. If one knows the alternative pattern,
then he/she can choose the set P accordingly to improve the
power performance of the data adaptive test. For example,
let P consists of large values of p with prior information that
the alternative pattern is sparse. If one knows nothing about
the alternative pattern, then a balanced set P containing
both large and small p is recommended. For example, one
may choose the set P to be {1, 2, 3, 4, 5,∞}.

For the data adaptive test, we need to get the P -value.
It’s difficult to get the limiting distribution for the (s0, p)-
norm based statistics, not to mention for the data adaptive
test statistic. Hence, the intuitive way is to do a double loop
bootstrap procedure to get the empirical distribution for our
data adaptive test. But this way is too costly for computa-
tion. As is shown by Algorithm 1, in addition to the data
adaptive statistic Nad, we also obtain the bootstrap samples
for N(s0,p), i.e,

{
N1

(s0,p)
, . . . , NB

(s0,p)

}
. Therefore, we can re-

cycle the bootstrap samples to accelerate our computation
speed. Specifically, for b = 1, . . . , B and p ∈ P , we set

P̂ b,N
(s0,p)

=

∑
b1 �=b 1{N b1

(s0,p)
> N b

(s0,p)
}

B
.
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Algorithm 1 A bootstrap procedure to obtain Nad

Input: X .
Output: N1

(s0,p)
, . . . , NB

(s0,p)
with p ∈ P, and Nad.

1: procedure
2: N(s0,p) = ‖trivec(W)‖(s0,p) with W = (Wi,j)

�
d×d and

Wi,j = (Ti,j,1 − Ti,j,2)
/
(θ̂i,j,1 + θ̂i,j,2)

1/2.
3: for b ← 1 to B do
4: Sample independent standard normal random vari-

ables {ηb
1,1, . . . , η

b
1,nm

} for m = 1, 2.
5: For 1 ≤ i ≤ j ≤ d, set r̃bi,j,m =

(1/nm)
∑nm

k=1 η
b
m,k

(
ε̂k,i,mε̂k,j,m − r̃i,j,m

)
.

6: Set r̂bi,i,m = r̃bi,i,m, and set r̂bi,j,m = −
(
r̃bi,j,m +

r̃bi,i,mβ̂i,j,m + r̃bj,j,mβ̂j−1,i,m

)
for 1 ≤ i < j ≤ d.

7: Set T b
i,j,m = r̂bi,j,m

/
(r̂i,i,mr̂j,j,m), 1 ≤ i ≤ j ≤ d.

8: Set W b
i,j = (T b

i,j,1 − T b
i,j,2)

/
(θ̂i,j,1 + θ̂i,j,2)

1/2, 1 ≤ i ≤
j ≤ d and Wb = (W b

i,j)d×d.
9: for p in P do

10: Nb
(s0,p)

= ‖trivec(Wb)‖(s0,p) with Wb =

(W b
i,j)d×d.

11: end for
12: end for
13: P̂N

(s0,p)
=

∑B
b=1 1{Nb

(s0,p)
> N(s0,p)}/(B + 1) for p ∈ P.

14: Nad = minp∈P P̂N
(s0,p)

.
15: end procedure

Algorithm 2 A low-cost bootstrap procedure

Input: X and N1
(s0,p)

, . . . , NB
(s0,p)

for p ∈ P.

Output: N1
ad, . . . , N

B
ad.

1: procedure
2: for b ← 1 to B do
3: for p in P do
4: P̂ b,N

(s0,p)
=

∑
b1 �=b 1{Nb1

(s0,p)
> Nb

(s0,p)
}/B.

5: end for
6: Nb

ad = minp∈P P̂ b,N
(s0,p)

.
7: end for
8: end procedure

We use N b
ad = minp∈P P̂ b,N

(s0,p)
as the bootstrap sample for

Nad. We then estimate the oracle P -value of Nad by

(3.9) P̂N
ad =

(∑B
b=1 1{N b

ad ≤ Nad}
)
+ 1

B + 1
.

For more details, see Algorithm 2. The samplesN1
ad, . . . , N

B
ad

are nonindependent. But as n,B → ∞, they are asymptot-

ically independent. Hence, it doesn’t affect the consistency

of P̂N
ad. After getting the estimated P -values of the data-

adaptive tests Nad, given the significance level α, we set

(3.10) TN
ad = 1{P̂N

ad ≤ α}.

Therefore, we reject H0 of (1.1) if and only if TN
ad = 1.

4. THEORETICAL PROPERTIES

In this section, we investigate the theoretical properties
of our proposed test. Firstly, some assumptions are intro-
duced in Section 4.1. In Section 4.2, we verify the validity
of multiplier bootstrap which is used in Section 3 and then
analyze the theoretical properties of the proposed test.

4.1 Assumptions

In this section, we introduce some assumptions that are
commonly used in high-dimensional analysis.

(A) Set n = max(n1, n2), there exists some 0 < δ < 1/7
such that s20 = o(log(d)) and s20 log(d) = o(nδ) hold, where
n1 � n2 � n.

Assumption (A) allows s0 and d go to infinity as long as
s20 = o(log(d)) and s20 log(d) = o(nδ) hold. These are techni-
cal conditions that are critical to the validity of the multi-
plier bootstrap procedure. By using the multiplier bootstrap
to get the critical values for our tests, we need some more as-
sumptions compared with [23]. Other than the Assumption
(A), we also introduce a more strong Assumption (A)′ to
state the scaling of s0, d and n. Before stating the next as-
sumption, we need some additional notations. For 1 ≤ i, j ≤
d and m = 1, 2, let Uk,i,j,m = εk,i,mεk,j,m − E(εk,i,mεk,j,m)

and define Ũk,i,j,m = (ri,j,m − Uk,i,j,m)/ri,i,mrj,j,m with

k = 1, . . . , nm. Define Ũk,m =
(
Ũk,i,j,m

)
as a square matrix

of order d and denote the covariance matrix of trivec(Ũk,m)

as ΣŨ
m = (σŨ

s,t,m)1≤s,t≤d(d−1)/2, where

σŨ
s,t,m =

⎧⎪⎪⎨
⎪⎪⎩

1 + β2
i,j,mri,i,m/rj,j,m

ri,i,mrj,j,m
, s = t,

ri1,i2,mrj1,j2,m + ri1,j2,mri2,j1,m
ri1,i1,mrj1,j1,mri2,i2,mrj2,j2,m

, s �= t,

with 1 ≤ i < j ≤ d, 1 ≤ i1 < j1 ≤ d, 1 ≤ i2 < j2 ≤ d,
i1 �= i2, j1 �= j2, m = 1, 2. Furthermore, the variance for the

sample mean of Ũk,i,j,m is θi,j,m = σŨ
s,s,m/nm.

Let G be a Gaussian random vector in R
d(d−1)/2 with

mean zero and covariance matrix RŨ
12, where RŨ

12 =

(DŨ
12)

−1/2ΣŨ
12(D

Ũ
12)

−1/2 with ΣŨ
12 = ΣŨ

1 /n1 + ΣŨ
2 /n2 and

DŨ
12 = Diag(ΣŨ

12). Set the probability density function
(PDF) and the α-quantile of ‖G‖(s0,p) as fG,(s0,p) and
c(s0,p)(α) respectively. We then define hT (z) as

hT (z) = max
p∈P

max
x∈C(s0,p)(z)

f−1
G,(s0,p)

(x)

with C(s0,p)(z) = [c(s0,p)(z), c(s0,p)(1− z)].

With these new notations, we introduce the following as-
sumption.

(A)′ Define n = max(n1, n2). We assume that s20 =
o(log(d)) and h0.6

T (z)s20 log(d) = o(n1/10) holds for any
0 < z < 1 as n, d → ∞ and n1 � n2 � n.
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Assumption (A)′ is more stringent. It is critical to guar-
antee the uniform convergence of the distribution functions
and the corresponding quantile functions of the test statis-
tics N(s0,p) for any p ∈ P . The next two mild assumptions
are often used in high dimensional setting, especially when
the inference for covariance matrix and precision matrix are
involved.

(B) There exist some positive constants C0 < C1, such
that λmin(Ωm) ≥ C0 and λmax(Ωm) ≤ C1, with m = 1, 2.
There exists some τ > 0 such that |Aτ | = o(d1/16) where
Aτ = {(i, j) : |wi,j,m| ≥ (log(d))−2−τ , 1 ≤ i < j ≤
d, for m = 1 or 2}.

(C) Let Dm be the diagonal of Ωm and let

(ηi,j,m) = D
−1/2
m ΩmD

−1/2
m , for m = 1, 2. Assume that

max1≤i<j≤d |ηi,j,m| ≤ ηm ≤ c, where 0 < c < 1 is a con-
stant.

(D) Suppose max1≤i≤d si,m = o
(
n1/2/(log(d))3/2

)
,

where si,m is sparsity for the i-th row or column of Ωm

for m = 1, 2.

Note that βi,m = −ω−1
i,i,mΩ−i,i,m, then the sparsity con-

ditions of the Proposition 4.1 in [14] are automatically sat-
isfied under Assumption (D).

4.2 Theoretical analysis

After introducing some needing assumptions, we analyze
the theoretical properties of our test. Due to the compli-
cated structure of our test statistics, we use the multiplier
bootstrap to get the critical values for our test in Section 3.
But this procedure is different from [28]. Specifically, other
than the testing statistics cannot be rewritten as a sum of
independent random variables, there are also some bias cor-
rection terms. Hence, we need to justify the validity of this
multiplier bootstrap.

Theorem 4.1. Suppose Assumptions (A)-(D) hold. Under
the null hypothesis H0 of (1.1), we have as n, d → ∞,

sup
z∈(0,∞)

∣∣∣P(N(s0,p) ≤ z)− P(N b
(s0,p)

≤ z|X ,Y)
∣∣∣ = op(1).

(4.1)

Under the Gaussian distribution setting, it is easily to
check that the sub-exponential distribution assumption and
the moment condition in [4] are satisfied. Hence, under
milder conditions, Theorem 4.1 verifies the validity of the
multiplier bootstrap method. The proof of Theorem 4.1 is
in the Appendix.

By Theorem (4.1) hold, it’s easy to prove that the size of
TN
(s0,p)

asymptotically coverges to pre-specified significance
level α.

Corollary 1. Suppose Assumptions (A)-(D) hold. Under
the null hypothesis H0 of (1.1), we have

PH0(T
N
(d0,p)

= 1) → α,

as n,B → ∞.

With Theorem 4.1, we then show the theoretical proper-
ties of our data-adaptive test TN

ad. By the definition of P̂N
ad

and TN
ad in (3.9) and (3.10), it can be seen that TN

ad relies
on the estimated P -values of N(s0,p). Therefore, we suppose
the more stringent Assumption (A)′ holds, which guaran-
tees the uniform convergence of the distribution functions
and the corresponding quantile functions of the test statis-
tics N(s0,p) for any p ∈ P . Under this condition, we show
that the empirical size of the data-adaptive test TN

ad ap-
proximates to the pre-specified level α.

Theorem 4.2. Suppose Assumptions (A)′, (B)-(D) hold.
Under the null hypothesis H0 of (1.1), we have

PH0(T
N
ad = 1) → α,

as n,B → ∞.

After analyzing the asymptotic sizes of the tests in Sec-
tion 3, we summarize the asymptotic power properties in
the following theorem. To analyze the power performance
of TN

ad, we need to introduce some other notations. Define
W∗ = (W ∗

i,j)d×d with

W ∗
i,j =

∣∣Ũi,j,1 − Ũi,j,2

∣∣/√
θi,j,1/n1 + θi,j,2/n2,

where θi,j,m are the diagonal elements of ΣŨ
m, m = 1, 2.

We then introduce the following theorem to characterize the
asymptotic power properties of TN

(s0,p)
and TN

ad.

Theorem 4.3. Suppose Assumptions (B)-(D) hold and as-
sume εn = o(1), εn

√
log(d) → ∞ as n, d → ∞.

(a) As n, d → ∞, there exists some δ1 > 0 such
that log(d) = o(n1/3) and n = O(d2δ1). Assume s0 =
O
(
(log(d))δ2

)
for some postive constant δ2. Under the al-

ternative hypothesis H1 of (1.1) and with

∥∥trivec(W∗)
∥∥
(s0,p)

≥s0(1 + εn)
(√

2 log(d(d− 1)/2)

+
√
2 log(1/α)

)
,

hold, we have PH1

(
TN
(s0,p)

= 1
)
→ 1 as n, d,B → ∞.

(b) With Assumption (A)′ hold, and under the alterna-
tive hypothesis H1 of (1.1) and suppose

∥∥trivec(W∗)
∥∥
(s0,p)

≥s0(1 + εn)
(√

2 log(d(d− 1)/2)

+
√
2 log(#{P}/α)

)
,

hold, we have PH1

(
TN
ad = 1

)
→ 1 as n, d,B → ∞.

By Theorem 4.3, we show that the asymptotic powers
of TN

(s0,p)
and TN

ad converge to 1 under the minimum signal

condition on ‖trivec(W∗)‖(s0,p).
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5. EXPERIMENTS

5.1 Simulation study

In this section, we conduct simulation study to investigate
the empirical size and power of the proposed test. To show
the adaptivity of our method, we compare it with recently
developed method proposed by [23] under various model
settings. We denote the test proposed by [23] as TCX for
simplifing notations. To distinguish the adaptive test with
different s0, we denote the adaptive test with any fixed s0
as TN

s0,ad
.

In the simulation study, the sample sizes are set to be
n1 = n2 = 200, while the dimension d = 100. Although the
dimension d seems to be small compared with the sample
size, the parameters in the precision matrix which we are
interested in are already much larger than the sample size
(d(d − 1)/2). In all simulations, the bootstrap sample sizes
B are set to be 1000 and all the simulation results are based
on 1000 replications. Under the null hypothesis H0, we set
Ω2 = Ω1 = Ω. Under the alternative hypothesis H1, we set
Ω1 = Ω+δI and Ω2 = Ω+Γ+δI, where Γ = (γi,j)d×d is a
nonzero matrix and δ = |λmin(Ω+Γ)|+0.05. Suppose there
are mt nonzero entries of Γ. Specially, we random sample
mt/2 locations in the upper triangle of Γ and set each with
a magnitude r. By the symmetric requirement of Ω2, the
location and magnitude of the other mt/2 nonzero entries
of Γ can be determined by its upper triangle. To show that
our test is adaptive to various alternative patterns, we set
the nonzero entries of the Γ as mt = 20, 200, 1000, 2000.
The mt = 20, 200 are to illustrate the sparse alternatives
and mt = 1000, 2000 are to represent the dense alternatives.
For all the simulations, simulation data are generated from
multivariate Gaussian distributions with mean 0 and covari-
ance matrices Σ1 = (Ω1)

−1 and Σ2 = (Ω2)
−1. The nominal

significance level for all the tests are set to be α = 0.05. To
study the empirical performance of the test, the following
three models of Ω are considered.

Model 1: Ω∗ = (ω∗
i,j) where ω∗

i,i = 1, ω∗
i,j = 0.5 ×

Bernoulli(1, 0.5) for i < j and ω∗
j,i = ω∗

i,j . Ω = (Ω∗ +
δI)/(1 + δ) with δ = |λmin(Ω

∗)|+ 0.05.

Model 2: Σ∗ = (σ
∗(1)
i,j ) where σ

∗(1)
i,i = 1, σ

∗(1)
i,j = 0.5

for 2(k − 1) + 1 ≤ i �= j ≤ 2k, where k = 1, . . . , [p/2]

and σ
∗(1)
i,j = 0 otherwise. Ω = {(Σ∗ + δI)/(1 + δ)}−1 with

δ = |λmin(Σ
∗
1)|+ 0.05.

Model 3: Ω∗ = (ω
∗(1)
i,j ) where ω

∗(1)
i,i = 1, ω

∗(1)
i,j = 0.5 ×

Bernoulli(1, 0.3) for i < j and ω
∗(1)
j,i = ω1

i,j . Other than

that, we set ω
∗(1)
i,j = ω

∗(1)
j,i = 0.5 for i = 20(k − 1) + 1 and

20(k− 1) + 2 ≤ j ≤ 20(k− 1) + 20, 1 ≤ k ≤ p/20. ω
∗(1)
i,j = 0

otherwise. Ω = (Ω∗+δI)/(1+δ) with δ = |λmin(Ω
∗)|+0.05.

The performances of the test methods under various al-
ternative patterns for Model 1 are shown in Figure 1. In

Figure 1, the orange line with circles represents the adap-
tive test TN

10,ad, the blue line with triangles represents the

adaptive test TN
100,ad, the red line with crosses represents

the adaptive test TN
500,ad, the green line with diamonds rep-

resents the adaptive test TN
1000,ad, the black line with stars

represents the TCX test proposed by [23]. The horizontal axis
represents magnitude r in the upper triangle of Γ, a larger
value of r indicates a stronger signal. The vertical axis rep-
resents the empirical powers of different tests, while r = 0
corresponds to the empirical sizes.

From Figure 1, we can see that all the empirical sizes of
different tests are under control. Under sparse alternative
setting with mt = 20 (corresponds to the upper left panel
in Figure 1 with 20 non-equal signals), the empirical powers
of maximum-norm based test TCX are the highest and the
empirical powers of the adaptive test with s0 = 10 are still
comparable though a little bit lower than CX test. Besides,
with s0 decreasing, the adaptive test tends to more powerful
under sparse alternative setting. As the non-equal number
mt becomes bigger, the empirical powers of the adaptive test
with larger s0 are getting better and better. Under the dense
alternative (corresponds to the upper right panel and lower
panels in Figure 1 with more than 200 non-equal signals),
the empirical powers of the adaptive tests are greater than
those of the maximum-norm based CX tests with the magni-
tude r larger than certain threshold. Although the empirical
powers of adaptive test with different s0 have some differ-
ence, the empirical powers of the adaptive test show some
robustness for the small changes of s0. From Figure 1, we
can also see that the empirical power of TN

500,ad and TN
1000,ad

are almost equal to each other.
At last, we point out that the influence of the parameter

s0 on the power performance is more complicated. However,
by choosing s0 close to half of the true number of nonzero
signals mt/2, the tests enjoy good performance. In practice,
we can determine s0 by the prior information or some em-
pirical information.

The empirical results for Model 2 and Model 3 are sim-
ilar as for Model 1 and thus are presented in the sup-
plementary materials (http://intlpress.com/site/pub/files/
supp/sii/2020/0013/0001/SII-2020-0013-0001-s004.pdf) for
saving space here.

5.2 Real data analysis

In this section, we apply our adaptive test method to
a gene expression data set which is associated with lung
cancer. The data set is publicly available from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
at accession number GDS2771. The data set is made up
of 22,283 microarray-derived gene expression measurements
from large airway epithelial cells sampled from 97 patients
with lung cancer, and 90 control patients. [15] showed that
the Wnt pathway associated with lung cancer and many
other lung diseases such as interstitial lung disease (ILD)
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Figure 1. Empirical powers of various tests for Model 1. The orange line with circles represents the adaptive test TN
10,ad, the

blue line with triangles represents the adaptive test TN
100,ad, the red line with crosses represents the adaptive test TN

500,ad, the

green line with diamonds represents the adaptive test TN
1000,ad, the black line with stars represents the TCX test.

and asthma. The Wnt pathway is also implicated in the de-
velopment of several types of cancers, such as gastric cancer
[5], breast cancer [10].

Hence, in this paper, we focus our analysis on the 188
genes in the Wnt signaling pathway, with 97 patients with
lung cancer and 90 control patients. Gene expression levels
were analyzed on a logarithmic scale and each gene feature

was standardized within each group. Although the true con-
ditional dependence relationships are unknown, we believe
that there exists some specific links among genes in the Wnt
signaling pathway of the patients with lung cancer. Hence,
we use our method to test whether the underlying precision
matrices of the patients with cancer or not are equal to each
other. In the real example, we know nothing about the un-
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Figure 2. The differential networks estimated for the Wnt
signaling pathway. Orange edges show an increase in

conditional dependency from control group to lung cancer
patient group; grey edges show a decrease.

derlying alternative patterns. Hence, as to the choice of s0,
we propose to tune s0 in a finite set S. Specifically, we set
the doubly tuned data-adaptive test statistic as

(5.1) TNad = min
p∈P,s0∈S

P̂N
(s0,p)

.

As long as the cardinality of the set S is fixed, all the the-
oretical properties for the adaptive test Nad with fixed s0
still hold for TNad. Furthermore, the simulation study in
Section 5.1 showed that the empirical powers of the adap-
tive tests show robustness to different s0. Hence, assuming
the cardinality of the set S to be finite is reasonable. Specif-
ically, we choose S = {10, 50, 100, 500, 1000, 2000} here. By
the adaptive test TNad, we reject the null hypothesis and
think that there are difference for the underlying condi-
tional dependence relationships. Hence, we use the differ-
ential network estimation approach in [27] to estimate the
differential network between the control group and the pa-
tient group. In detail, we choose the tuning parameter by
the Bayesian information criterion (BIC) using the element-
wise L1 loss function. The differential network structure is
given in Figure 2, in which the black edges represents the
conditional correlations in lung cancer group are stronger
compared with those in the control group, and the gray
edges the other way around. From Figure 2, many poten-
tially important genes for lung cancer are detected, such as
WNT1, WNT2, WNT5A etc, see [15]. By Figure 2, we see
that RHOA and FZD6 are two hubs in this graph. Hence,
we may conclude that the connections of these two genes to
other genes are important for identifying the lung cancer.

Actually the importance of FDZ and RHOA can be referred
to [6], [17].

6. DISCUSSION

In this paper we propose an adaptive approach for test-
ing the equality of two precision matrices, i.e. to investigate
whether the network of connected node pairs change from
one state to another. In the Gaussian setting, the precision
matrix can be described in terms of regression models and
the elements of the precision matrix have a direct correspon-
dence connection with the correlations of the error term.
By Lasso or Dantzig selector, the regression coefficient es-
timator and the corresponding estimated regression errors
are obtained. Based on the bias corrected estimator of the
correlations of the error terms, we propose to construct a
family of (s0, p)-norm based test statistics with different p.
By taking the minimum P -value of these tests, we construct
an adaptive test statistics. We utilize multiplier bootstrap
method to approximate the limiting distribution of the test
statistic. Theoretical guarantees are provided for the pro-
posed procedure and numerical study illustrates its good
empirical performance under various alternatives.

The current work relies heavily on the Gaussian graph as-
sumption which is sometimes restrictive in real application.
In the future, we will consider the adaptive test of more
general graphical models.

APPENDIX A. TECHNICAL LEMMAS

Before proving the main results, we introduce some tech-
nical lemmas which is useful in proving the main theorems.
Let Z1, . . . ,Zn be independent centered random vectors in
R

d with Zk = (Zk1, . . . , Zkd)
�, for k = 1, . . . , n and Gk

(k = 1, . . . , n) be independent Gaussian random vectors in
R

d with the same mean vector and covariance matrix as Zk,
and assume the following conditions hold:

(M1) n−1
∑n

k=1 E
[
(v�Zk)

2
]
≥ b > 0 for any v ∈ Vs0

with Vs0 := {v ∈ S
d−1 : ‖v‖0 ≤ s0}.

(M2) n−1
∑n

k=1 E
[
|Zki|2+�

]
≤ Q� for � = 1, 2 and i =

1, . . . , d.

(M3) E
[
exp(|Zki|/Q)

]
≤ 2 for i = 1, . . . , d and k =

1, . . . , n.

Lemma A.1. (Lemma A.1 in [28]) Assume s20 log(dn) =
O(nζ) with 0 < ζ < 1/7 and Z1, . . . ,Zn satisfy (M1),
(M2), and (M3). For 1 ≤ p ≤ ∞ and sufficiently large n,
there is a constant ζ0 > 0 such that

supz∈(0,∞)

∣∣∣P(‖SZ
n ‖(s0,p) ≤ z

)
−P

(
‖SG

n ‖(s0,p) ≤ z
)∣∣∣ ≤ n−ζ0 ,

where SZ
n = n−1/2

∑n
k=1 Zk, S

G
n = n−1/2

∑n
k=1 Gk and C

depends on b and Q.
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Lemma A.2. (Product of sub-Gaussian is sub-exponential,
Lemma 2.7.7 in [19]) Let X and Y be sub-Gaussian random
variables, we have XY is sub-exponential. Moreover,

‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 ,

where the ψα-norm (α ≥ 1) of X is defined by

‖X‖ψα := inf
(
c > 0 : E

(
exp(|X|α/cα)

)
≤ 2

)
.

We then introduce the following lemma to get the bound
for Ui,j,m and the bias of r̂i,j,m uniformly in 1 ≤ i < j ≤ d.

Lemma A.3. Let U i,j,m = 1/nm

∑nm

k=1 Uk,i,j,m. With As-
sumption (B)-(D) hold, and for log(d) = o{n1/2}, we have

(A.1) max
1≤i<j≤d
m=1,2

|U i,j,m| = Op

{(
log(d)/n

)1/2}
,

and

(A.2) max
1≤i<j≤d
m=1,2

|ri,j,m − r̂i,j,m| = Op

{(
log(d)/n

)1/2}
,

for sufficient large n.

The proof of this lemma is in Section 1.2 of the supple-
mentary materials.

Corresponding to the definition of ΣŨ
m in Section 4.1, we

introduce its plug-in covariance matrix estimator as Σ̂
Ũ

m =

(σ̂Ũ
s,t,m)1≤s,t≤d(d−1)/2, where

σ̂Ũ
s,t,m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + β̂2
i,j,mr̂i,i,m/r̂j,j,m

r̂i,i,mr̂j,j,m
, s = t,

r̂i1,i2,mr̂j1,j2,m + r̂i1,j2,mr̂i2,j1,m
r̂i1,i1,mr̂j1,j1,mr̂i2,i2,mr̂j2,j2,m

, s �= t,

(A.3)

with 1 ≤ i < j ≤ d, 1 ≤ i1 < j1 ≤ d, 1 ≤ i2 < j2 ≤ d,
i1 �= i2, j1 �= j2, m = 1, 2. Hence, for the variance, we have

θ̂i,j,m = σ̂Ũ
s,s,m/nm.

Set the correlation matrix of trivec(Ũm) as RŨ
m =

(rŨs,t,m)1≤s,t≤d(d−1)/2, and its plug-in estimator as R̂Ũ
m =

(r̂Ũs,t,m)1≤s,t≤d(d−1)/2. By the definition of correlation, we
have

rŨs,t,m =
σŨ
s,t,m√

σŨ
s,s,mσŨ

t,t,m

, r̂Ũs,t,m =
σ̂Ũ
s,t,m√

σ̂Ũ
s,s,mσ̂Ũ

t,t,m

.

With the Lemma A.3 holding, we then introduce the fol-
lowing lemma to bound the estimation error of the plug-in

estimator σ̂Ũ
s,t,m and r̂s,t.

Lemma A.4. With Assumptions (B)-(D) hold, and for
log(d) = o{n1/2}, we have

max
1≤s,t≤d(d−1)/2

m=1,2

(∣∣σ̂Ũ
s,t,m − σŨ

s,t,m

∣∣, ∣∣r̂Ũs,t,m − rŨs,t,m
∣∣)

= op

{(
n log(d)

)−1/4
}
,

(A.4)

for sufficient large n.

The proof of Lemma A.4 is in Section 1.3 of the supple-
mentary materials.

Lemma A.4 bound the estimation error of the plug-in
estimator, it is important to get the approximated dis-
tribution of ‖trivec(W)‖(s0,p), i.e. the proof of Theorem
4.1. In addition, to prove Theorem 4.1, the approximated
distribution for ‖trivec(Wb)‖(s0,p) is also needed. By the

definition of T b
i,j,m and W b

i,j in (3.3), and as ηbm,k,m =
1, 2, k = 1, . . . , n are independent standard normal ran-
dom variables, we have T b

i,j,m|X ,Y ∼ N(0, θ̃i,j,m) with

1 ≤ i, j ≤ d. Set Tb
m|X ,Y = (T b

i,j,m|X ,Y)�d×d, we

then have trivec(Tb
m|X ,Y) ∼ N(0, Σ̂

T b

m ), where Σ̂
Tb

m =(
σ̂Tb

s,t,m

)
1≤s,t≤d(d−1)/2

and σ̂Tb

s,t,m = θ̃i,j,m for s = t. Actually,

it also can be seen as the sample estimator for ΣŨ
m/nm. Sim-

ilarly, set the corresponding correlation estimator as R̂Tb

m =

(r̂T
b

s,t,m)1≤s,t≤d(d−1)/2, with r̂T
b

s,t,m = σ̂Tb

s,t,m/
√
σ̂Tb

s,s,mσ̂Tb

t,t,m.

We then provide the following lemma to bound the esti-
mation errors.

Lemma A.5. With Assumption (B)-(D) hold, and for
log(d) = o{n1/2}, we have

max
1≤s,t≤d(d−1)/2

m=1,2

(∣∣nmσ̂Tb

s,t,m − σŨ
s,t,m

∣∣, ∣∣r̂Tb

s,t,m − rŨs,t,m
∣∣)

=op

{(
log(d)

)−1/4
}
.

(A.5)

The proof of Lemma A.5 is in the supplementary mate-
rials.

APPENDIX B. PROOF OF THEOREMS

By the results in Lemma A.4, Lemma A.5, and Theorem
4.1, actually the proof of Theorem 4.2 is similar to the proof
of Theorem 3.6 in [28], the proof of Theorem 4.3 is similar to
the proof of Theorem 3.3 and Theorem 3.7 in [28]. Hence,
we omit these proofs and only show the detailed proof of
Theorem 4.1.

B.1 Proof of Theorem 4.1

Proof. We provide the detail proof of (4.1) in two steps.
Step (i). In this step, we establish the approximated

distribution of trivec(W). To this end, we introduce another
intermediate variable. Define H ∈ R

d×d with

Hi,j = (Ũ i,j,1 − Ũ i,j,2)/
√

θi,j,1 + θi,j,2, 1 ≤ i, j ≤ d,
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where Ũ i,j,m = 1/nm

∑nm

k=1 Ũk,i,j,m, θi,j,m = σŨ
s,s,m/nm,

m = 1, 2.
The following lemma establish that trivec(H) is a good

approximation of trivec(W) under (s0, p)-norm.

Lemma B.1. We assume that Assumption (A)-(D) hold.
Under H0 of (1.1), we have that there is a constant C > 0
such that

P
(
‖trivec(W)− trivec(H)‖(s0,p) > ε

)
= o(1),

as n → ∞, where ε = o
{
s0
(
log(d)

)−1/2
}
.

The proof for this lemma is in the supplementary ma-
terials. By the definition of Ũi,j,m and by Lemma A.2, the
Assumptions (M1)-(M3) are hold. As trivec(H) is a sum
of independent random vectors with mean zero and covari-

ance matrixRŨ
12, whereR

Ũ
12 = (DŨ

12)
−1/2ΣŨ

12(D
Ũ
12)

−1/2 with

ΣŨ
12 = ΣŨ

1 /n1 + ΣŨ
2 /n2 and DŨ

12 = Diag(ΣŨ
12). we use a

Gaussian random vector with the same covariance matrices
as its approximation. Let G ∈ R

d(d−1)/2 be a Gaussian ran-

dom vector with mean zero and covariance matrix RŨ
12. By

Lemma A.1, we have

sup
z−ε>0

∣∣∣P(‖trivec(H)‖(s0,p) > z − ε)

− P(‖G‖(s0,p) > z − ε)
∣∣∣ ≤ Cn−ζ0 .

and

sup
z+ε>0

∣∣∣P(‖trivec(H)‖(s0,p) > z + ε)

− P(‖G‖(s0,p) > z + ε)
∣∣∣ ≤ Cn−ζ0 .

Further, by the triangle inequality, we have

P(‖trivec(W)‖(s0,p) > z) ≤
P(‖trivec(H)‖(s0,p) > z − ε)

+P(‖trivec(W)− trivec(H)‖(s0,p) > ε)

(B.1)

P(‖trivec(W)‖(s0,p) > z) ≥
P(‖trivec(H)‖(s0,p) > z + ε)

−P(‖trivec(W)− trivec(H)‖(s0,p) > ε).

(B.2)

Thus, by the triangle inequality and Lemma B.1, and
combining Equation (B.1) and (B.2), we have

(B.3)

P

(
‖G‖(s0,p) > z + ε

)
− o(1)

≤P

(
‖trivec(W)‖(s0,p) > z

)

≤P

(
‖G‖(s0,p) > z − ε

)
+ o(1).

Lemma B.2. (Lemma B.2 in [28]) Assumptions (A) hold.

For any z > 0 and ε = O
(
s0 log

2(dn)n−1/2
)
, we have P

(
z−

ε < ‖G‖(s0,p) ≤ z
)
= o(1) as n → ∞.

By Lemma B.2 and combining (B.3), as n → ∞, we have

sup
z>0

∣∣∣P(‖trivec(W)‖(s0,p) > z
)

− P
(
‖G‖(s0,p) > z

)∣∣∣ = o(1).

(B.4)

Step (ii). In this step, we aim to obtain the distribution
of trivec(Wb) given X and Y . By the definition of T b

i,j,m

in (3.3), as ηbm,k,m = 1, 2, k = 1, . . . , n are independent

standard normal random variables, we have T b
i,j,m|X ,Y ∼

N(0, θ̃i,j,m) with 1 ≤ i, j ≤ d, and trivec(Tb
m|X ,Y) ∼

N(0, Σ̂
T b

m ) with Tb
m|X ,Y = (T b

i,j,m|X ,Y)�d×d. By setting

Σ̂
T b

12 = Σ̂
T b

1 + Σ̂
T b

2 and D̂T b

12 = Diag(Σ̂
T b

12 ), and conditional
on X and Y , we have

trivec(Wb) ∼ N(0, R̂T b

12 ),

where R̂T b

12 := (D̂T b

12 )
−1/2Σ̂

T b

12 (D̂
T b

12 )
−1/2.

Recall that in last step, we have G ∼ N(0,RŨ
12). By

Lemma A.5 and similar argument in Lemma B.3 of [28], we
get the following lemma to establish the upper bound for
the approximation error between ‖T ∗b‖(s0,p) and ‖G‖(s0,p).
Lemma B.3. Under Assumptions (A)-(D), with probabil-
ity at least 1− Cn−1, we have

sup
z>0

∣∣∣P(‖G‖(s0,p) > z
)

−P
(
‖trivec(W b)‖(s0,p) > z|X ,Y

)∣∣∣ = op(1).

By the triangle inequality, we have∣∣∣P(N(s0,p) > z)− P(N b
(s0,p)

> z|X ,Y)
∣∣∣ ≤∣∣∣P(‖trivec(W )‖(s0,p) > z)− P(‖G‖(s0,p) > z)

∣∣∣+∣∣∣P(‖G‖(s0,p) > z)− P(‖trivec(W b)‖(s0,p) > z|X ,Y)
∣∣∣.

Hence, combining Equation (B.4) and the result in
Lemma B.3, we have

sup
z∈(0,∞)

∣∣∣P(N(s0,p) > z
)
− P

(
N b

(s0,p)
> z|X ,Y

)∣∣∣ = op(1),

which finishes the proof of Theorem 4.1.

Received 8 June 2018
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