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Bayesian variable selection and estimation in joint
confirmatory factor analysis–Cox model
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In this article, we propose the joint confirmatory factor
analysis–Cox model to assess the effects of observed and la-
tent risk factors on survival time. The Bayesian adaptive
Lasso procedure is developed to simultaneously conduct es-
timation and variable selection for the proposed model. Nice
features including the empirical performance of the pro-
posed method are demonstrated by simulation studies. The
proposed method is applied to analyze the bladder cancer
data set obtained from the Surveillance, Epidemiology, and
End Results (SEER) Program of the National Cancer Insti-
tute.
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1. INTRODUCTION

Cox model [6] is the most famous model which reveals
the interrelationships between the risk factors and the haz-
ard rates of events concerned. Conventional Cox models are
only able to deal with observed risk factors. Aside from such
type of observable risk factors, latent risk factors that are
not directly assessable through a single observed variable
have been increasingly recognized in medical research when
a medical trait is characterized by multiple observed indi-
cators from different angles. Recently, the joint modelling
approach which consists of a confirmatory factor analysis
(CFA) model and the Cox model was developed to assess
the effects of both observed and latent risk factors [4, 24].
More specifically, the CFA model is employed to character-
ize latent risk factors via related multiple observed variables,
and the Cox model is used to assess the effects of the result-
ing latent risk factors.

Although the CFA–Cox model can help reduce the dimen-
sionality of the risk factors efficiently, it is important that
identifying prominent risk factors to obtain a more parsi-
monious model in statistical inference. In the Bayesian con-
text, one of the most popular variable selection schemes is
the use of model selection procedures based on model com-
parison statistics, such as Bayes factor [18], deviance infor-
mation criterion [28], and so on. An alternative way is to
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employ a shrinkage method, such as Lasso [31], to perform
estimation and variable selection simultaneously. Tibshirani
[31] showed that the Lasso estimates for linear regression
parameters via the l1-penalized least-squares criterion can
be interpreted as Bayesian posterior mode estimates when
the regression parameters have independent Laplace priors.
Motivated by this idea, Park and Casella [26] proposed the
Bayesian framework for Lasso by imposing the double expo-
nential prior on the regression coefficients and the gamma
prior on the shrinkage parameter. Since this seminal work,
a host of studies have applied the Bayesian Lasso (BLasso)
approach to various models. In the Bayesian survival anal-
ysis literature, Lee et al. [19] considered a penalized semi-
parametric Bayesian Cox model to perform model selection
by assigning shrinkage priors for the regression coefficients
in the Cox model. Gu et al. [12] proposed a Bayesian two-
step Lasso procedure for biomarker selection under the Cox
model. However, the above proposed methods were only able
to accommodate observed risk factors. In the field of latent
variable modelling, Guo et al. [13] developed BLasso method
for model selection in semiparametric structural equation
models. Feng et al. [8] proposed BLasso method to identify
the structure of semiparametric structural equation mod-
els. Despite Lasso and/or BLasso work efficiently in model
selection without tedious pairwise comparisons, they have
their limitations, including inconsistency in certain condi-
tions and suffering from appreciable bias [7, 32]. To attack
this problem, an adaptive Lasso [33] and Bayesian adap-
tive Lasso (BaLasso) procedure [1, 21] have been developed.
More recently, Feng et al. [9] proposed the BaLasso proce-
dure to conduct estimation and model selection for ordinal
regression with latent variables. The aforementioned studies
focused on latent variable models or survival models without
latent variables separately. Thus, to the best of our knowl-
edge, this is the first study to conduct variable selection in
the CFA–Cox model via the BLasso and/or BaLasso ap-
proach.

This work is motivated by a study on mortality and its
risk factors for bladder cancer patients. Bladder cancer is
the fourth most common cancer and ranks eighth as a cause
of death from cancer among men in the United States, with
an estimation that there will be 81,190 new cases and 17,240
patients would die of bladder cancer in 2018. Moreover, for
patients who suffer from bladder cancer, the 5-year survival
rate is 70% for cases detected when the disease is still lo-
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calized, 35% for regional disease, and 5% for distant-stage
disease.

The bladder cancer data set used in this study is ob-
tained from Surveillance, Epidemiology, and End Results
(SEER) Program [23] of the National Cancer Institute. The
SEER Program is an authoritative source of information on
cancer incidence and survival in the United States. SEER
currently collects and publishes cancer incidence and sur-
vival data from population-based cancer registries covering
approximately 28 percent of the U.S. population. The SEER
Program registries routinely collect data on patient demo-
graphics, primary tumor site, tumor morphology and stage
at diagnosis, the first course of treatment, and follow-up for
vital status. The SEER Program is the only comprehensive
source of population-based information in the United States
that includes the stage of cancer at the time of diagnosis and
patient survival data. There is a total of 10,050,814 records
in the SEER research data for all types of cancers. The blad-
der cancer data set used in this study is a slice of the SEER
research data, which records information of 2,095 bladder
cancer patients in Connecticut diagnosed between 2010 and
2014.

There are 15 potential risk factors under consideration,
including T Extension, CS Extension, N Lymph Nodes, CS
Lymph Nodes, CS Met at Dx, marriage (0 = married, 1 =
single), gender (0 = female, 1 = male), age at diagnosis,
grade, nodes examined, tumor size, nodes removed, race (0
= non-white, 1 = white), origin (0 = non-Spanish, 1 = Span-
ish), and the total number of benign tumors. The descrip-
tive statistics of the risk factors are presented in Table 1.
Both T Extension and CS Extension describe the farthest
documented extension of tumor away from the primary site.
Moreover, N Lymph Nodes and CS Lymph Nodes simultane-
ously identify the lymph node chain that involved by the tu-
mor at the time of diagnosis, while CS Met at Dx represents
the distant site(s) of metastatic involvement at the time of
diagnosis. Based on the medical meanings of the above risk
factors, CS Extension and T Extension are grouped into a
latent variable “extension (EXT),” whilst CS Lymph Nodes,
CS Met at Dx, and N Lymph Nodes are grouped into the
other latent variable “metastasis (META).” Given that the
risk factors include both observed and latent factors, the
CFA–Cox model is tailor-made for analyzing such data set.
Moreover, the BaLasso procedure is employed to simulta-
neously identify the important observed and latent risk fac-
tors of bladder cancer and assess their effects on the survival
time.

The remainder of this article is organized as follows. Sec-
tion 2 introduces the joint modelling approach for CFA–Cox
model. Section 3 proposes the variable selection procedure
via BaLasso method. Section 4 presents the details of pos-
terior inference, including the Gibbs sampler [11] and the
Metropolis-Hastings algorithm [14, 22]. Section 5 applies the
proposed model and methodology to analyze the bladder
cancer data set. Section 6 conducts simulation studies to

assess the empirical performance of the proposed method.
Section 7 concludes the paper with a discussion.

2. JOINT MODELLING APPROACH FOR
CFA–COX MODEL

Let ti > 0 be the survival time associated with subject
i = 1, . . . , n, xi = (xi1, . . . , xir)

T and ξi = (ξi1, . . . , ξiq)
T

are the vectors of fixed covariates and latent variables, re-
spectively. Inspired by the proportional hazards model, the
hazard rate at time ti is related to the fixed covariates and
latent variables via the following model,

(1) h(ti|xi, ξi) = h0(ti) exp(x
T
i β + ξTi γ),

where β = (β1, . . . , βr)
T and γ = (γ1, . . . , γq)

T are vectors
of regression coefficients, and h0(t) is an unspecified arbi-
trary baseline hazard function. Under the model defined by
(1), the survival function of ti is given by

(2) S(ti|xi, ξi, H0) = exp
{
− exp(xT

i β + ξTi γ)H0(ti)
}
,

where H0(t) is the cumulative baseline hazard function with
H0(0) = 0. One may assign the Dirichlet process to model
the prior for the cumulative baseline hazard function. How-
ever, the Dirichlet process lacks a simple interpretation in
terms of hazard functions. On the other hand, the gamma
process is the most commonly used nonparametric prior pro-
cess for modelling the cumulative baseline hazard function
[5, 17]. Thus, we assign the gamma process prior for H0, as
follows:

(3) H0 ∼ GP(w0H
∗, w0),

where GP(·) denotes the gamma process prior and H∗(t)
is an increasing function with H∗(0) = 0. Note that H∗ is
the mean of the process and assumed to be a known para-
metric function, while w0 is a weight or confidence param-
eter about H∗. For example, if H∗ relates to the Weibull
distribution, then H∗(t) = ζtη, where (ζ, η) is a specified
vector of hyperparameters. In general, the statistical infer-
ence is robust to the choice of H∗. In this study, we as-
sume that H∗ associates with the exponential distribution
for mathematical convenience and computational efficiency.
That is, H∗(t) = νt, where ν is a hyperparameter with a
given value.

With the gamma process prior, the likelihood can be only
obtained for the cases when all the observed survival times
are distinct [5, 17]. As grouped survival data is often encoun-
tered in practice, we will construct our model based on the
grouped data likelihood [3, 16]. We first construct a finite
partition of the time axis, 0 = a0 < a1 < a2 < . . . < aK ,
with aK > ti for all i = 1, . . . , n. Let Ak = (ak−1, ak], we
have the K disjoint intervals A1, . . . , AK . The survival time
ti may fall in one and only one of those K disjoint intervals.
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Table 1. Summary statistics of the bladder cancer data set

Variable Descriptive statistics Variable Descriptive statistics

Marriage Married 1892 Gender Male 1542
Single 203 Female 553

Age at Diagnosis Mean 71.427 Grade Mean 2.754
SD 11.801 SD 1.031

Nodes Examined Mean 1.757 Tumor Size Mean 35.646
SD 6.378 SD 40.913

Nodes Removed Mean 0.559 Race White 2018
SD 1.565 Non-white 77

Origin Spanish 79 Benign Tumor Mean 0.003
Non-Spanish 2016 SD 0.058

T Extension Mean 83.590 CS Extension Mean 113.786
SD 104.667 SD 146.254

N Lymph Nodes Mean 6.874 CS Lymph Nodes Mean 9.690
SD 35.244 SD 51.683

CS Met at Dx Mean 0.926
SD 6.559

Moreover, let bk be the increment in the cumulative baseline
hazard in Ak, that is

bk = H0(ak)−H0(ak−1), k = 1, 2, . . . ,K.

The gamma process prior in (3) implies that bk’s are inde-
pendently distributed as

(4) bk ∼ Gamma
(
w0H

∗(ak)− w0H
∗(ak−1), w0

)
.

Thus, the conditional probability of ti ∈ Ak given xi, ξi,
and b = (b1, . . . , bK)T can be specified as follows:

Pr(ti ∈ Ak|xi, ξi,b) = exp

{
− exp(xT

i β + ξTi γ)

k−1∑
j=1

bj

}
×

[
1− exp

{
− bk exp(x

T
i β + ξTi γ)

}]
.

(5)

The grouped data likelihood function can be obtained as
follows [3, 16]:

(6) L(β,γ,b) ∝
K∏

k=1

Lk,

where

Lk = exp
{
−bk

∑
i∈Rk−Dk

exp(xT
i β + ξTi γ)

}
×

∏
j∈Dk

[
1− exp

{
− bk exp(x

T
j β + ξTj γ)

}]
,

with Rk and Dk being the risk set and failure set of Ak,
respectively.

The second part of the joint modelling approach is to
employ the CFA model for characterizing latent variables
through multiple observed variables. Let yi = (yi1, . . . , yip)

T

(p > q) be the vector of observed variables related to latent
variable ξi, the CFA model is written as follows:

(7) yi = Λξi + εi,

where Λ is the factor loading matrix, εi is the random er-
ror term which is independent of ξi and follows the nor-
mal distribution N(0,Ψ) with Ψ = diag(ψ1, . . . , ψp). Fi-
nally, ξi is assumed to be distributed as N(0,Φ), where Φ
is the unknown covariance matrix. It is well known that the
CFA model is not identifiable without imposing appropriate
identifiability constraints. More specifically, for an arbitrary
nonsingular matrix M, the CFA model can be rewritten
as yi = Λξi + εi = ΛMM−1ξi + εi = Λ∗ξ∗i + εi, where
Λ∗ = ΛM and ξ∗i = M−1ξi. Thus, appropriate constraints
should be imposed on the factor loading matrix Λ or the
covariance matrix Φ so that the only nonsingular matrix M
that meets the imposing conditions is the identity matrix.
There are two common ways to identify the CFA model. The
first method is to take the covariance matrix Φ as an iden-
tity matrix. The factor loading matrix Λ can be arbitrary
in this case. The second way is specifying a non-overlapping
structure of the factor loading matrixΛ and fixing one of the
elements in each column at a nonzero constant. Following
a common practice in latent variable modelling literature
[2, 20, 27], we specify a non-overlapping structure of Λ and
fix one of the elements in each column at a nonzero constant
to obtain an identified model and clear interpretations of the
latent variables.

From the grouped data likelihood function (6) and the
CFA model (7), the complete grouped data log-likelihood
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with the constant terms being disregarded is as follows:

Lcomp =

K∑
k=1

logLk +

n∑
i=1

[
log p(yi|ξi) + log p(ξi)

]

=

K∑
k=1

logLk − n

2

[
log |Ψ|+ log |Φ|

]

− 1

2

n∑
i=1

[
(yi −Λξi)

TΨ−1(yi −Λξi) + ξTi Φ
−1ξi

]
.

(8)

3. VARIABLE SELECTION VIA BAYESIAN
ADAPTIVE LASSO

The BLasso procedure can be employed to identify the
important risk factors in xi and ξi by assigning a Laplace
prior for β and γ, as follows [8, 13, 26]:

(9) p(β,γ) =
r∏

j=1

τ

2
exp

(
− τ |βj |

)
×

q∏
j=1

τ

2
exp

(
− τ |γj |

)
,

where τ is the tuning parameter which serves to control the
impact of the shrinkage. One advantage of BLasso is that it
provides a posterior sample that can be used to summarize
the entire distribution of β and γ. The posterior mean or
mode of β and γ can be regarded as their Lasso estimators.
It is shown that although BLasso does not shrink the Lasso
estimators exactly to zero, it does shrink them close to 0
much faster than ridge regression does [26]. However, one
problem with the BLasso procedure is that the same tuning
parameter τ is applied to all regression coefficients, implying
that the same impact of shrinkage is introduced to different
regression coefficients. This may add potential bias to the
resulting estimates [7, 32]. Following the existent literature
[9, 29], we employ the BaLasso procedure to address this
problem. More specifically, we assign a Laplace prior with
coefficient-specific tuning parameters, as follows:
(10)

p(β,γ) =
r∏

j=1

τj
2
exp

(
− τj |βj |

)
×

q∏
j=1

τr+j

2
exp

(
− τr+j |γj |

)
,

where τj , j = 1, . . . , r + q, is the coefficient-specific tun-
ing parameter. By introducing a specific penalty to each
regression coefficient, BaLasso shrinks unimportant coeffi-
cients to 0 more efficiently and produces better estimation
than BLasso does. Since the Laplace distribution can be rep-
resented as a scale mixture of normals with an exponential
mixing density, the hierarchical representation of the BaL-
asso prior (10) can be rewritten as follows:

β ∼ N(0,Σβκ), Σβκ = diag(κ2
1, . . . , κ

2
r),

γ ∼ N(0,Σγκ), Σγκ = diag(κ2
r+1, . . . , κ

2
r+q),

κ2
j ∼ Gamma(1, τ2j /2), j = 1, . . . , r + q.

(11)

Finally, we assign gamma prior for the tuning parameter,
τj , as follows:

(12) τ2j ∼ Gamma(cτj , dτj), j = 1, . . . , r + q,

where cτj and dτj are hyperparameters whose values are
predetermined. Under the prior setting, the prior variances
of κ2

j and τ2j are 4/τ4j and cτj/d
2
τj , respectively.

4. POSTERIOR INFERENCE

In a full Bayesian analysis, the first step is to specify ap-
propriate prior distributions for the unknown parameters.
The BaLasso priors for the coefficients, β and γ, and the
related parameters were presented in (11) and (12). More-
over, according to the common practice in Bayesian latent
variable modelling [27], the following prior distributions are
assigned to the parameters related in the CFA model:

Λj |ψj ∼ N(Λj0, ψjΣλj0), j = 1, . . . , p,

ψ−1
j ∼ Gamma(cψj , dψj), j = 1, . . . , p,

Φ−1 ∼ Wishart(R0, ρ0),

(13)

whereΛj is the jth row ofΛ,Λj0,Σλj0, cψj , dψj ,R0, and ρ0
are hyperparameters with predetermined values. The prior
variance of φij in Φ is

(ρ0 − q + 1)r2ij + (ρ0 − q − 1)riirjj

(ρ0 − q)(ρ0 − q − 1)2(ρ0 − q − 3)
,

where rij is the ith-row and jth-column element in R0.
Moreover, the prior covariance of φij and φkl is

2rijrkl + (ρ0 − q − 1)(rikrjl + rilrkj)

(ρ0 − q)(ρ0 − q − 1)2(ρ0 − q − 3)
.

Let θ be the vector containing all unknown parameters,
R = {R1, . . . ,RK}, D = {D1, . . . ,DK}, X = {x1, . . . ,xn},
Y = {y1, . . . ,yn}, and V = {R,D,X,Y}, the Bayesian
inference is based on the posterior distribution of θ with
the given observed data, p(θ|V). However, owing to the
existence of latent variables, this posterior distribution in-
volves high dimensional integration and is intractable with-
out closed form. Data augmentation [30] is employed to
solve this difficulty. More specifically, the latent variables
Ξ = {ξ1, . . . , ξn} are treated as hypothetical missing data
and the observed data V are augmented with Ξ in the pos-
terior analysis. As a result, the Bayesian analyses are based
on the joint posterior distribution p(θ,Ξ|V) rather than
p(θ|V). Given that p(θ,Ξ|V) does not involve integration,
the subsequent computation is more straightforward. The
Bayesian estimates and the standard error estimates can
then be obtained through the sample means and the sample
covariance matrix based on a sufficiently large number of
random samples drawn from p(θ,Ξ|V). Although the joint
posterior distribution does not involve high dimensional in-
tegration, drawing observations from p(θ,Ξ|V) directly is
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difficult. Hence, the Gibbs sampler [11] is employed to draw
a sequence of random observations from the joint poste-
rior distribution. More specifically, the components in θ
are generated from the corresponding full conditional distri-
butions iteratively. These full conditional distributions are
provided in Appendix. Given that most full conditional dis-
tributions are non-standard, the Metropolis-Hastings algo-
rithm [14, 22] is employed to generate samples from such
non-standard distributions.

5. ANALYSIS OF BLADDER CANCER DATA
SET

This section applied the proposed model with BaLasso
procedure to analyze the bladder cancer data set that was
introduced in Section 1. The main goal was to simultane-
ously identify the important observed and latent risk fac-
tors of bladder cancer and assess their associations with the
hazard rate. As discussed in Section 1, the latent risk factor
EXT was characterized by two observed variables, CS Ex-
tension and T Extension. The other latent risk factor META
was related to three observed variables, CS Lymph Nodes,
CS Met at Dx, and N Lymph Nodes. Given that no ob-
served indicator measures more than one latent trait, the
factor loading matrix Λ has a non-overlapping structure as
follows:

(14) ΛT =

[
1.0 λ21 0.0 0.0 0.0
0.0 0.0 1.0 λ42 λ52

]
,

where the ones and zeros were fixed to obtain an identified
model.

Let xi = (xi1, . . . , xi,11)
T = (1,marriage, gender, age at

diagnosis, grade, nodes examined, tumor size, nodes removed,
race, origin, benign tumors)T , ξi = (ξi1, ξi2)

T = (EXT,
META)T , the hazard rate in the proportional hazards
model (1) is well defined with the aforementioned observed
and latent risk factors. The prior inputs in (13) were as-
signed as follows: Λj0 were zero vectors; Σλj0 and R0 were
the identity matrices with appropriate dimensions; ρ0 = 6,
cψj = 1, and dψj = 0.005. Following the suggestions of the
existing literatures [8, 29], we set cτj = 1 and dτj = 0.01
to obtain dispersed priors for τj . Such dispersed priors
enable τj to be mainly determined by the data, thereby
automatically imposing a large penalty on unimportant
coefficients and shrinking them to 0 efficiently. There is not
a general principle of choosing K. The minimum require-
ment is that the K disjoint intervals should be chosen so
that at least one failure subject falls in each interval. In
this study, we took K = 10 in the analysis which resulted
in (a0, . . . , a10)

T = (0, 4, 8, 12, 16, 22, 29, 36, 42, 50, 59)T .
Moreover, w0 in (3) represents a specification of weight or
confidence attached to the initial guess H∗. Cai and Liang
[4] pointed out that it is preferred to use a not very large
w0, for example, 10, to obtain reliable results under the
situations that the data distribution is unknown. Finally,

Figure 1. EPSR values in the bladder cancer study.

we set ν as its maximum likelihood estimate with w0 = ∞
[3]:
(15)

ν =

(
log
[ K∑
k=1

(
nrk + ndk

)]
− log

[ K∑
k=1

nrk

])
/(a1 − a0),

where nrk =
∑n

i=1 I(i ∈ Rk−Dk) and ndk =
∑n

i=1 I(i ∈ Dk)
with I(·) being an indicator function. To decide the num-
ber of burn-in iterations required for achieving convergence,
we tried a few test runs with different starting values and
obtained the “estimated potential scale reduction (EPSR)”
statistic [10]. The EPSR values for all unknown parameters
are presented in Figure 1. All EPSR values were less than
1.2 within 5,000 iterations, indicating the convergence of the
algorithm. Based on this information and to be more con-
servative, 10,000 observations were collected after discarding
the first 10,000 burn-in iterations for obtaining the Bayesian
estimates. Using a single notebook computer with an Intel
(R) Core (TM) i3-2350M CPU @2.30 GHz and 2.00 GB
RAM, the computing time for the full Bayesian inference
was about 2 hours. Our program was written in R codes
which are provided on the journal website. Given that BaL-
asso is a sampling-based method which would not shrink
the parameters exactly to 0, Hoti and Sillanpää [15] sug-
gested setting the cutoff value c∗ to identify insignificant
variables. More specifically, if |β̂j | ≤ c∗ or |γ̂j | ≤ c∗ where

β̂j and γ̂j are the means of their posterior distributions,
then the corresponding observed or latent factor is classi-
fied as unimportant. The cutoff value c∗ controls the size of
the model, that is, more variables are identified as impor-
tant with a smaller value of c∗. Following the common prac-
tice in BLasso and/or BaLasso procedure for latent variable
modelling [8, 9], we set c∗ = 0.1. The estimated factor load-
ings and the important coefficients along with their standard
error estimates are presented in Figure 2, where the solid
and dashed lines represent important and unimportant ef-
fects of risk factors, respectively. Finally, the estimates of
Ψ and Φ in the CFA model are also presented with the
arrows pointing to the corresponding observed and latent
variables.
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Figure 2. Path diagram in the bladder cancer study.

Several findings are obtained from the results. First, the
prominent observed and latent risk factors associated with
the hazard of bladder cancer are marriage, grade, and EXT.
Second, both marriage and grade have positive effects on
the hazard rate of mortality, implying that the single (mar-
riage = 1) and poorer cell differentiated patients have a
higher risk of death suffered from bladder cancer. Third, la-
tent variable EXT has positive effects on the hazard rate of
death, indicating that a more serious extension of bladder
cancer leads to higher mortality. Fourth, other observed and
latent risk factors, including gender, age at diagnosis, nodes
examined, tumor size, nodes removed, race, origin, the total
number of benign tumors, and META have little effects on
the survival time in this study. The findings are useful for
understanding the relationships between the mortality and
the related observed and latent risk factors. Finally, we con-
ducted analyses based on K = 5 and K = 15. We obtained
similar results which indicated that the inferences were not
sensitive to the choice of K.

For comparison, we reanalyzed the same data set based
on a standard analysis, in which all the observed variables
were treated as independent covariates. The estimated coef-
ficients and the standard error estimates in both joint and

standard analyses are presented in Table 2. The variables
with an asterisk are the important ones identified by the
BaLasso procedure. Despite the results are similar, the stan-
dard analysis is not able to address the following major ques-
tion in the current study: How do the latent risk factors,
EXT and META, affect the hazard rate of the bladder can-
cer overall?

We also conducted the analysis with H∗ correspond-
ing to the Weibull distribution, that is, H∗(t) = ζtη for
the gamma process prior. We set ζ = 1

3 and η = 1
2 to

make H∗ approximate to its maximum likelihood estimate.
The estimated coefficients and the standard error estimates
with H∗(t) = νt and H∗(t) = ζtη are presented in Ta-
ble 3. The variables with an asterisk are the important vari-
ables identified by the BaLasso procedure. The choice of
H∗ does not affect the statistical inference. Table 3 also
shows how the size of the model varies according to the
cutoff value c∗. If we took a smaller cutoff value, for exam-
ple, c∗ = 0.05, four extra variables including gender, age
at diagnosis, race, and META were identified as important
ones. On the other hand, if we took a larger cutoff value,
c∗ = 0.15, only one observed risk factor, marriage, was cho-
sen.
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Table 2. Comparison of the joint and standard analyses in the
bladder cancer study

Variable Est SE

Marriage* 0.162 0.078
Gender −0.098 0.053
Age at Diagnosis 0.082 0.024
Grade* 0.122 0.024
Nodes Examined −0.041 0.035

Joint Tumor Size 0.011 0.018
Analysis Nodes Removed −0.035 0.025

Race −0.066 0.086
Origin 0.012 0.079
Benign Tumors 0.015 0.160
EXT* 0.139 0.037
META 0.093 0.028

Marriage* 0.164 0.076
Gender* −0.109 0.051
Age at Diagnosis 0.088 0.024
Grade* 0.105 0.022
Nodes Examined −0.030 0.034
Tumor Size 0.011 0.018
Nodes Removed −0.036 0.023

Standard Race −0.078 0.087
Analysis Origin 0.019 0.078

Benign Tumors 0.025 0.165
CS Extension 0.003 0.067
T Extension* 0.141 0.074
CS Lymph Nodes 0.016 0.039
CS Met at Dx 0.095 0.024
N Lymph Nodes 0.048 0.041

Note: The variables with an asterisk are the important variables iden-
tified by the BaLasso procedure with c∗ = 0.1.

Table 3. Comparison of the analyses between H∗(t) = νt and
H∗(t) = ζtη in the bladder cancer study

H∗(t) = νt H∗(t) = ζtη

Variable Est SE Est SE

Marriage* 0.162 0.078 0.160 0.079
Gender −0.098 0.053 −0.099 0.054
Age at Diagnosis 0.082 0.024 0.083 0.025
Grade* 0.122 0.024 0.121 0.026
Nodes Examined −0.041 0.035 −0.045 0.036
Tumor Size 0.011 0.018 0.012 0.017
Nodes Removed −0.035 0.025 −0.032 0.024
Race −0.066 0.086 −0.050 0.091
Origin 0.012 0.079 0.012 0.080
Benign Tumors 0.015 0.160 0.024 0.161
EXT* 0.139 0.037 0.141 0.035
META 0.093 0.028 0.089 0.028

Note: The variables with an asterisk are the important variables iden-
tified by the BaLasso procedure with c∗ = 0.1.

Finally, we conducted sensitivity analyses by perturbing
the hyperparameters in prior inputs, the results of variable
selection and Bayesian estimates were robust to such per-
turbations and not presented to save space.

Figure 3. EPSR values in the simulation study.

6. SIMULATION STUDY

In this section, we conducted simulation studies to exam-
ine the performance of the proposed method. We set p = 15,
q = 5 and a non-overlapping structure for

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.8 0.0 0.0 0.0
0.0 0.8 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.7 0.0 0.0
0.0 0.0 0.7 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.9 0.0
0.0 0.0 0.0 0.9 0.0
0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.8
0.0 0.0 0.0 0.0 0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the ones and zeros were fixed to obtain an identified
model. Φ was taken to be the correlation matrix with corre-
lation coefficients being 0.5. Finally, Ψ = diag(0.3, . . . , 0.3).

In the proportional hazards model defined by (1), a to-
tal of 21 covariates were set in order to assess the accuracy
of the variable selection procedure, xi = (xi1, . . . , xi,21)

T

where xi1 = 1 and xi2, xi3, . . . , xi,21 were independently
generated from N(0, 1). Besides, we set β1 = 1, β2 =
. . . = β11 = 0.5, and β12 = . . . = β21 = 0. Note that
β1 played a role as the intercept. The first eleven vari-
ables, xi1, xi2, . . . , xi,11 were prominent covariates with the
corresponding regression coefficients being nonzero, while
the last ten covariates did not affect the survival times.
Moreover, we let (γ1, γ2, γ3, γ4, γ5)

T = (0.5, 0.5, 0.5, 0, 0)T ,
which indicates that the first three of the latent factors are
prominent while the rest two are unimportant to the haz-
ard rate. We considered two distributions to generate the
survival time ti, Exponential(ϑi) and Weibull(2, ϑi) where
ϑi = exp(xT

i β+ξTi γ). The simulation was conducted based
on 500 replications with sample sizes n = 200 and 500 with
censoring rates (CR) being 20% and 40%.

Bayesian variable selection and estimation in joint CFA–Cox model 55



Table 4. Number of correct specifications in the simulation study under exponential distribution

n = 200 n = 500
CR = 20% CR = 40% CR = 20% CR = 40%

Par Truth BLasso BaLasso BLasso BaLasso BLasso BaLasso BLasso BaLasso

β1 1 500 500 500 500 500 500 500 500
β2 0.5 500 500 500 495 500 500 500 500
β3 0.5 500 500 500 495 500 500 500 500
β4 0.5 500 500 495 500 500 500 500 500
β5 0.5 500 500 500 500 500 500 500 500
β6 0.5 500 500 500 495 500 500 500 500
β7 0.5 500 500 500 495 500 500 500 500
β8 0.5 500 500 500 500 500 500 500 500
β9 0.5 500 495 500 471 500 500 500 500
β10 0.5 500 500 500 500 500 500 500 500
β11 0.5 500 500 495 500 500 500 500 500
β12 0 406 495 409 457 481 495 454 475
β13 0 401 442 389 476 495 490 475 500
β14 0 415 457 409 471 476 486 479 496
β15 0 401 457 394 466 495 490 454 492
β16 0 406 462 370 438 486 495 454 479
β17 0 377 471 385 442 486 495 450 483
β18 0 382 466 361 457 495 490 454 500
β19 0 434 476 389 476 500 495 433 488
β20 0 406 447 409 481 481 490 471 479
β21 0 420 466 361 471 495 500 475 496
γ1 0.5 500 486 500 481 500 500 500 500
γ2 0.5 500 486 500 486 500 500 500 500
γ3 0.5 500 495 500 481 500 500 500 500
γ4 0 354 423 317 394 428 462 442 458
γ5 0 335 418 317 404 423 486 440 458

In the simulation study, the prior inputs in (13) were
assigned as follows:Λj0 were zero vectors;Σλj0 andR0 were
the identity matrices with appropriate dimensions; ρ0 = 6,
cψj = 1, dψj = 0.005, cτj = 1, and dτj = 0.01. We chose
w0 = 10 and K = 10. Moreover, the value of ν was obtained
by (15).

We considered both BLasso and BaLasso methods for
comparison. The EPSR values for all unknown parameters
are presented in Figure 3. All EPSR values were less than
1.2 within 1,000 iterations, indicating the convergence of
the algorithm. We collected 3,000 posterior samples after
a burn-in phase of 2,000 iterations for Bayesian inference.
The cutoff value c∗ was set as 0.1 to identify important vari-
ables. The number of correct specifications for all regres-
sion coefficients in the proportional hazards models based
on 500 replications are shown in Tables 4 and 5. Given that
the Bayesian estimates obtained from BLasso and BaLasso
procedures are similar, we only present the summaries of
the Bayesian estimates obtained from BaLasso procedure to
save space. The averages of the bias (BIAS), the root mean
square error (RMS), the averages of the posterior standard
deviations (SD), and the coverage probabilities of 95% high-
est posterior density (HPD) intervals of the unknown pa-
rameters (CP) in the proportional hazards models are pre-
sented in Tables 6–9. Moreover, as the Bayesian estimates

of unknown parameters in the CFA models are robust to
the sample sizes and censoring rates, we only present the
summaries of the unknown parameters in the CFA models
under the cases with n = 200 and CR = 40% in Tables 10
and 11.

The main findings in the simulation study are as fol-
lows. First, Tables 4 and 5 show that both BLasso and
BaLasso methods can identify the prominent variables in
most replications. However, the number of correct specifi-
cations obtained by BaLasso are slightly larger than those
obtained by BLasso, indicating BaLasso works better in
variable selection than BLasso. This result is expected be-
cause BaLasso enables the data to determine the coefficient-
specific penalty, which adaptively penalizes the coefficients
of unimportant variables and shrinks them to 0 faster. Sec-
ond, Tables 6–11 show that the proposed methodologies pro-
vide reliable results in the CFA–Cox model in the sense
that the BIAS and RMS of the estimates are small ex-
cept β1. However, β1 can be treated as the adjustment
to the baseline hazard function h0(t). It is not the ma-
jor parameter and it neither affects the statistical inference
about other parameters. Third, owing to the shrinkage ef-
fects from BaLasso priors, the estimates of nonzero coeffi-
cients, β2, . . . , β11, γ1, γ2, γ3, are shrunk to zero, which leads
to large negative biases. Consequently, the corresponding
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Table 5. Number of correct specifications in the simulation study under Weibull distribution

n = 200 n = 500
CR = 20% CR = 40% CR = 20% CR = 40%

Par Truth BLasso BaLasso BLasso BaLasso BLasso BaLasso BLasso BaLasso

β1 1 462 438 447 421 495 500 500 496
β2 0.5 500 490 495 500 500 500 500 500
β3 0.5 495 500 500 500 500 500 500 500
β4 0.5 500 500 490 500 500 500 500 500
β5 0.5 500 500 500 495 500 500 500 500
β6 0.5 495 495 500 500 500 500 500 500
β7 0.5 500 500 500 500 500 500 500 500
β8 0.5 490 500 500 495 500 500 500 500
β9 0.5 500 495 500 490 500 500 500 500
β10 0.5 500 500 495 485 500 500 500 500
β11 0.5 500 500 500 480 500 500 500 500
β12 0 442 481 394 460 490 500 475 496
β13 0 486 466 413 465 490 500 500 488
β14 0 481 486 433 470 495 495 479 492
β15 0 442 476 418 485 486 500 467 492
β16 0 462 490 399 470 486 500 475 496
β17 0 471 471 413 470 500 500 492 488
β18 0 471 476 466 455 495 495 479 492
β19 0 462 481 457 450 500 500 462 488
β20 0 447 476 409 480 486 500 475 492
β21 0 466 490 466 470 495 495 496 488
γ1 0.5 495 495 495 480 500 500 500 500
γ2 0.5 500 490 486 490 500 500 500 500
γ3 0.5 500 490 495 475 500 500 500 500
γ4 0 413 423 346 396 471 486 442 467
γ5 0 365 466 341 431 443 476 433 446

CPs are not close to the nominal level. On the other hand,
the biases of β12, . . . , β21, γ4, γ5 are close to zero, which
means that the RMS values are approximately equal to
the standard deviations of the estimates. However, Tables
6–9 show that the SD values are slightly larger than the
RMS values, indicating the posterior standard deviations
are inflated. Therefore, the CPs are greater than the nomi-
nal level.

7. DISCUSSION

In this article, we considered BaLasso procedure to simul-
taneously conduct estimation and variable selection for the
CFA–Cox model. The related MCMC algorithms were devel-
oped. Simulation studies showed that the proposed method
was able to shrink the coefficients of unimportant variables
towards 0 efficiently to identify the prominent observed and
latent risk factors. An application to the bladder cancer data
set was also presented.

There are several limitations in this study. First, we char-
acterized latent variables through multiple observed vari-
ables via a CFA model. In many substantive studies, the
number of latent variables and the structure of the fac-
tor loading matrix can be obtained by subject knowledge

and the meanings of the observed variables. Moreover, ex-
ploratory factor analysis is useful in cross-validating the
structure. More recently, penalty methods have been em-
ployed to obtain the structure of a matrix [25]. Such meth-
ods are potentially generalized to determine the number
of latent variables and identify the factor loading matrix.
Second, latent variables and random errors were assumed
normally distributed in the CFA model. This normality as-
sumption may be violated in practice. Employing more so-
phisticated techniques to relax the normality assumption of
random errors and/or latent variables is of our further re-
search interest. Third, the proposed method is performed
based on right-censored data. It is worthy to generalize the
proposed method to handle left-censored and/or interval-
censored data. Fourth, the cutoff value c∗ in this study was
chosen based on the existent literature, it is essential to
develop more rigorous methods to choose the appropriate
cutoff value. Fifth, we did not provide any theories given
that the Bayesian consistency in the latent variable mod-
elling is an open question. It is an interesting topic in future
studies. Finally, the coverage probabilities of conventional
HPD intervals of the parameters in the proportional haz-
ards models are not acceptable. It is necessary to develop
adjusted credible intervals that have satisfactory coverage
probabilities.
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Table 6. Bayesian estimates of the parameters in the survival model in the simulation study under exponential distribution
with n = 200

CR = 20% CR = 40%
Par BIAS RMS SD CP (%) BIAS RMS SD CP (%)

β1 −3.170 3.178 0.116 0.0 −2.940 2.950 0.154 0.0
β2 −0.076 0.134 0.099 84.6 −0.119 0.168 0.114 79.8
β3 −0.098 0.145 0.098 80.8 −0.156 0.193 0.114 68.3
β4 −0.105 0.149 0.099 83.7 −0.123 0.167 0.113 79.8
β5 −0.108 0.152 0.099 78.8 −0.134 0.181 0.115 76.9
β6 −0.079 0.132 0.098 80.8 −0.143 0.179 0.116 78.8
β7 −0.106 0.160 0.099 77.9 −0.128 0.178 0.115 76.9
β8 −0.082 0.140 0.099 80.8 −0.128 0.172 0.115 77.9
β9 −0.108 0.147 0.099 79.8 −0.149 0.196 0.113 76.0
β10 −0.103 0.152 0.098 77.9 −0.122 0.169 0.114 75.0
β11 −0.088 0.137 0.099 80.8 −0.139 0.180 0.114 77.9
β12 0.002 0.048 0.071 99.0 0.001 0.054 0.079 100.0
β13 0.000 0.061 0.074 100.0 −0.001 0.054 0.080 99.0
β14 0.005 0.056 0.072 99.0 0.000 0.049 0.080 100.0
β15 −0.001 0.059 0.073 99.0 0.000 0.056 0.080 100.0
β16 −0.005 0.058 0.072 99.0 −0.004 0.062 0.081 100.0
β17 −0.005 0.052 0.072 100.0 0.002 0.059 0.081 99.0
β18 0.006 0.055 0.072 99.0 0.000 0.061 0.081 100.0
β19 0.004 0.049 0.072 98.1 0.005 0.055 0.080 100.0
β20 −0.002 0.056 0.073 99.0 −0.007 0.051 0.079 100.0
β21 0.001 0.054 0.072 100.0 −0.002 0.054 0.080 100.0
γ1 −0.095 0.179 0.142 87.5 −0.109 0.186 0.160 89.4
γ2 −0.094 0.180 0.144 83.7 −0.107 0.203 0.161 82.7
γ3 −0.081 0.169 0.146 89.4 −0.163 0.217 0.159 80.8
γ4 0.036 0.073 0.096 100.0 0.041 0.083 0.106 100.0
γ5 0.035 0.084 0.098 98.1 0.042 0.081 0.108 100.0

APPENDIX A. FULL CONDITIONAL
DISTRIBUTIONS AND
COMPUTATIONAL

SCHEMES

(A1) Full conditional distribution of ξi
The full conditional distribution of ξi is as follows:

p(ξi|·) ∝
[ K∏
k=1

L
(i)
k

]
× p(yi|ξi,θ)× p(ξi|θ)

∝
[ K∏
k=1

L
(i)
k

]
× exp

{
−1

2
(yi −Λξi)

TΨ−1(yi −Λξi)

− 1

2
ξTi Φ

−1ξi

}
,

(16)

where p(ξi|·) denotes full conditional distribution of ξi given
all other quantities, and

L
(i)
k = exp

{
− bk exp(x

T
i β + ξTi γ)I(i ∈ Rk −Dk)+

log
[
1− exp

{
− bk exp(x

T
i β + ξTi γ)

}]
I(i ∈ Dk)

}
.

The distribution in (16) is non-standard and the Metropolis-
Hastings (MH) algorithm [14, 22] is employed to sample
from the non-standard distribution.

Given the current value ξ
(l)
i , we simulate a new candidate

ξ∗i from proposal distribution N(ξ
(l)
i , σ2

ξΣ
∗
ξi), where

Σ∗−1
ξi =ΛTΨ−1Λ+Φ−1 +

K∑
k=1

b
(i)
k I(i ∈ Rk −Dk)γγ

T

+

K∑
k=1

b
(i)∗
k[

1− exp{−b
(i)
k }
]2 I(i ∈ Dk)γγ

T

with b
(i)
k = bk exp(x

T
i β) and b

(i)∗
k =

[
b
(i)2
k −b

(i)
k

]
exp{−b

(i)
k }×[

1− exp{−b
(i)
k }
]
+ b

(i)2
k exp{−2b

(i)
k }. ξ∗i is then accepted as

new observation ξ
(l+1)
i with the following probability:

min

{
1,

p(ξ∗i |·)
p(ξ

(l)
i |·)

}
.

Tuning parameter σ2
ξ is selected such that the average ac-

ceptance rate is 0.25 or more.
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Table 7. Bayesian estimates of the parameters in the survival model in the simulation study under exponential distribution
with n = 500

CR = 20% CR = 40%
Par BIAS RMS SD CP (%) BIAS RMS SD CP (%)

β1 −3.423 3.427 0.080 0.0 −3.288 3.294 0.108 0.0
β2 −0.084 0.099 0.057 69.5 −0.093 0.114 0.067 72.5
β3 −0.082 0.104 0.057 68.6 −0.082 0.107 0.068 74.2
β4 −0.096 0.111 0.057 61.0 −0.086 0.107 0.068 76.7
β5 −0.092 0.110 0.057 62.9 −0.094 0.112 0.068 71.7
β6 −0.079 0.100 0.057 65.7 −0.088 0.110 0.067 75.8
β7 −0.082 0.097 0.058 71.4 −0.086 0.108 0.068 80.8
β8 −0.075 0.100 0.057 70.5 −0.085 0.109 0.068 76.7
β9 −0.087 0.103 0.058 65.7 −0.081 0.107 0.067 75.8
β10 −0.094 0.107 0.057 62.9 −0.087 0.109 0.067 74.2
β11 −0.076 0.097 0.057 70.5 −0.090 0.112 0.067 73.3
β12 −0.002 0.035 0.046 100.0 −0.001 0.044 0.054 95.0
β13 0.008 0.037 0.047 98.1 −0.004 0.036 0.054 100.0
β14 −0.005 0.041 0.047 98.1 0.002 0.038 0.054 99.2
β15 −0.002 0.036 0.047 99.0 0.005 0.040 0.054 100.0
β16 −0.005 0.035 0.047 99.0 −0.001 0.048 0.055 96.7
β17 0.008 0.032 0.046 99.0 0.001 0.042 0.055 98.3
β18 0.003 0.038 0.047 99.0 −0.002 0.036 0.055 98.3
β19 0.001 0.040 0.047 99.0 −0.005 0.038 0.054 98.3
β20 −0.003 0.038 0.047 99.0 −0.002 0.042 0.054 95.8
β21 0.002 0.033 0.046 100.0 −0.002 0.039 0.054 100.0
γ1 −0.095 0.121 0.081 77.1 −0.100 0.134 0.095 84.2
γ2 −0.084 0.108 0.082 87.6 −0.086 0.124 0.095 87.5
γ3 −0.087 0.124 0.082 80.0 −0.087 0.132 0.095 90.0
γ4 0.026 0.054 0.064 98.1 0.020 0.055 0.073 96.7
γ5 0.022 0.049 0.063 100.0 0.031 0.061 0.075 98.3

(A2) Full conditional distribution of (Λj, ψj)

Considering that Λj and ψj are only involved in the CFA
model defined in (7), the full conditional distribution of (Λj ,
ψj) only depends onY and Ξ. Therefore, with the conjugate
prior distributions in (13), the full conditional distribution
can be easily obtained, as follows [27]: For j = 1, . . . , p,
(17)

(Λj |·) ∼ N(Λ∗
j , ψjΣ

∗
λj), (ψ−1

j |·) ∼ Gamma(c∗ψj , d
∗
ψj),

where Σ∗−1
λj =

∑n
i=1 ξiξ

T
i +Σ−1

λj0, Λ
∗
j = Σ∗

λj

[∑n
i=1 ξiyij +

Σ−1
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]
, c∗ψj = cψj + n/2, d∗ψj = dψj + 1

2

[∑n
i=1 y

2
ij −

Λ∗T
j Σ∗−1

λj Λ∗
j +ΛT

j0Σ
−1
λj0Λj0

]
.

(A3) Full conditional distribution of Φ

It can be easily derived that the full conditional distribu-
tion of Φ only depends on Ξ. More specifically,

(18) (Φ−1|·) ∼ Wishart(R∗, ρ∗),

where R∗ = (R−1
0 +

∑n
i=1 ξiξ

T
i )

−1, and ρ∗ = ρ0 + n.

(A4) Full conditional distributions of β and γ

Let ϕ = (ϕ1, . . . , ϕr+q)
T = (βT ,γT )T and xξi =

(xT
i , ξ

T
i )

T . Since ϕ is independent of other quantities with

given b and Ξ, the full conditional distribution is as follows:

p(ϕ|·) = p(ϕ|b,Ξ) ∝ p(b|ϕ,Ξ)× p(ϕ)

=

K∏
k=1

Lk × p(β)× p(γ)

∝
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exp
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1− exp
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×

exp
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βTΣ−1
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2
γTΣ−1
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}
.

(19)

MH algorithm can be also employed to efficiently sample ϕ.

Given the current value ϕ(l), we simulate a new candidate

ϕ∗ from proposal distribution N(ϕ(l), σ2
ϕΣ

∗
ϕ), where

Σ∗−1
ϕ =

K∑
k=1

[
bk

∑
i∈Rk−Dk

xξix
T
ξi

+
∑
j∈Dk

b∗k
[1− exp{−bk}]2

xξjx
T
ξj

]
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Table 8. Bayesian estimates of the parameters in the survival model in the simulation study under Weibull distribution with
n = 200

CR = 20% CR = 40%
Par BIAS RMS SD CP (%) BIAS RMS SD CP (%)

β1 −1.350 1.396 0.173 1.0 −1.479 1.524 0.208 1.0
β2 −0.193 0.212 0.096 51.0 −0.166 0.201 0.112 65.3
β3 −0.176 0.193 0.097 54.8 −0.155 0.195 0.112 70.3
β4 −0.179 0.198 0.096 56.7 −0.175 0.201 0.112 67.3
β5 −0.182 0.202 0.096 49.0 −0.185 0.211 0.110 63.4
β6 −0.186 0.206 0.097 49.0 −0.161 0.191 0.111 72.3
β7 −0.181 0.198 0.095 52.9 −0.174 0.201 0.112 66.3
β8 −0.192 0.209 0.095 45.2 −0.192 0.212 0.112 60.4
β9 −0.187 0.202 0.098 48.1 −0.183 0.214 0.112 64.4
β10 −0.183 0.202 0.096 50.0 −0.175 0.208 0.111 65.3
β11 −0.169 0.187 0.096 61.5 −0.184 0.219 0.111 58.4
β12 −0.002 0.035 0.046 100.0 0.003 0.058 0.079 100.0
β13 −0.006 0.049 0.067 100.0 −0.004 0.062 0.079 99.0
β14 0.000 0.042 0.072 100.0 −0.004 0.055 0.079 100.0
β15 0.004 0.050 0.070 100.0 −0.004 0.050 0.078 100.0
β16 −0.006 0.048 0.069 99.0 −0.006 0.055 0.077 99.0
β17 −0.009 0.048 0.069 100.0 0.000 0.047 0.076 100.0
β18 0.000 0.049 0.071 100.0 −0.003 0.054 0.078 100.0
β19 −0.006 0.045 0.069 100.0 −0.002 0.056 0.079 100.0
β20 0.010 0.044 0.071 100.0 −0.002 0.047 0.078 100.0
β21 0.003 0.043 0.070 100.0 −0.002 0.053 0.078 100.0
γ1 −0.185 0.221 0.132 67.3 −0.147 0.212 0.154 82.2
γ2 −0.180 0.213 0.130 71.2 −0.182 0.231 0.152 75.2
γ3 −0.181 0.220 0.134 72.1 −0.189 0.236 0.152 70.3
γ4 0.041 0.074 0.090 99.0 0.051 0.088 0.104 100.0
γ5 0.033 0.058 0.089 100.0 0.044 0.073 0.105 100.0

+

(
Σ−1

βκ 0

0 Σ−1
γκ

)
,

with b∗k = (b2k−bk) exp{−bk}[1−exp{−bk}]+b2k exp{−2bk}.
ϕ∗ is then accepted as new observation ϕ(l+1) with the fol-
lowing probability:

min

{
1,

p(ϕ∗|·)
p(ϕ(l)|·)

}
.

Tuning parameter σ2
ϕ is selected such that the average ac-

ceptance rate is 0.25 or more.

(A5) Full conditional distribution of bk

The full conditional distribution of bk only involves Ξ, β,
and γ, as follows:

p(bk|·) = p(bk)× p(bk|Ξ,β,γ)

∝
[
b
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k exp(−w0bk)

]
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T
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}]
,

(20)

where α0k = w0H
∗(ak). Although the above distribution is

non-standard, it can be well approximated by the following

Gamma distribution [16]:

(bk|·) ∼ Gamma
(
α0k − α0,k−1 + ndk,

w0 +
∑

i∈Rk−Dk

exp(xT
i β + ξTi γ)

)
.

(21)

(A6) Full conditional distribution of κ2
j

Since κ2
j is only related to ϕj and τ2j , the full conditional

distribution of κ2
j is given by:

(22)

p(κ2
j |·) = p(ϕj |κ2

j )×p(κ2
j |τ2j ) ∝ κ−1

j ×exp
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ϕ2
j

2κ2
j

−
τ2j κ

2
j

2

)
.

Such density turns out to be the following Inverse Gaussian

distribution:

(23) (κ2
j
−1|·) ∼ Inverse Gaussian

(
τj
|ϕj |

, τ2j

)
.
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Table 9. Bayesian estimates of the parameters in the survival model in the simulation study under Weibull distribution with
n = 500

CR = 20% CR = 40%
Par BIAS RMS SD CP (%) BIAS RMS SD CP (%)

β1 −1.929 1.949 0.122 0.0 −2.134 2.165 0.149 0.0
β2 −0.138 0.147 0.057 29.8 −0.115 0.131 0.067 57.5
β3 −0.151 0.158 0.057 16.3 −0.120 0.133 0.067 56.7
β4 −0.139 0.148 0.057 26.0 −0.116 0.132 0.066 60.8
β5 −0.136 0.145 0.057 26.9 −0.110 0.130 0.066 57.5
β6 −0.149 0.157 0.057 24.0 −0.103 0.121 0.066 63.3
β7 −0.139 0.148 0.057 34.6 −0.115 0.128 0.066 59.2
β8 −0.139 0.148 0.057 29.8 −0.110 0.127 0.067 63.3
β9 −0.148 0.155 0.057 25.0 −0.115 0.136 0.067 55.8
β10 −0.155 0.163 0.057 26.9 −0.123 0.136 0.067 55.0
β11 −0.146 0.153 0.056 22.1 −0.115 0.131 0.067 60.8
β12 0.004 0.032 0.046 100.0 0.003 0.037 0.052 100.0
β13 −0.003 0.032 0.046 100.0 −0.003 0.040 0.053 99.2
β14 −0.002 0.032 0.046 99.0 0.007 0.037 0.052 99.2
β15 0.004 0.030 0.045 100.0 −0.001 0.039 0.053 100.0
β16 −0.001 0.032 0.046 100.0 0.003 0.036 0.052 100.0
β17 0.000 0.033 0.046 100.0 0.000 0.042 0.053 100.0
β18 0.000 0.033 0.046 99.0 0.001 0.035 0.052 100.0
β19 −0.004 0.032 0.046 100.0 0.001 0.042 0.052 99.2
β20 0.000 0.031 0.046 100.0 −0.009 0.038 0.052 99.2
β21 −0.004 0.031 0.046 99.0 −0.001 0.043 0.053 99.2
γ1 −0.143 0.162 0.078 54.8 −0.115 0.138 0.093 80.0
γ2 −0.160 0.177 0.078 48.1 −0.120 0.148 0.093 75.8
γ3 −0.163 0.175 0.079 42.3 −0.133 0.158 0.094 69.2
γ4 0.023 0.045 0.060 100.0 0.026 0.057 0.069 99.2
γ5 0.024 0.049 0.061 100.0 0.029 0.060 0.070 98.3

Table 10. Bayesian estimates of the parameters in the CFA model in the simulation study under exponential distribution with
n = 200, CR = 40%

Par BIAS RMS SD CP(%) Par BIAS RMS SD CP(%)

λ21 −0.002 0.054 0.059 96.2 ψ11 0.005 0.042 0.043 99.0
λ31 −0.012 0.055 0.059 94.2 ψ12 0.005 0.042 0.044 96.2
λ52 0.000 0.061 0.057 96.2 ψ13 −0.010 0.055 0.054 92.3
λ62 −0.003 0.061 0.057 95.2 ψ14 0.013 0.048 0.043 93.3
λ83 0.002 0.051 0.056 98.1 ψ15 0.007 0.040 0.042 96.2
λ93 0.003 0.052 0.057 97.1 φ11 0.018 0.128 0.133 96.2
λ11,4 −0.013 0.055 0.058 93.3 φ21 0.009 0.086 0.091 95.2
λ12,4 −0.011 0.055 0.058 94.2 φ22 0.015 0.139 0.134 96.2
λ14,5 −0.008 0.053 0.057 96.2 φ31 0.010 0.084 0.092 96.2
λ15,5 −0.001 0.053 0.057 95.2 φ32 0.012 0.096 0.092 98.1
ψ1 −0.004 0.051 0.050 94.2 φ33 0.011 0.136 0.137 97.1
ψ2 0.006 0.044 0.044 94.2 φ41 0.008 0.084 0.092 95.2
ψ3 0.017 0.044 0.044 97.1 φ42 0.008 0.090 0.092 93.3
ψ4 0.004 0.061 0.054 92.3 φ43 0.010 0.085 0.093 97.1
ψ5 0.002 0.049 0.042 89.4 φ44 0.032 0.128 0.134 98.1
ψ6 0.004 0.042 0.042 90.4 φ51 0.022 0.092 0.092 96.2
ψ7 −0.002 0.057 0.060 95.2 φ52 0.007 0.092 0.092 97.1
ψ8 −0.004 0.037 0.039 96.2 φ53 0.004 0.080 0.092 96.2
ψ9 0.002 0.040 0.040 95.2 φ54 0.008 0.087 0.092 99.0
ψ10 −0.004 0.047 0.050 94.2 φ55 0.027 0.132 0.136 96.2
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Table 11. Bayesian estimates of the parameters in the CFA model in the simulation study under Weibull distribution with
n = 200, CR = 40%

Par BIAS RMS SD CP(%) Par BIAS RMS SD CP(%)

λ21 −0.005 0.064 0.058 90.1 ψ11 0.006 0.046 0.044 95.0
λ31 0.003 0.062 0.058 92.1 ψ12 0.007 0.040 0.044 96.0
λ52 −0.004 0.056 0.057 96.0 ψ13 −0.004 0.061 0.054 87.1
λ62 −0.001 0.058 0.057 93.1 ψ14 0.008 0.045 0.042 96.0
λ83 −0.004 0.050 0.056 99.0 ψ15 0.000 0.044 0.042 94.1
λ93 0.004 0.050 0.056 96.0 φ11 0.016 0.130 0.132 95.0
λ11,4 −0.004 0.062 0.059 92.1 φ21 0.017 0.084 0.092 97.0
λ12,4 −0.009 0.055 0.058 96.0 φ22 0.013 0.118 0.134 97.0
λ14,5 −0.008 0.058 0.057 92.1 φ31 0.027 0.098 0.093 92.1
λ15,5 −0.005 0.051 0.057 98.0 φ32 0.027 0.098 0.093 98.0
ψ1 −0.002 0.053 0.049 96.0 φ33 0.035 0.140 0.139 96.0
ψ2 0.002 0.042 0.043 93.1 φ41 0.016 0.094 0.092 96.0
ψ3 0.007 0.044 0.044 95.0 φ42 0.019 0.099 0.092 95.0
ψ4 −0.003 0.057 0.053 95.0 φ43 0.021 0.108 0.094 95.0
ψ5 0.002 0.043 0.041 94.1 φ44 0.045 0.148 0.136 95.0
ψ6 0.000 0.043 0.042 92.1 φ51 0.030 0.094 0.093 94.1
ψ7 −0.009 0.065 0.060 94.1 φ52 0.026 0.087 0.093 96.0
ψ8 0.003 0.038 0.040 94.1 φ53 0.032 0.096 0.094 96.0
ψ9 −0.003 0.042 0.040 93.1 φ54 0.026 0.099 0.093 98.0
ψ10 0.005 0.050 0.051 95.0 φ55 0.033 0.142 0.135 96.0

(A7) Full conditional distributions of τ 2
j

The posterior distribution of τ2j can be derived from:
(24)

p(τ2j |·) = p(κ2
j |τ2j )×p(τ2j ) ∝ (τ2j )

cτj ×exp

{
−(dτj+

κ2
j

2
)τ2j

}
,

which is the density of the following Gamma distribution:

(25) (τ2j |·) ∼ Gamma
(
cτj + 1, dτj +

κ2
j

2

)
.
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