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Leverage effect in high-frequency data
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The leverage effect is an important explanation for
volatility asymmetry, which has got extensively attention
in the recent years. In this paper, we introduces a new es-
timator of leverage effect. The key feature of the proposed
estimator is explored in the setting when the microstructure
noise model is the parameter function of trading informa-
tion. The proposed estimator shows good statistical perfor-
mances via theorems and simulations study. Specially, the
estimator has a convergence rate n1/4. The QQ-Plots, His-
togram plots and quartiles perform sufficient asymptotical
normality compared with the exist estimated methods. An
empirical study is carried out to demonstrate that the pro-
posed estimator could present the efficient application value,
and confirm that the leverage effect plays an important role
in forecasting volatility.
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1. INTRODUCTION

One of the most important explanation for volatility
asymmetry is leverage effect, which refers to the nega-
tive correlation between an asset return and its volatility
changes. Typically, an increase in stock price is tied to a fall
in volatility, and a fall in stock price is tied to an increase
in volatility. Dating back the seminal papers of [5] and [9],
this phenomenon is related to the so called “leverage effect”:
when the asset prices is declining, the companies’ leverage
(debt-to-equity ratio) become larger, so the stock becomes
riskier since its volatility is increasing. Therefore, leverage
effect implies a negative correlation structure between the
analyzed asset return and its volatility. The early scholars
studied mainly various financial theories of leverage effect or
volatility asymmetry via the low-frequency data (see, e.g.,
[22]; [11]).
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In recent years, high-frequency financial data that refer to
intra-daily observations such as tick-by-tick stock prices or
minute-by-minute exchange rates became available thanks
to advances in information technology. High-frequency fi-
nancial data have rich information due to the short observed
time interval. Many later works focused on statistical and
financial properties of the leverage effect via high-frequency
data. [8] obtained the peak effect at the instantaneous cor-
relation between return and volatility over fairly small time
intervals. This is benefit to [24]’s definition of leverage ef-
fect as being instantaneous. By using of high-frequency five-
minute S&P 500 futures, [6] found that there exists signifi-
cantly negative correlation for several days between the ab-
solute high-frequency returns and the current and past re-
turns, and low correlations between the volatility and lagged
return. [7] proposed a highly accurate discrete-time daily
stochastic volatility model that distinguishes between the
jump and continuous-time components of price movements,
it is important to say that leverage effect works primarily in
the continuous volatility component.

Leverage effect describes the negative correlation between
the daily returns and the changes of daily volatility, there-
fore, it is intuitive and natural to view the correlation be-
tween the daily returns and daily volatility estimator as the
estimator of leverage effect. In fact, several realized volatil-
ity estimation procedures have been proposed to estimate
integrated volatility in high-frequency financial market. For
instance, [26] proposed two-time scale realized volatility
(TSRV) which is consistent estimator for integrated volatil-
ity in the presence of market microstructure noise. [25] im-
proved TSRV to multi-scale realized volatility (MSRV) so
that it can achieve the optimal convergence rate. Other
forms of estimators that can achieve the optimal conver-
gence rate are kernel realized volatility (KRV) ([4]), pre-
averaging realized volatility (PRV) ([16]). [1] employed the
integrated volatility estimators TSRV and PRV to study the
estimators of leverage effect. However, these estimators of
leverage effect cause shrinkage bias due to estimator error,
resulting in the leverage effect puzzle.

[24] proposed the new nonparametric estimators of lever-
age effect (named �̂WM ) in the stochastic volatility model.
They provided the related statistical properties of the pro-
posed estimators in the cases both with and without mi-
crostructure noise. The estimator of the leverage effect has
a convergence rate of n1/4 in the absence of microstructure
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noise. And the estimator has a convergence rate of n1/8 un-
der the setting when the microstructure noise is independent
and identically distributed (i.i.d.), specially,

Ytn,j = Xtn,j + εtn,j , 0 = tn,0 < tn,1 < · · · < tn,n = 1,
(1)

where εtn,j are i.i.d. noise with mean zero and variance a2

and independent of the Xtn,j process. Xtn,j is the latent ef-
ficient log-price, while Ytn,j is the observed financial market
log-price.

Actually, without the market microstructure noise, the
volatility estimator would blow up as the sampling fre-
quency increases, which was presented in many frequently
traded stocks in [3]’s paper. The pattern is named “volatility
signature plot pattern”. And many empirical findings also
suggest the market microstructure noise has complex struc-
tures, not only independent and identical. Studies on market
microstructure noise can be traced back to the 1980s. [23]
proposed a simple model for microstructure noise.

εtn,j = αIb/s(tn,j),(2)

where Ib/s(tn,j) denotes the trade type at time tn,j , indi-
cating if the trade is buyer-initiated (+1) or seller initiated
(−1). [12] showed that Roll’s model can be extended by in-
corporating the trading volume. [14] noted that there were
sources of noise other than just the bid-ask spread, and stud-
ied their effect on the Roll model. [2] obtained that the mi-
crostructure εtn,j can be viewed as a function of trade type
and trading rate. [13] and [17] found that the i.i.d. assump-
tion of the noise εtn,j is inconsistent with empirical findings.

In general, there are a diverse array of market microstruc-
ture noise, either informational or not: bid-ask spread
bounces, differences in trade sizes, informational content of
price changes, gradual response of prices to a block trade,
the strategic component of the order flow, inventory control
effects, discreteness of price changes, etc. All of these sug-
gest that we should take advantage of the rich information
available in the high-frequency market. Therefore, it is also
important to provide the new estimator of the leverage ef-
fect to improve the exist estimators in the complex financial
market.

Recently, [21] studied a more general microstructure noise
model, which referred to the available trading information
through a parametric function. The function can be linear
or nonlinear.

Ytn,j =Xtn,j + g
(
Ztn,j ; θ0

)
, 0 = tn,0 < tn,1 < · · · < tn,n = 1,

(3)

where Ytn,j is the observed log-prices at time tn,j , Xtn,j is
the latent log-prices, and Ztn,j is the information set, but not
limited to trading volume, trade type, and bid-ask bounds,
θ0 is a finite-dimensional parameter, and g(Z; θ) is any para-
metric form of Z and θ.

Under those settings, they proposed a new estimator of
integrated volatility called “estimated-price realized volatil-
ity” (ERV), and showed that ERV had a convergence rate
of

√
n (instead of n1/4 under usual noisy settings), which

demonstrated clearly that their ERV had some advantages
in estimating volatility.

In this paper, we are interested in developing a new esti-
mator of leverage effect (named �̂yz) in model (3), which can
allow us to estimate leverage effect in a complex microstruc-
ture noise model. The proposed estimator presents good
consistency and asymptotic properties via both the theo-
rems and simulations. Specially, in the general microstruc-
ture noise model (3), �̂yz provides a faster convergence rate
n1/4 than �̂WM based on the simple additive microstruc-
ture noise model (1). It is obvious that �̂yz has the same
convergence rate as �̂WM in the absence of microstruc-
ture noise. Simulations provide Q-Q plots, Histogram plots,
mean, quartiles Q1, Q2, Q3, variances, biases and mean
square error of the estimators to compare �̂yz with �̂WM .
In addition, a empirical study is carried out to demonstrate
our proposed estimator that has extensive application in
volatility forecasting.

The rest of this paper is organized as follows. Section 2.1
presents the data-generating mechanism. Sections 2.2 intro-
duces the new estimator of leverage effect. Section 2.3 pro-
vides the related statistical theorems when the microstruc-
ture noise could be demonstrated by model (3). Section 2.4
studies the asymptotic variance. Simulation studies and em-
pirical studies are carried out in Section 3 and Section 4, re-
spectively. Section 5 concludes and discusses related issues.
Proofs are in the Appendix.

2. ESTIMATED LEVERAGE EFFECT

2.1 Data-generating mechanism

We introduce a common filtered probability space
(Ω,Ft,P), which is a canonical space defined by means of
1-dimension independent Wiener process Wt and Bt on the
time interval [0, T ]. The latent log-price Xt and its spot
volatility σt are defined as following.

(4)

{
dXt =μtdt+ σtdWt, X0 = x0,

dσt =atdt+ btdWt + gtdBt,

where Wt is a Wiener process, Bt is another Wiener process
independent of Wt. μt, at, bt, gt, and σt are all adapted
càdlàg locally bounded random processes, and defined in
the probability space (Ω,Ft,P).

Formula (4) is the most popular model in econometrics
and financial mathematics studies. The “integrated volatil-
ity (IV)” of latent log-price Xt is given as

〈X,X〉T =

∫ T

0

σ2
t dt,(5)
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without loss of generality, we set T = 1. The process (5)
is the known-well quadratic variation of Xt, which plays an
important role in high-frequency financial market.

Clearly, the stochastic processes Xt and σt have a com-
mon driving Wiener process Wt which accommodates the
leverage effect. Then, the contemporaneous leverage effect
could be studied by the quadratic covariation between Xt

and F (σ2
t ).

�(T ) = 〈X,F (σ2
t )〉T =

∫ T

0

2F ′ (σ2
t

)
σ2
t btdt.(6)

For simplicity, �(T ) is marked by �.

Assumption 1. : x �→ F (x) is twice continuously differen-
tiable, monotone on (0,∞).

Actually, function F (x) allows more flexibility forms such
as F (x) = x, F (x) = 1

2 log(x) and so on, which depends on
the practical purpose and empirical evidence. The paper is
mainly to conduct the new estimator for leverage effect �
based on the complex noise model (3).

2.2 Estimated leverage effect with trading
information

Here, we shall investigate the equidistant time case for the
process Xt, specifically, it is observed every Δtn,j = Δt =
T
n units of time, at times 0 = tn,0 < tn,1 · · · < tn,n−1 =
T , where the time interval Δt is eventually goes to 0 as
n → ∞. We set T = 1 without general form. Moreover, we
divide observed values into Kn blocks, with block size Mn =
[c
√
n] (except possibly for the first and last block, which

does not matter for the asymptotic), for some constant c.
The boundary points are on the grid H = 0 < τn,1 < τn,2 <

· · · < τn,Kn−1 ≤ T , where Kn =
[

n
Mn

]
.

Regarding noise model (3), we could obtain the estimator
of latent log-prices Xtn,j at the time interval [τn,i, τn,i+1] by

X̂tn,j := Ytn,j − g
(
Ztn,j ; θ̂

)
,(7)

where g(Ztn,j ; θ̂) is the estimator of g(Ztn,j ; θ0). The maxi-

mum likelihood estimator (MLE) θ̂ of θ0 is given by

θ̂ = argminQn(Y, Z, θ),

where

Qn (Y, Z, θ) =
1

2

∑
tn,j∈(τn,i,τn,i+1]

(
ΔYtn,j −Δg

(
Ztn,j ; θ

))2
,

when g(·) is a linear function, θ̂ is given by

θ̂ =

⎛⎝ ∑
tn,j∈(τn,i,τn,i+1]

ΔZtn,j

TΔZtn,j

⎞⎠−1

⎛⎝ ∑
tn,j∈(τn,i,τn,i+1]

ΔZtn,j

TΔYtn,j

⎞⎠ .

A natural estimator of leverage effect can be proposed by

〈 ̂X,F (σ2)〉T =2

Kn−2∑
i=0

(
X̂τn,i+1 − X̂τn,i

)
·
(
F
(
σ̃2
τn,i+1

)
− F

(
σ̃2
τn,i

))
,

(8)

where

σ̃2
τn,i

=
1

Mn ×	t

∑
tn,j∈(τn,i,τn,i+1]

(
X̂tn,j+1 − X̂tn,j

)2

.(9)

For equation (9),
∑

tn,j∈(τn,i,τn,i+1]

(
X̂tn,j+1 − X̂tn,j

)2

=∑
tn,j∈(τn,i,τn,i+1]

ΔX̂2
tn,j

is the estimated-price realized

volatility (ERV) (see: [21]) at time interval [τn,i, τn,i+1]. Ob-
viously, all the statistical properties of ERV could be applied
in the equation (9).

For simplicity, we name the new estimator 〈 ̂X,F (σ2)〉T
as �̂yz. �̂yz is proposed in the general financial market mi-
crostructure noise setting, which improve the application of
leverage effect estimator �̂WM .

Remark 1. As discussed in [21], the factor 2 in �̂yz is crucial
for the consistency of the estimator.

2.3 Asymptotic theory

This section establishes consistency and asymptotic dis-
tribution for proposed estimator �̂yz. We first state the fol-
lowing assumptions. In real life, the latent log-price is often
bounded, therefore, some assumption would be first given
for Xtn,j . Furthermore, maximum likelihood method is used
for ERV, it would be better to give some assumptions for
Ztn,j and g (z; θ).

Assumption 2. (i) μt is locally bounded, and σt is locally
bounded with inft∈(0,1] σt > 0 almost surely.

(ii) For all tn,j , Ztn,j and ΔXtn,j are conditionally inde-
pendent given Ftn,j−1 .

(iii) maxtn,j |Ztn,j | is bounded.
(iv) The parameter space Θ for θ is a compact set in Rp

for some p ∈ N, and g(z; θ) is twice continuously differen-
tiable in θ in a neighborhood N (θ0) ⊂ Θ;

(v) For all θ ∈ N (θ0), the first order and second order
differential of g (z; θ) in θ is locally bounded;

(vi) For any ε > 0, as n → ∞

inf|θ−θ0|≥ε

∑
tn,j∈(τn,i,τn,i+1]

∣∣Δg(Ztn,j ; θ)−Δg(Ztn,j ; θ0)
∣∣2

→ ∞;

almost surely;
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(vii) ∥∥∥∥∥∥
⎛⎝ 1

n

∑
tn,j∈(τn,i,τn,i+1]

Δ
∂g

∂θ
(Ztn,j ; θ0)

· Δ ∂g

∂θT
(Ztn,j ; θ0)

)−1
∥∥∥∥∥ = Op(1),

where ‖ · ‖ stands for its spectral norm.

Remark 2. (i)-(iii) in Assumption 2 are obviously about the
process Xtn,j and Ztn,j , which are the usual assumptions
in the continuous stochastic model and regression predictor.
Xtn,j is clearly bounded when (i) is given. Specially, (ii) is
analogous to the usual assumption in regression that the
predictor and noise are independent, which is the same de-
scription as in [21], this is to say, the assumption amounts to
assume that the immediate next trading depends solely on
the market information up to the latest transaction under
model (2)-(3). (iii) is the common assumption for informa-
tion set Ztn,j . Moreover, (iv)-(vii) in Assumption 2 are re-
ferred to g (z; θ) and θ. Specially, (iv)-(vi) in Assumption 2
correspond to the identifiability condition in MLE, and (vii)
in Assumption 2 is the invertibility condition of the Fisher
information matrix.

The following theorems establish the statistical perfor-
mances of X̂tn,j , σ̃

2
τn,j

, and �̂yz.

Theorem 2.1. (A1). Under Assumption 1-2, as T fixed,

X̂tn,j+1 − X̂tn,j = Xtn,j+1 −Xtn,j +Op

(
n−1

)
,(10)

σ̃2
τn,j

= σ̂2
τn,j

+ op

(
n−1/4

)
,(11)

where X̂tn,j and σ̃2
τn,j

are defined in Eq. (7) and Eq. (9),

respectively. σ̂2
τn,i

could be see in Section 2.3 in [24].

(A2). Under Assumption 1-2, as T fixed and n → ∞,

�̂yz =2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i

)
(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
.

(12)

In Theorem 2.1(A2), 2
∑Kn−2

i=0

(
Xτn,i+1 −Xτn,i

)
·(

F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
is the actual estimator �̂WM

when there is in the absence of market microstructure
noise. From Theorem 2.1(A2), we can derive the asymptotic
properties of �̂yz by �̂WM without microstructure noise.

Theorem 2.2. Under Assumption 1-2, as T fixed and as
n → ∞, the estimator �̂yz have the following statistic prop-

erty

n1/4 (�̂yz − �)
L−→Z ·

(
16

c

∫ T

0

(
F ′(σ2

t )
)2
σ6
t dt

+ cT

∫ T

0

(
F ′(σ2

t )
)2
σ4
t

(
44

3
b2t+

32

3
g2t

)
dt

)1/2

,

(13)

stable in law, where Z is a standard normal random variable
and independent of FT , bt and gt as same as proposed in Itô
process (4) are all locally bounded.

Remark 3. 1. “
L−→” stands “stable in law”, as follows the

following definition.
2. Let Zn be a sequence of χ-measurable variables, F1 ⊂

χ. We say that Zn converges F1-stable in law to Z as n →
∞ if Z is measurable with respect to an extension of χ,
so that for all A ∈ F1 and for all bounded continuous g,
E (IAg(Zn)) → E (IAg(Z)) as n → ∞.

3. In order to properly choose c, one could minimize the
limit variance in Theorem 2.2. The optimal value is

c2 =
16

∫ T

0

(
F ′(σ2

t )
)2

σ6
t dt

T
∫ T

0
(F ′(σ2

t ))
2
σ4
t

(
44
3 b2t +

32
3 g2t

)
dt

.(14)

2.4 Estimation of asymptotic variance

In this part, we give the estimation of asymptotic vari-
ance. Let

H1
n =2n

1
2

Kn−2∑
i=0

(
X̂τn,i+1 − X̂τn,i

)2

·
(
F (σ̃τ

2
n,i+1)− F (σ̃τ

2
n,i)

)2

,

and

H2
n = 2n

1
2MnΔt

Kn−2∑
i=0

σ̃τ
2
n,i

(
F
(
σ̃τ

2
n,i+1

)
− F

(
σ̃τ

2
n,i

))2

.

By the simple deduction (see in Appendix A.3), we could
obtain the following equations

H1
n =2n

1
2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i

)2
·
(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))2

+Op

(
n−1/2

)
,

and

H2
n =2n

1
2MnΔt

Kn−2∑
i=0

σ̂τ
2
n,i

(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))2
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+op

(
n−1/4

)
.

It is easy to see that the first term in H1
n is G1

n in formula
(10) in [24]’s paper, and the first term inH2

n is G2
n in formula

(10) in [24]’s paper via the formulas of H1
n and H2

n. As n →
∞, H1

n + H2
n and G1

n + G2
n are close so that we have the

following converge in probability.

H1
n +H2

n
P−→16

c

∫ T

0

(
F ′(σ2

t )
)2
σ6
t dt

+cT

∫ T

0

(
F ′(σ2

t )
)2
σ4
t

(
44

3
b2t +

32

3
g2t

)
dt.

By the above estimation of asymptotic variance, we could
obtain the feasible version of the central limit distribution.

Theorem 2.3. Under Assumption 1-2, as T fixed and as
n → ∞,

n1/4 (�̂yz − �)√
H1

n +H2
n

L−→ Z1,

stable in law, where Z1 is a standard normal random variable
and independent of FT .

3. SIMULATION STUDIES

In this section, we use simulation to verify the perfor-
mance of our proposed estimators �̂yz. In those simulations,
we first check the normal property of �̂yz under Heston
model via QQ-Plots, Histogram plots and quartiles. For
comparison purpose, we also demonstrate the normal per-
formances of �̂WM . At last, we present the variances, biases
and Mean Square Errors (MSE) of �̂yz and �̂WM to exam-
ine that our estimator �̂yz based on trade information noise
model is efficient in high frequency financial market.

To present the statistical performance of the new estima-
tor of leverage effect, we consider the stochastic volatility
model of [15] for the latent log-price dynamics

dXt =

(
μ− σ2

t

2

)
dt+ σtdWt,(15)

dσ2
t =κ

(
θ − σ2

t

)
dt+ γσt

(
ρdWt +

√
1− ρ2dBt

)
,(16)

where Wt and Bt are independent, by Itô integral, we can
get the following equation from the Eq. (16)

dσt =
1

2

(
σ2
t

)− 1
2 dσ2

t +
1

2

[
−1

2
× 1

2
(σ2

t )
− 3

2

]
dσ2

t dσ
2
t

=

[(
κθ

2
− γ2

8

)
σ−1
t − κ

2
σt

]
dt

+
γ

2
ρdWt +

γ

2

√
1− ρ2dBt.

Compared with Equation (4) and (6), we can get bt =
γ
2ρ,

gt = γ
2

√
1− ρ2, and the contemporaneous leverage effect

between Xt and σ2
t would be described by � = 〈X,σ2

t 〉T =∫ T

0
σ2
t γρdt when F (x) = x. We choose parameters as μ =

0.00015, θ = 0.0003, γ = 0.01, κ = 0.2, ρ = −0.5 over 1
trading day (they are consistent with parameter setting in
[21]). We further set X0 = log(30).

In this section, we choose two microstructure noise mod-
els including the trade information: g1 (·) and g2 (·).

g1
(
Vtn,j , Ib/s(tn,j);α, β

)
=αIb/s(tn,j)

+βIb/s(tn,j)Vtn,j/Δtn,j ,
(17)

g2
(
Vtn,j , Ib/s(tn,j);β, γ

)
= Ib/s(tn,j) log

(
γ + βVtn,j/Δtn,j

)
,

(18)

where Ib/s(tn,j) denotes the trade type at time tn,j , indi-
cating if the trade is buyer-initiated (+1) or seller initi-
ated (−1). Vtn,j denotes the trading volume at time tn,j ,
Δtn,j+1 := tn,j+1 − tn,j denotes the duration between two
consecutive transactions, and Vtn,j/Δtn,j denotes the trad-
ing rate.

Function g1 (·) could be seen as a linear function of trade
type and trading rate, which was proposed by [2]. And func-
tion g2 (·) is described that the market microstructure noise
is concave for buys and convex for sells, which was proposed
by [19]. When the trading rate is low, g2 (·) is very close to
g1 (·).

Initial values for parameters are chosen to be α0 = 1.875×
10−4, β0 = 0.75 × 10−12, ζ0 = 1 + α0 = 1.0001875. And
the trade type process {Ib/s(tn,j)} could be generated by a
Bernoulli process (±1 valued) with the success probability
of p = 1

2 , while the trading volume process {Vtn,j} rounded
by {|V ∗

tn,j
|} up to hundreds, where {V ∗

tn,j
} are simulated by

independent Gamma variables with mean 400, and standard
deviation 5,000 (see [21]).

Noted that the variance of �̂WM in the absence of noise,
�̂WM with i.i.d noise and �̂yz with trade information noise
model could be computed by the feasible form. In other
word, H1

n+H2
n in Section 2.4 could be described as the vari-

ance of �̂yz when the microstructure noise is demonstrated
by the trade information noise model, and the asymptotic
variance of �̂WM in the absence of noise and �̂WM under
i.i.d market noise model could be represented by G1

n + G2
n

in Section 2.4 and Section 4.2 in [24]’s paper, respectively.
Therefore, �̂yz and �̂WM could be standardized by Zyz and
ZWM , respectively. We would give the form of Zyz, and the
form of ZWM could seen in [24]’s paper.

Zyz =
n1/4 (�̂yz − �))√

H1
n +H2

n

.(19)

We would check the distribution of this standardized
statistics Zyz. In order to compute easily, we choose T = 1.
So if the estimator of the leverage effect is good, the distri-
bution of Eq. (19) should be closed to the standard normal
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distribution. We choose the observed data at 1 second fre-
quency, which corresponds to sample size 23400 under linear
noisy model Eq. (17) and nonlinear noisy model Eq. (18), re-
spectively. Compared with the proposed estimator �̂yz, we
also analysis the estimator �̂WM without any microstruc-
ture noise model and with i.i.d noise model. All the results
are based on 2500 sample paths. Normal QQ-plots and his-
togram figures are showed in Figure 1–2, and the quartiles
are presented in Table 1. The variances, biases and MSE of
�̂yz and �̂WM are seen in Table 2.

Figure 1. Normal Q-Q plots and histograms of Zyz under the
market microstructure noise g1 and g2, sample size 23400,

replications 2500.

All the above Q-Q plots and Histogram plots present both
Zyz and ZWM are approximate to the standard normal dis-
tribution, which shows our estimator �̂yz performs very well,
because the proposed approaches for leverage effect under
microstructure noise model are comparable to the bench-
mark estimator �̂WM without any financial microstructure
noise.

According to Table 1, for sample size 23400, both mean,
Q1, Q2, and Q3 of Zyz are close to the ones of ZWM with-
out noise model, which reflects that �̂yz has good normal
performance. In another word, we demonstrate in this sim-
ulation study that �̂yz is efficient, although the estimator is
proposed in the general trade information noise model.

Table 2 shows that our proposed estimator �̂yz have good
finite sample performances, and as we expected, the biases,
variances and MSE is close to the ones of �̂WM without
noise model. However, �̂WM based on i.i.d noise model could
provides smaller bias, variances and MSEs via comparing
the first column, the second column with the forth column.
It would be a good choice if we adapt model (3) with an

Figure 2. Normal Q-Q plots and histograms of ZWM without
noise model and with i.i.d noise model, sample size 23400,

replications 2500.

additional i.i.d noise term, which will be also our further
research work.

4. EMPIRICAL STUDIES

In the empirical study, we employ the minute-by-minute
high-frequency trades data from RESSET (www.resset.cn).
We select three stocks: Dong Feng Motor Corp, China Min-
sheng Bank, and Hisense Electric Corp from January 4th,
2007 to December 28th, 2007. Although the stocks are
traded between 9:30 am-11:30 am and 1:00 pm-3:00 pm, we
restrict our analysis to the time interval at 9:36 am-11:30 am
and 1:00 pm-2:55 pm from Monday to Friday. The reason is
that a great number of empirical studies show increased re-
turn volatility and trading volume at the open time and close
time of the stock market. A 5-min cushion at the open and
close may be a good choice in avoiding abnormal activities
in the stock market. Therefore, the number of all analysed
data is 53360 (232 days) for Dong Feng Motor Corp, 51980
(226 days) for China Minsheng Bank, and 45080 (196 days)
for Hisense Electric Corp.

At RESSET database, “Trdirec” is used to classify
whether a trade is buyer-initiated or seller-initiated. If
“Trdirec” is “B”, it is marked 1, if “Trdirec” is “S”, it is
marked −1, and if “Trdirec” is “F”, it is marked 0. This
classification scheme may be different from [10]), but it is
reasonable. In additional, the number of “F” is ignorable rel-
ative to the total data so that mark 0 has no too much effect
on analysing the data. Therefore, we describe the trade type
Ib/s(tn,j) at time tn,j by “Trdirec” in the empirical studies.
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Table 1. The summary statistics do exhibit the target normality

Mean Q1 Q2 Q3

Zyz(g1) 0.0459187 −0.58499171 0.0648180 0.6894439
Zyz(g2) 0.04570912 −0.58373175 0.06959636 0.68738653

ZWM (without noise) 0.04573571 −0.58373175 0.06959636 0.68738653
ZWM (i.i.d) 0.02767645 −0.60286276 0.08515147 0.72933781

Standard Normal Distribution 0 −0.674 0 0.674

Table 2. The Variances, Biases, Mean Square Errors for �̂yz and �̂WM

(×10−13) �̂yz(g1) �̂yz(g2) �̂WM (no) �̂WM (i.i.d)

Variances 3.748044 3.749624 3.749545 2.59574
Biases 0.03697918 0.03660308 0.036636 0.008137843

Mean Square Errors (MSE) 3.785023 3.786227 3.786181 2.603878

Note that all prices data should be transformed to be log-
price data. In order to deal with the price data conveniently,
all log-prices data could be also multiplied to be 10×lnPn,d,
n = 1, . . . , N, d = 1, . . . , 230, Pn,d is the dth 1-min stock
price at nth trading day.

There are many models involved in volatility forecast-
ing studies such as long memory ARFIMA model, GARCH
models and stochastic models (see [20]). However, we do not
try to find the best volatility forecasting model here. In or-
der to investigate the volatility prediction conveniently, we
use the following simple model.

∫ ti+1

ti

σ2
t dt−

∫ ti

ti−1

σ2
t dt = α0 + α1

(∫ ti

ti−1

σ2
t dt−

∫ ti−1

ti−2

σ2
t dt

)

+ α2

(∫ ti−1

ti−2

σ2
t dt−

∫ ti−2

ti−3

σ2
t dt

)
+ α3ΔX2

ti−

+ α4

∫ ti

ti−1

2btdt×ΔXti + εi.

(20)

• ti denotes the ith day, and ΔXti− denotes the overnight
log return.

• The integrated volatility
∫ ti+1

ti
σ2
t dt describe the daily

volatility here.
•

∫ ti+1

ti
σ2
t dt−

∫ ti
ti−1

σ2
t dt describes the variability of daily

volatility.
•

∫ ti
ti−1

2btdt can be estimated by the leverage effect �̂yz

by setting F (x) = 1
2 log(x).

• ΔXti = Xti −Xti−1 and εi is Gauss noise.

We will examine whether the leverage effect has effect on
volatility prediction via the proposed estimator �̂yz. Noted
“∗ ∗ ∗” represents that the parameter is significant under
0.001 confident level, “∗∗” represents that the parameter is
significant under 0.01 confident level, “∗” represents that
the parameter is significant under 0.05 confident level, and

“·” represents the parameter is significant under 0.1 confi-
dent level. All results could be summarized in the following
Table 3–Table 8.

Table 3. Volatility prediction results for Dong Feng Motor
Corp under g1

Estimate Std. Error t value Pr(>|t|)
α0 0.0038 0.0052 0.74 0.4595
α1 −0.2101 0.0778 −2.70 0.0075 **
α2 −0.1326 0.0619 −2.14 0.0331 *
α3 −0.0121 0.0511 −0.24 0.8134
α4 0.0426 0.0062 6.85 0.0000 ***

Table 4. Volatility prediction results for Dong Feng Motor
Corp under g2

Estimate Std. Error t value Pr(>|t|)
α0 0.5881 2.8824 0.20 0.8385
α1 −0.5997 0.0628 −9.55 0.0000 ***
α2 −0.3211 0.0629 −5.11 0.0000 ***
α3 −43.2171 28.3697 −1.52 0.1291
α4 −5.4679 2.7020 −2.02 0.0442 *

Table 5. Volatility prediction results for China Minsheng
Bank under g1

Estimate Std. Error t value Pr(>|t|)
α0 0.0023 0.0033 0.71 0.4758
α1 −0.2875 0.0758 −3.79 0.0002 ***
α2 −0.1618 0.0647 −2.50 0.0131 *
α3 −0.0100 0.0185 −0.54 0.5879
α4 0.0593 0.0116 5.09 0.0000 ***

These Tables display the following common features:

(i) According to Table 3 and Table 4, all P-values of α1,
α2 and α4 are less than 0.05, which show that variabilities of
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Table 6. Volatility prediction results for China Minsheng
Bank under g2

Estimate Std. Error t value Pr(>|t|)
α0 −0.4730 2.4274 −0.19 0.8457
α1 −0.6800 0.0637 −10.67 0.0000 ***
α2 −0.3392 0.0642 −5.28 0.0000 ***
α3 −0.7133 13.9176 −0.05 0.9592
α4 −12.0321 7.0924 −1.70 0.0912 ·

Table 7. Volatility prediction results for Hisense Electric Corp
under g1

Estimate Std. Error t value Pr(>|t|)
α0 0.0004 0.0039 0.10 0.9188
α1 −0.3291 0.0706 −4.66 0.0000 ***
α2 −0.2611 0.0707 −3.69 0.0003 ***
α3 −0.0196 0.0294 −0.67 0.5048
α4 −0.0050 0.0140 −0.36 0.7195

Table 8. Volatility prediction results for Hisense Electric Corp
under g2

Estimate Std. Error t value Pr(>|t|)
α0 1.2822 2.8081 0.46 0.6485
α1 −0.6855 0.0678 −10.10 0.0000 ***
α2 −0.2993 0.0687 −4.36 0.0000 ***
α3 13.8445 21.6176 0.64 0.5227
α4 26.3286 10.2006 2.58 0.0106 *

the ahead 1 daily volatility, the variabilities of the ahead 2
daily volatility and leverage effect have significant effect on
the next daily volatility under 0.05 confident level. On the
other hand, P-values of α3 are more than 0.1 in both Table
3 and Table 4, which describe that the overnight return does
not play an important role in forecasting volatility.

(ii) Compared Table 5 with Table 6, P-values of α1, α2

and α4 are less than 0.1, and P-values of α3 are more than
0.1 for China Minsheng Bank. The results suggest that the
leverage effect rather than the overnight return has an effect
on the volatility forecasting.

(iii) From Table 7 and Table 8, P-values of α1, α2 are 0,
and P-values of α3 are more than 0.1 for Hisense Electric
Corp. These results further examine that the variabilities of
the ahead 1 daily volatility, the variabilities of the ahead 2
daily volatility have an impact on volatility prediction, but
the overnight return has ignorable effect on volatility pre-
diction. The leverage effect has an effect on volatility pre-
diction based nonlinear function g2, but no effect based on
linear function g1, because P-value of α4 is 0.7195 in Table
7, and 0.0106 in Table 8. The reason is that the chosen fore-
casting volatility mode (20) is not good, which is reflected
that Adjusted R-squared for the model is only 0.1148 based
on linear function g1.

These features suggest that the proposed estimator �̂yz
could perform the sufficient application in high-frequency
financial market. Specially, �̂yz check that the leverage effect
plays an important roles in forecasting volatility.

5. CONCLUSION

In this paper, we propose a new estimator of leverage ef-
fect when the microstructure noise model includes the trad-
ing information. We have shown the proposed estimator �̂yz
is capable of achieving a convergence rate n1/4, and the con-
vergence rate is faster than the one of �̂WM when the mi-
crostructure noise is independent and identically distributed
(i.i.d.). Through a simulation study, we have demonstrated
proposed estimators share good asymptotic behaviors, and
the QQ-Plots, Histogram plots and quartiles perform the
efficient normal properties compared with �̂WM . And the
variances, biases, and mean square errors of �̂yz also show
the good performances based on both linear noise function
g1 and nonlinear noise function g2. Finally, we have also
demonstrated the ease of implementation for our proposed
estimator �̂yz through an empirical study.

In addition, all our work is studied in the setting where
the microstructure noise model is the parameter function of
the trading information, however, there is rich microstruc-
ture information in high-frequency financial market, we
would continue to explore the leverage effect estimator in
the more complex microstructure noise model.

APPENDIX A

A.1 Proof of Theorem 2.1

We first proof equation (10) in Theorem 2.1(A1), recall
that

X̂τn,i =Xtn,j + g
(
Ztn,j+1 ; θ0

)
− g

(
Ztn,j+1 ; θ̂

)
,

X̂tn,j+1 − X̂tn,j =Xtn,j+1 −Xtn,j

+Δg
(
Ztn,j+1 ; θ0

)
−Δg

(
Ztn,j+1 ; θ̂

)
.

Then, by Assumption 2(v), we have∣∣∣Δg(Ztn,i+1 ; θ̂)−Δg(Ztn,i+1 ; θ0)
∣∣∣ ≤ (

L0(Ztn,i+1) + L0(Ztn,i)
)

·
∣∣∣θ̂ − θ0

∣∣∣ ,
where L0(Ztn,i) and L0(Ztn,i+1) are locally bounded.

Under Assumption 1-2, as n → ∞, θ̂ − θ0 = Op

(
n−1

)
(see: [21]), therefore

X̂tn,j+1 − X̂tn,j =Xtn,j+1 −Xtn,j +Op

(
n−1

)
.

Equation (10) is proved.
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We next proof Equation (11) in Theorem 2.1(A1). Due
to

σ̃2
τn,i

=
1

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(
X̂tn,j+1 − X̂tn,j

)2

=
1

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(
ΔXtn,j+1

−
(
Δg

(
Ztn,j+1 ; θ̂

)
−Δg

(
Ztn,j+1 ; θ0

)))2

=
1

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

ΔX2
tn,j+1

+
1

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(
Δg(Ztn,j+1 ; θ̂)

− Δg(Ztn,j+1 ; θ0)
)2

− 2

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(
Δg

(
Ztn,j+1 ; θ̂

)
− Δg

(
Ztn,j+1 ; θ0

))
·ΔXtn,j+1

= : I1 + I2 − I3.

Note that term I1 is just σ̂2
τn,i

in Eq. (5) of [24]. We will

show that I2 − I3 = op
(
n−1/4

)
.

By Assumption 2(v), we have

I2 =
Mn

Mn ×Δt
Op

(
n−2

)
= Op

(
n−1

)
.

It remains to show that I3 = op
(
n−1/4

)
. Note that since

θ̂ depends on the whole process (Xt, Ztk), then the term I3
is not a martingale and hence the Burkholder-Davis-Gundy
(BDG) inequality is not applicable. To overcome the issue,
we set

Fn(θ) =
1√

Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(
Δg

(
Ztn,j+1 ; θ

)
− Δg

(
Ztn,j+1 ; θ0

))
ΔXtn,j+1 .

Further define for any function φ : N (θ0) → R, the modulus
of continuity as follows

ω(φ, h) := sup {|φ(θ1)− φ(θ2)| : |θ1 − θ2| ≤ h} ,

for any h ≥ 0.
Following the argument in the proof of Corollary 14.9 in

[18] one obtains that for any � > p/2 and any m ∈ N, we
obtain

E
(
ω
(
Fn, 2

−m
))2� ≤ C2−m(2�−p).

Taking m such that 2−m ≥ K/n > 2−m−1 yields

E (ω (Fn,K/n))
2� ≤ C(K/n)2�−p = O

(
n−(2�−p)

)
.

Therefore, we could see that for all n such thatB(θ0,K/n) =
({θ : |θ − θ0| ≤ K/n} ⊆ N (θ0)), for all � ∈ N large enough,

E (ω (Fn,K/n))
2�

= o
(
n−�

)
,

which clearly imply that for any K > 0

sup
|θ−θ0|≤K/n

∣∣∣∣∣∣ 1√
Mn ×Δt

∑
tn,j∈(τn,i,τn,i+1]

(Δg(Ztn,j+1 ; θ)

− Δg(Ztn,j+1 ; θ0))ΔXtn,j+1

∣∣ = op

(
n−1/2

)
.

Therefore, I2 − I3 = Op(n
−1) − 1√

Mn×Δt
op

(
n−1/2

)
=

op
(
n−1/4

)
. Equation (11) holds.

Then we proof Theorem 2.1(A2).
Using Assumption 2(v), it is easy to show that∣∣∣Δg

(
Zτn,i+1 ; θ0

)
−Δg

(
Zτn,i+1 ; θ̂

)∣∣∣
≤
(
L0

(
Zτn,i+1

)
+ L0

(
Zτn,i

))
·
∣∣∣θ0 − θ̂

∣∣∣ .
By equation (10), we have

�̂yz =2

Kn−2∑
i=0

(
X̂τn,i+1 − X̂τn,i

)(
F
(
σ̃τ

2
n,i+1

)
− F

(
σ̃τ

2
n,i

))
=2

Kn−2∑
i=0

(
X̂τn,i+1 − X̂τn,i

)(
F
(
σ̃τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i+1

)
+ F

(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

)
+ F

(
σ̂τ

2
n,i)− F

(
σ̃τ

2
n,i

))
=2

{
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
·
(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))}
+2

{
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
F ′(σ2

c1)

·
(
σ̃τ

2
n,i+1 − σ̂τ

2
n,i+1

)}
−2

{
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
F ′(σ2

c2)

·
(
σ̃τ

2
n,i − σ̂τ

2
n,i

)}
= : I4 + I5 − I6.

Note that σ2
c1 is a constant between σ̂τ

2
n,i+1 and σ̃τ

2
n,i+1.

σ2
c2 is a constant between σ̂τ

2
n,i and σ̃τ

2
n,i. Because F (·) is

twice continuously differentiable, F ′(·) is bounded in closed
intervals. It means that there exist some constant M ≥ 0,
such that

|F ′(·)| ≤ M.
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We have proved σ̃τ
2
n,i = σ̂τ

2
n,i + op

(
n−1/4

)
, then

|I5 − I6|

=2

∣∣∣∣∣
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
· F ′(σ2

c1)op

(
n−1/4

)
−

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
· F ′(σ2

c2)op

(
n−1/4

)∣∣∣
≤2

∣∣∣∣∣
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
·
∥∥F ′(σ2

c1)
∥∥ op (n−1/4

)∣∣∣
+2

∣∣∣∣∣
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
·
∥∥F ′(σ2

c2)
∥∥ op (n−1/4

)∣∣∣
≤4

∣∣∣∣∣
Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))∣∣∣∣∣ ·M · op
(
n−1/4

)
=4M · op

(
n−1/4

) ∣∣∣Xτn,Kn−1
−Xτn,0 +Op

(
n−1/2

)∣∣∣ .
The last equality is due to Kn = Op

(
n1/2

)
. Moreover,

Xτn,i+1 comes from Eq. (4), is locally bounded. For some

constant M
′ ≥ 0, we can get

|I5 − I6| ≤ 4M
′ · op

(
n−1/4

)
,

when n → ∞, I5 − I6 = 0.

Thus

�̂yz =2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))
·
(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
=2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i

) (
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
+2

Kn−2∑
i=0

Op

(
n−1

) (
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
=2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i

) (
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))
+Op

(
n−1/2

)
.

As n → ∞, the proof of Theorem 2.1(A2) is completed.

A.2 Proof of Theorem 2.2

By Theorem 2.1(A2) in this paper. As n → ∞, �̂yz and
�̂WM in the absence of microstructure noise are very close
so that we can derive the asymptotic properties of �̂yz by
�̂WM in the absence of microstructure noise.

Theorem 2.2 in this paper can be easily obtain via the
proof of Theorem 2.1 in [24]’s paper,

A.3 Proof of Theorem 2.3

In the former proof, we have known that X̂τn,i+1−X̂τn,i =

Xτn,i+1 −Xτn,i + Op

(
n−1

)
, and σ̃2

τn,i
= σ̂2

τn,i
+ op

(
n−1/4

)
.

Therefore, it is easy to obtain that

H1
n =2n

1
2

Kn−2∑
i=0

(
X̂τn,i+1 − X̂τn,i

)2

·
(
F
(
σ̃τ

2
n,i+1

)
− F

(
σ̃τ

2
n,i

))2

=2n
1
2

Kn−2∑
i=0

(
Xτn,i+1 −Xτn,i +Op

(
n−1

))2
·
(
F
(
σ̃τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i+1

)
+ F

(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

)
+ F

(
σ̂τ

2
n,i

)
− F

(
σ̃τ

2
n,i

))2

.

By the simple deduction, we could obtain the following
equation

H1
n =2n

1
2

Kn−2∑
i=0

(Xτn,i+1 −Xτn,i)
2

·
(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))2

+Op

(
n−1/2

)
.

Noted the first term in H1
n is G1

n in [24]’s paper. Similarly,
we have the following equation

H2
n =2n

1
2MnΔt

Kn−2∑
i=0

σ̂τ
2
n,i

(
F
(
σ̂τ

2
n,i+1

)
− F

(
σ̂τ

2
n,i

))2

+op

(
n−1/4

)
.

As n → ∞, we may obtain H2
n = G2

n, G
2
n could be seen

in [24]’s paper. Therefore, Theorem 2.3 can be deduced.

Received 25 September 2018

REFERENCES
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