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Copula modeling for data with ties
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Tied observations in copula modeling may cause serious
problems to rank-based inference methods that are intended
for data with no ties. Simple methods such as breaking the
ties at random or using midrank could lead to bias in esti-
mation and invalidity in naive bootstrap inferences. We pro-
pose to treat the ranks of tied observations as being interval
censored and estimate the copula parameters by maximiz-
ing a pseudo-likelihood based on interval censored pseudo-
observations. A parametric bootstrap procedure that pre-
serves the tied ranks in the observed data is adapted to do
interval estimation and goodness-of-fit test. The proposed
approach is shown to be very competitive in comparison to
the simple treatments in a large scale simulation study. The
utility of the method is illustrated in real data examples.
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1. INTRODUCTION

Ties, which are not expected for continuous data but
can be present for various reasons, have serious conse-
quences in practical copula modeling. Multivariate mod-
eling based on copulas has been widely applied in many
fields such as finance (e.g., Mackenzie and Spears, 2014),
actuarial science (e.g., You and Li, 2014), hydrology (e.g.,
Parent et al., 2014), public heath (e.g., Hu and Liang,
2014), and so on. An important advantage of such mod-
els is that the dependence structure of a multivari-
ate distribution is separated from its marginal distribu-
tions. Many approaches for copula modeling are rank-
based, which do not specify the parametric forms of the
marginal distributions (e.g., Genest, Ghoudi and Rivest,
1995; Genest, Ghoudi and Rémillard, 2007). Under the as-
sumption of continuous marginal distributions, there should
be no ties in the observed data so the ranks are unique. In
many practical settings, however, ties are present in one or
multiple margins due to rounding or precision limit of the
measurements in observed data. For example, consider ana-
lyzing the relationship between two epidemics, hypertension
and obesity, using the data from China Health and Nutri-
tion Survey (CHNS; see http://www.cpc.unc.edu/projects/
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china) of Beijing, China, in 2011. A total of 1,214 observa-
tions were available for body mass index (BMI), diastolic
blood pressure (DBP), and systolic blood pressure (SBP).
The BMI values were rounded to two decimal points while
DBP and SBP were collected as integers. Severe ties are
present in this dataset, with 911 unique values in BMI,
63 unique values in SBP, and 43 in DBP; see the pseudo-
observations scatters in Figure 1. Presence of ties means loss
of information on the dependence structure. Further, a naive
parametric bootstrap procedure would generate data with-
out ties. Due to the rank-based nature of many copula mod-
eling methods, ties inevitably spoil accuracy and efficiency
in estimation and hypotheses tests (Kojadinovic and Yan,
2010; Genest, Neslehova and Ruppert, 2011; Kojadinovic,
2017).

Handling ties appropriately has not received much at-
tention until recently. In rank-based methods, quick but
inferior solutions are to use midrank, to break the ties
at random multiple times and summarize the multi-data
results, or to estimate the parameters via inversion of
Kendall’s τ estimator. Kojadinovic and Yan (2010) com-
pared the first two naive methods using the bivariate in-
surance data from Frees and Valdez (1998). Since these
naive approaches handle ties in each margin independently
and ignore the dependence, they essentially introduce in-
dependence into the data. This leads to biased estimation
of copula parameters, especially when the dependence is
strong. Pappadà, Durante and Salvadori (2016) proposed a
randomization strategy where jittering is done by a mix-
ture of the independence copula and the Fréchet-Hoeffding
upper bound such that the Kendall’s τ matches the em-
pirical Kendall’s τ . Such randomization still alters the de-
pendence of the data, albeit less severely than independent
or co-monotone randomizations; see illustration in our real
data analysis in Section 4. Hypotheses tests in copula mod-
eling based on parametric bootstrap can be severely affected
by ties because the bootstrap samples contain no ties, which
makes the observed statistics from data with ties look overly
large. Consequently, such tests do not hold their sizes by
over rejection. Bücher and Kojadinovic (2015) proposed to
use the maximum rank in calculating the testing statis-
tics and preserve the observed ties in bootstrap samples.
With this approach, tests of exchangeability, radial symme-
try, extreme-value dependence, and goodness-of-fit can be
adapted in the presence of ties, and have been confirmed in
numerical studies (Kojadinovic, 2017).

http://www.intlpress.com/SII/
http://www.cpc.unc.edu/projects/china
http://www.cpc.unc.edu/projects/china


Figure 1. Pseudo-observations (rescaled ranks) of the BMI versus SBP and BMI versus DBP.

We propose to handle tied observations by treating their
ranks as being interval censored as in survival analysis (e.g.,
Sun, 2007; Chen, Sun and Peace, 2012). An observation tied
with other observations in one margin means that its rank
is known to be in an interval from the minimum rank and
maximum rank. Interval censored pseudo-observations can
be used to construct a pseudo-likelihood, which can be
maximized to obtain point estimates. When an observa-
tion is tied in every margin, its contribution to the pseudo-
likelihood of the copula is similar to that in copula mod-
eling for discrete data (Nikoloulopoulos and Karlis, 2009;
Nikoloulopoulos, 2013; Faugeras, 2017). When an observa-
tion is tied but not at all margins, the pseudo-likelihood
involves partial derivatives of an appropriate order of the
copula distribution function. Further, in parametric boot-
strap samples, the tie structure in the observed data needs
to be preserved, which is not an issue in full likelihood
modeling for discrete data. We apply the tie-preserving
parametric bootstrap of Bücher and Kojadinovic (2015) and
Kojadinovic (2017) in interval estimation and goodness-of-
fit test. In a large scale simulation study, the point estima-
tors are virtually unbiased, the interval estimations provide
valid uncertainty measures, and the goodness-of-fit tests
maintain their sizes with substantial power. A byproduct of
the interval censoring approach is that it works more natu-
rally than the midrank method in nonparametric bootstrap
which certainly leads to tied observations from sampling
with replacement. In our simulation studies, the midrank
method gives appropriate coverage rate only for data with-
out ties, while the censoring method works well in coverage
of confidence intervals for data with or without ties.

The rest of this article is organized as follows. In Sec-
tion 2, we present our interval censoring approach to copula

modeling for data with ties, including parameter estima-
tion, interval estimation, and goodness-of-fit test. A large
scale numerical study assessing the performance of the pro-
posed methods is reported in Section 3. The methods are
illustrated with the CHNS data and the stock price data
of the Swiss Market Index (SMI) in Section 4. A discus-
sion concludes in Section 5. An additional simulation study
to investigate the performance of the proposed method in
nonparametric bootstrap is relegated in the Appendix.

2. METHODOLOGY

2.1 Interval censored pseudo-observations

Let (X,Y ) be a continuous random vector with marginal
distribution functions F and G, and joint distribution func-
tion H. By Sklar’s theorem (Sklar, 1959), there is a unique
copula C : [0, 1]2 → [0, 1] such that

H(x, y) = C
(
F (x), G(y)

)
, x, y ∈ R.

The copula C completely characterizes the dependence
structure in H. This representation suggests that the depen-
dence structure can be separated from the marginal distribu-
tions in multivariate modeling. Let (Xi, Yi), i = 1, . . . , n be
a random sample from H. Often, the marginal distributions
are modeled by their empirical distributions and the copula
is modeled parametrically, leading to a semiparametric infer-
ence in multivariate modeling (Genest, Ghoudi and Rivest,
1995). This approach avoids the bias in copula estima-
tion caused by misspecification in marginal distributions
(Kim, Silvapulle and Silvapulle, 2007).

Continuous data have no ties and no ambiguity in ranks.
Let F̂n and Ĝn be the empirical distribution functions of F
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and G, respectively. Pseudo-observations Un,i and Vn,i are

simply F̂n(Xi) and Ĝn(Yi) rescaled by a constant n/(n+1)
to avoid evaluation of the copula density on the edges of the
unit square ending at (1, 1). That is,

(Un,i, Vn,i) =

(
nF̂n(Xi)

n+ 1
,
nĜn(Yi)

n+ 1

)
,(1)

for i = 1, . . . , n. Without ties, the marginal empirical dis-
tribution functions at both margins have jumps of size
1/(n+ 1).

The pseudo-likelihood estimator of θ is constructed from
the margin-free pseudo-observations (Genest, Ghoudi and
Rivest 1995):

θ̂n = argmax
θ∈Θ

n∑
i=1

log c
(
Un,i, Vn,i; θ),

where c(·, ·; θ) is the density of copula function C from a
copula family {Cθ : θ ∈ Θ}.

When ties are present due to rounding or lack of precision
in measurements, the ranks and pseudo-observations are not
fully observed but interval censored. An interval censored
observation is a data point that is known to be somewhere
between two values but the exact value is unknown. For
illustration, consider a toy example of 9 observations where
the order statistics of the pseudo-observations of X from (1)
are

(2) (U9:1, . . . , U9:9) = (1, 2, 5, 5, 5, 6, 8, 8, 9)/10.

In this example, there are ties in the 3rd, 4th, and 5th
order statistics and in the 7th and 8th order statistics. If
midranks (i.e., averages of ranks) are used, they will be,
respectively, 4 and 7.5. Handling ties by their midranks in-
validates the parametric bootstrap method because there
would be no ties in bootstrap samples. The null distribu-
tions of many test statistics cannot be well approximated
through a naive parametric bootstrap (Kojadinovic, 2017).
Breaking the ties at random gives many possibilities of un-
tied data and introduces independence to the data; the re-
sults from the multiple untied data need to be summarized
(Kojadinovic and Yan, 2010). As shown in our simulation
study, breaking the ties at random can lead to bias in cop-
ula estimation when the dependence is high. This is expected
because it replaces the dependent interval censored pseudo-
observations with independent observations.

We propose to use the concept of interval censored data
from survival analysis to handle tied data in copula estima-
tion. In particular, we define upper and lower boundaries of
pseudo-observations, respectively, as

(Un,i, V n,i) =

(
nF̂n(Xi)

n+ 1
,
nĜn(Yi)

n+ 1

)
,

(Un,i, V n,i) =

(
nF̂n(Xi−) + 1

n+ 1
,
nĜn(Yi−) + 1

n+ 1

)
.

where F̂n(x−) and Ĝn(y−) are the left limit of F̂n and Ĝn

at x and y, respectively. Note that the upper bounds are
the same as (Un,i, Vn,i). If Xi (or Yi) is a tied observation,
then its pseudo observation Un,i (or Vn,i) is interval cen-
sored by [Un,i, Un,i] (or [V n,i, V n,i]). If Xi (or Yi) is not a
tied observation, the interval reduces to a single value, i.e.,
Un,i = Un,i = Un,i (or V n,i = V n,i = Vn,i).

2.2 Pseudo-likelihood estimator

The observation (Un,i, Vn,i)’s contribution to the pseudo-
likelihood, Li(θ), depends on the censoring pattern on the
two margins. There are four cases.

1. If Un,i < Un,i and V n,i < V n,i (i.e., the observation is
tied observation in both margins), then Li(θ) is

Cθ(Un,i, V n,i)− Cθ(Un,i, V n,i)− Cθ(Un,i, V n,i)

+ Cθ(Un,i, V n,i).

2. If Un,i < Un,i and V n,i = V n,i = Vn,i (i.e., the ob-
servation is a tied observation only in X), then Li(θ)
is

∂Cθ(u, v)

∂v

∣∣∣∣
u=Un,i,v=Vn,i

− ∂Cθ(u, v)

∂v

∣∣∣∣
u=Un,i,v=Vn,i

.

3. If Un,i = Un,i = Un,i and V n,i < V n,i (i.e., the ob-
servation is a tied observation only in Y ), then Li(θ)
is

∂Cθ(u, v)

∂u

∣∣∣∣
u=Un,i,v=V n,i

− ∂Cθ(u, v)

∂u

∣∣∣∣
u=Un,i,v=V n,i

.

4. If Un,i = Un,i = Un,i and V n,i = V n,i = Vn,i (i.e., the
observation is not tied in either margin), then Li(θ) =
c(Un,i, Vn,i; θ).

The adjusted pseudo-loglikelihood function under inter-
val censoring is

L(θ) =
n∑

i=1

logLi(θ).

The maximum pseudo-likelihood estimator (MPLE) of θ is
then

(3) θ̂n = argmax
θ∈Θ

L(θ).

This estimator reduces to the traditional MPLE when nei-
ther margin has tied observations. For implementation, we
need partial derivatives of the copula in addition to the dis-
tribution and density functions. Expressions of these partial
derivatives for commonly used copulas are available from
the R package copula (Hofert et al., 2016).
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2.3 Interval estimation

The asymptotic properties of the pseudo-likelihood esti-
mator are challenging to establish due to the inclusion of
interval censored pseudo-observations. We resort to boot-
strap for confidence intervals, but a plain vanilla parametric
bootstrap procedure would not work in this case because
no ties would be present if bootstrap samples are generated
from the fitted copulas. The parametric bootstrap proce-
dure needs to be modified so that the ties in the observed
data are preserved in each of the bootstrap samples in order
to sufficiently capture the uncertainty in parameter estima-
tion.

Given a sample generated from the fitted copula, which
contains no ties, we introduce ties into the sample such that
at each margin the ties in the observed data are repro-
duced in the bootstrap sample (Bücher and Kojadinovic,
2015). Let F̃n and G̃n be the empirical distribution of
the observed pseudo-observations Un,i’s and Vn,i’s, respec-

tively, i.e., F̃n(u) =
∑n

i=1 1(Un,i ≤ u)/n and G̃n(v) =∑n
i=1 1(Vn,i ≤ v)/n. When ties are present, F̃n and G̃n

have jumps of sizes greater than 1/n. Let U
(b∗)
n,i ’s and V

(b∗)
n,i ’s

be the pseudo-observations from a bootstrap sample, which
have no ties, generated from the fitted copula. Ties are in-

troduced into to U
(b∗)
n,i ’s and V

(b∗)
n,i ’s by applying the corre-

sponding quantile functions F̃−1
n and G̃−1

n of F̃n and G̃n to

U
(b∗)
n,i ’s and V

(b∗)
n,i ’s, respectively:(

U
(b)
n,i , V

(b)
n,i

)
=

(
F̃−1
n (U

(b∗)
n,i ), G̃−1

n (V
(b∗)
n,i )

)
,

i = 1, . . . , n,

(4)

where F̃−1
n (y) = inf{u : F̃n(u) ≥ y, u ∈ [0, 1]} and

G̃−1
n (y) = inf{u : G̃n(u) ≥ y, u ∈ [0, 1]}. After this transfor-

mation, U
(b)
n,i ’s and V

(b)
n,i ’s are tie-adjusted bootstrap pseudo-

observations whose marginal empirical distributions are the
same as those of Un,i’s and Vn,i’s, respectively. Note that

the joint empirical distribution of (U
(b)
n,i , V

(b)
n,i ), however, is

not the same as that of (Un,i, Vn,i), which is the source of
variation of the bootstrap sample.

After ties are introduced, we can further obtain the upper
and lower boundaries of the adjusted pseudo-observations of

U
(b)
n,i ’s and V

(b)
n,i ’s,(
U

(b)

n,i, V
(b)

n,i

)
=

(
U

(b)
n,i , V

(b)
n,i

)
,

(
U

(b)
n,i, V

(b)
n,i

)
=

(
F̃−1
n (U

(b)
n,i−) +

1

n+ 1
,

G̃−1
n (V

(b)
n,i −) +

1

n+ 1

)
.

where F̃n and G̃n are the empirical distribution functions of

U
(b)
n,i and V

(b)
n,i (and also of Un,i and Vn,i). Note that

U
(b)

n:i = Un:i, U
(b)
n:i = Un:i,

V
(b)

n:i = V n:i, V
(b)
n:i = V n:i.

where the subscript of An:i represents the ith order statistics
(i.e., ith smallest number) of the sequence {An,i}ni=1.

We illustrate the tie-preserving procedure using the same
toy example with pseudo-observations (2) in Section 2.1.
The bootstrap pseudo-observations (without ties) after be-
ing sorted are always

(U
(b∗)
9,1 , . . . , U

(b∗)
9,9 ) = (1, 2, 3, 4, 5, 6, 7, 8, 9)/10.

By applying (4), we obtain the tie-adjusted bootstrap
pseudo-observations

(U
(b)
9,1 , . . . , U

(b)
9,9) = (1, 2, 5, 5, 5, 6, 8, 8, 9) /10,

where we have changed 3/10 and 4/10 to 5/10, and 7/10 to
8/10 to match the ties in the observed pseudo-observations.
Consequently, the lower and upper boundaries of adjusted

pseudo-observations of (U
(b)
9,1 , . . . , U

(b)
9,9) are

(U
(b)

9,1, . . . , U
(b)

9,9) = (1, 2, 5, 5, 5, 6, 8, 8, 9) /10,

(U
(b)
9,1, . . . , U

(b)
9,9) = (1, 2, 3, 3, 3, 6, 7, 7, 9) /10.

The same procedure can be applied to the other marginal
component Vn,i.

In summary, the tie-preserving parametric bootstrap pro-
cedure given the MPLE θ̂n to construct a 1− α confidence
interval runs as follows. For some large integer B, repeat the
following steps 1–3 for every b ∈ {1, . . . , B}:
1. Generate bootstrap pseudo-observations with no ties

from the fitted copula Cθ̂n
.

2. Obtain tie-adjusted pseudo-observations via (4).

3. Obtain the MPLE θ̂
(b)
n using the tie-adjusted pseudo-

observations.

A bootstrap sample (θ̂
(1)
n , . . . , θ̂

(B)
n ) is formed to approxi-

mate the sampling distribution of θ̂n. The sample α/2 and
1 − α/2 quantiles can then be used to form a confidence
interval of level 1− α.

The computing cost of the tie-preserving parametric
bootstrap procedure is similar to that of the standard para-
metric bootstrap procedure. The only extra part is the tie-
preserving step, which is minimal compared to the optimiza-
tion in the fitting for each bootstrap sample.

2.4 Goodness-of-fit test

Goodness-of-fit tests with standard parametric bootstrap
are known to be vulnerable to ties in keeping their sizes
(Kojadinovic and Yan, 2010). This is because goodness-of-
fit test statistics (usually distance-based) tend to be big-
ger for data with ties than for data without ties. Conse-
quently, the tests would not hold their sizes with over re-
jection. From our numerical studies, the empirical size of a
5%-level test could reach 100% when a moderate amount
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of ties are present. Therefore, preserving ties in parametric
bootstrap is crucial (Kojadinovic, 2017).

We propose to adapt the standard bootstrap proce-
dure for goodness-of-fit (Genest and Rémillard, 2008) with
observed ties-preserved (Bücher and Kojadinovic, 2015;
Kojadinovic, 2017). The hypothesis is

H0 : C ∈ C = {Cθ : θ ∈ Θ} versus H1 : C /∈ C.

Consider goodness-of-fit tests based on the goodness-of-fit
empirical process

Cn(u, v) =
√
n(Cn(u, v)− Cθ̂n

(u, v))2, (u, v) ∈ [0, 1]2,

where Cn is the empirical copula defined as

Cn(u, v) =
1

n

n∑
i=1

1(Un,i ≤ u, Vn,i ≤ v),

and θ̂n is a parametric estimator of θ (which could be the
MPLE from (3) or other rank-based estimator) under the
null hypothesis H0. Statistics of goodness-of-fit tests can be
formed as F(Cn), where F is a functional of Cn. We use
the Cramér–von Mises (CvM) statistic, which is known to
have a good power (Genest, Rémillard and Beaudoin, 2009;
Kojadinovic and Yan, 2010), to illustrate the procedure.

Consider a CvM statistic defined as

Dn =

n∑
i=1

(
Cn(Un,i, V n,i)− Cθ̂n

(Un,i, V n,i)
)2

.(5)

After Dn is obtained, we use the following bootstrap pro-
cedure to draw samples from the distribution of Dn under
H0. For some large integer B, repeat the following steps for
each b ∈ {1, ..., B}:
1. Generate bootstrap pseudo-observations with no ties

from the fitted copula Cθ̂n
.

2. Obtain tie-adjusted pseudo-observations via (4).

3. Obtain the MPLE θ̂
(b)
n using the tie-adjusted pseudo-

observations.
4. Obtain the empirical copula C

(b)
n based on the tied-

adjusted pseudo-observations.

5. Obtain the bootstrap test statistic D
(b)
n using (5).

An approximated p-value of the observed test statistic is

then
∑B

b=1 1(D(b)
n ≥ Dn)/B.

Again, this tie-preserving bootstrap procedure has sim-
ilar computing cost compared to the standard parametric
bootstrap procedure. The difference from the procedure of
Kojadinovic (2017) is that, after each tie-preserving boot-
strap sample is obtained, we use the interval censoring ap-
proach for estimation instead of the midrank method.

3. NUMERICAL STUDIES

A large-scale simulation study was carried out to assess
the performance of proposed methods in point estimation,
interval estimation, and goodness-of-fit.

3.1 Point estimation

We first study the accuracy of the point estimation of the
proposed method (denoted as “censoring”) in comparison
with three naive methods: breaking ties at random (denoted
as “random”), using midrank, and inverting the Kendall’s
tau (denoted as “itau”). For the random method, the mean
result from 100 randomizations was used. Data were gen-
erated from three one-parameter copulas parameterized by
Kendall’s τ , Clayton (C), Gumbel (G), and normal (N),
with τ ∈ {0.1, . . . , 0.9} to control the dependence level.
Ties were introduced by rounding the first margin to the
first decimal place. Three sample sizes n ∈ {100, 200, 400}
were considered. For each setting, 1,000 datasets were gen-
erated.

The boxplots of the estimation error of the four esti-
mators from 1000 replicates are summarized in Figure 2.
The Gumbel copula is different from the other two copulas
in that it only allows positive dependence. In the case of
τ = 0.1, the estimate of τ is bounded below by 0, so the er-
ror is never below −0.1. This is most obvious when sample
size is small (n = 100), in which case, all four estimators ap-
pear positively biased. The decrease in the variation of the
estimates for each sample size as τ goes beyond 0.3 has to do
with the scale of τ ; the variation on the usual parametriza-
tion scale of the Gumbel copula, for example, increases dras-
tically. Other than these, observations from Figure 2 are all
as expected. The estimates from the three naive methods
have little bias when the dependence is weak (lower τ); as
τ increases, however, their bias becomes more obvious, with
the random method more severely under-estimate the de-
pendence than the midrank method and the itau method
slightly over-estimate the dependence. In contrast, the es-
timate from the censoring method remains unbiased in all
settings. The variances of all four estimators appear com-
parable for cases with lower τ , but the censoring method
seems to have slightly higher variance for cases with higher
τ and when τ varies in 0.3–0.7, the itau method seems to
have higher variance. Because of its advantage in bias, the
censoring method has smallest mean squared error (MSE),
especially for higher τ .

We then study the effect of the severity of ties on es-
timation accuracy. From Figure 2, we see the differences
among the methods are not obvious in those cases where
Kendall’s τ = 0.4 or lower. Thus data were generated from
the three copulas with τ = 0.75 and n = 200. The first
margin was rounded to the first decimal place if its value
was smaller than a threshold, which controls the severity
of ties; the bigger the threshold, the smaller the percentage
of unique observations. The square root of MSE (RMSE)
of the four estimators are plotted against the percentage of
ties in the first margin in Figure 3. The censoring method
has the smallest RMSE, and, unlike the other three meth-
ods, its RMSE is stable regardless of the severity level of the
ties. The RMSEs of the itau method, the midrank method

Copula modeling for data with ties 107



Figure 2. Boxplots of the empirical error in estimating Kendall’s τ using four methods (random, midrank, itau, and censoring)
for three one-parameter copula families (Clayton, Gumbel, and normal) from 1,000 replicates. Ties were introduced by

rounding the first margin to the first decimal place.

Figure 3. Comparison of RMSE in estimating Kendall’s τ using four methods (random, midrank, itau, and censoring) for three
one-parameter copula families (Clayton, Gumbel and normal) with different percentages of ties in one margin and sample size
n = 200. Ties were introduced by rounding the first margin to the first decimal place for observations below the “threshold”

on the horizontal axis, which controls the percentage of unique observations.
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Table 1. Empirical coverage rate of the 95% bootstrap confidence intervals of the censoring method and the midrank method
for three copula families from 1,000 replicates. The bootstrap sample size was B = 1000. The values in the parentheses are

the average width of the confidence intervals from 1000 replications.

Clayton Gumbel Normal

n τ Censoring Midrank Censoring Midrank Censoring Midrank

50 0.25 89.8 (0.324) 87.5 (0.300) 90.6 (0.346) 89.3 (0.335) 88.6 (0.344) 87.4 (0.342)

0.50 95.4 (0.265) 96.8 (0.250) 92.0 (0.271) 93.6 (0.265) 88.0 (0.245) 89.7 (0.240)

0.75 96.1 (0.180) 58.5 (0.166) 96.3 (0.164) 94.9 (0.159) 95.3 (0.145) 96.8 (0.143)

100 0.25 92.7 (0.226) 87.5 (0.211) 91.8 (0.247) 89.5 (0.242) 89.3 (0.239) 86.9 (0.237)

0.50 95.7 (0.189) 97.3 (0.177) 92.5 (0.194) 93.8 (0.188) 91.6 (0.176) 92.2 (0.172)

0.75 94.4 (0.124) 21.5 (0.114) 93.2 (0.115) 83.8 (0.111) 94.9 (0.101) 92.9 (0.099)

200 0.25 90.8 (0.159) 80.8 (0.149) 92.7 (0.174) 90.6 (0.171) 90.6 (0.167) 87.5 (0.166)

0.50 94.7 (0.136) 94.6 (0.126) 92.4 (0.140) 94.8 (0.134) 91.8 (0.125) 92.1 (0.122)

0.75 91.9 (0.087) 2.9 (0.079) 94.4 (0.082) 60.1 (0.078) 93.9 (0.072) 80.8 (0.070)

and the random method all have some increasing patterns
as the percentage of ties increases. The increasing rate is
the fastest for data generated from the Gumbel copula. The
method is much less sensitive to the severity of ties than the
other two methods.

3.2 Interval estimation

To assess the coverage properties of the bootstrap con-
fidence intervals, we generated data from the three copulas
(C, G, and N) with Kendall’s τ ∈ {0.25, 0.50, 0.75} and sam-
ple size n ∈ {50, 100, 200}. Ties were introduced by rounding
the first margin to the first decimal place. The 95% confi-
dence intervals of the censoring method were constructed
with the tie-preserving bootstrap procedure with bootstrap
sample size B = 1000. The censoring method and midrank
method were used to handle ties in data. We compare the
performance of these two methods via the coverage rate and
the average width of the 95% bootstrap confidence inter-
vals.

Based on the finding from point estimation in Section 3.1
that the proposed method obviously outperforms the others
when dependence level is moderate or high, more numeri-
cal studies for interval estimation with choices of stronger
level of dependence (Kendall’s τ ∈ {0.5, 0.6, . . . , 0.9}) are
conducted and presented in Appendix A.1.

The empirical coverage rates of the confidence intervals
and their average length based on 1000 replicates are sum-
marized in Table 1. For the censoring method, most of the
empirical coverage rates are close to the nominal level in the
higher dependence case (τ ≥ 0.50). Under low dependence
level (τ = 0.25), especially with small sample size (n = 50),
some empirical coverage rates are just below 90%. As the
sample size increases, the width of the confidence interval
decreases. As the Kendall’s τ increases, the width of the
confidence interval decreases as determined by the scale of
τ ; see Figure 2. Compared with the midrank method, the
censoring method performs much better in terms of cover-
age rates. Although the intervals of the midrank method

are slightly narrower, their coverage rates are much lower
(with a striking 2.9% for the Clayton copula with n = 200
and τ = 0.75) than the censoring method. Recall that, in
Figure 2, the bias of midrank method increases rapidly as
τ increases, these low coverage rates are expected. Conse-
quently, as the Kendall’s τ increase, the advantage of the
censoring method in coverage rates becomes more obvi-
ous.

We also considered constructing the confidence intervals
with the nonparametric bootstrap procedure. The censor-
ing method allows natural processing for the nonparametric
bootstrap samples which for sure contain ties even for data
with no ties. The censoring method provides appropriate
coverage of confidence intervals for both data with no ties
and data with ties. See details in Appendix A.2.

3.3 Goodness-of-fit test

The performance of the goodness-of-fit test based on tie-
preserving bootstrap using the censoring method in estima-
tion was assessed with data of sample size n = 100 gener-
ated from the three copulas (C, G, and N) with Kendall’s
τ ∈ {0.25, 0.50, 0.75}. Three patterns of ties were consid-
ered: no ties, ties introduced by rounding one margin, or
both margins, to the first decimal place. For each con-
figuration, 500 datasets were generated. For each dataset,
goodness-of-fit tests were performed with each of the three
copula families (C, G, and N) as the hypothesized cop-
ula. The parametric bootstrap sample size was B = 200.
In the bootstrap procedure, two methods of preserving ties
were considered: matching the observed ranks as proposed
in Section 2.4, and rounding the margins with ties to the
first decimal place. Note that the rounding approach was
under the assumption of known tie-introducing mechanism,
which is unavailable in general. It was included in the com-
parison as a benchmark to check whether knowing the tie-
introducing mechanism helps to improve the performance of
the tests.
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Table 2. Empirical rejection percentage of the goodness-of-fit tests at level 5% with sample size n = 100 for three copula
families (C = Clayton, G = Gumbel, and N = Normal) based on 1000 replicates, each with bootstrap sample size B = 200.
Ties were introduced by rounding data from the corresponding margin to first decimal place. “No ties” indicate no ties in any
sample; “One side” means rounding the first marginal component to the first decimal place; “Two sides” means rounding

both components to the first decimal place.

Hypothesized copula

Ties Kendall’s True C G N

pattern τ copula Match Round Match Round Match Round

No ties 0.25 C 5.5 62.0 15.9

G 79.1 5.3 16.8

N 47.7 13.6 5.2

0.50 C 7.0 96.8 60.0

G 99.0 6.2 28.6

N 88.2 24.0 5.0

0.75 C 4.0 100.0 85.8

G 100.0 3.0 31.0

N 98.2 21.6 3.0

One side 0.25 C 4.4 4.2 57.6 58.9 3.8 18.2

G 76.5 75.9 4.2 3.4 18.3 18.6

N 44.9 45.5 12.7 12.1 3.5 6.4

0.50 C 4.6 5.4 95.4 95.6 52.2 55.2

G 99.8 99.6 6.2 6.6 32.4 33.6

N 87.0 88.2 22.2 21.4 3.6 4.2

0.75 C 1.6 3.8 99.6 99.6 79.4 79.6

G 100 100 4.0 4.2 25.6 26.6

N 96.6 97.0 14.4 15.4 3.4 3.8

Two sides 0.25 C 6.4 4.4 51.4 55.6 13.8 15.4

G 71.7 73.5 4.7 3.7 19.4 18.8

N 40.2 38.6 8.8 11.8 5.0 4.2

0.50 C 4.6 3.8 96.0 96.8 53.2 54.6

G 98.6 99.0 4.2 5.8 28.6 31.8

N 82.8 85.0 19.2 18.6 5.6 4.8

0.75 C 0.4 4.2 97.8 98.0 75.0 83.2

G 99.6 100.0 4.4 5.4 26.6 30.6

N 93.6 94.8 10.6 15.0 4.6 4.4

The empirical rejection percentages of the goodness-of-fit

tests with significance level 5% are summarized in Table 2.

When the hypothesized copula is the same as the data gen-

erating copula, the reported percentages are put in bold,

representing the empirical sizes. The empirical sizes are close

to the nominal size of 5% in most cases. The two methods of

preserving ties show little difference, except that the test is

conservative for the Clayton copula with τ = 0.75, with em-

pirical rejection percentage 1.6 and 0.4 for one- and two-side

ties, respectively. When the hypothesized copula is not the

data generating copula, the empirical powers of the tests are

lower than those obtained when no ties are present, which is

as expected due to the information loss in ties. Between the
two tie-preserving methods, the rounding approach seems to
have slightly higher power, but the advantage seems mini-
mal. Note that the rounding approach is not available in
practice.

Since the difference between the two tie-preserving meth-
ods is little, we focus on the matching ties method and in-
vestigate sample sizes 50 and 200. The empirical rejection
percentages are summarized in Table 3. For sample size 50,
the test appears to be a little conservative when τ = 0.75.
Nonetheless, the test holds its size closely at sample size 200,
and the power increases as the sample size increases in all
settings as expected. The power in the case of one side ties
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Table 3. Empirical rejection percentages of the goodness-of-fit tests with sample size n ∈ {50, 200} for three types of copulas
(C = Clayton, G = Gumbel, and N = Normal) based on 1000 replicates, each with bootstrap sample size B = 200. Ties in
the original data were introduced by rounding data from the first margin to first decimal place. Matching rank was used to

preserve ties in bootstrap samples.

Hypothesized copula

Ties Kendall’s True C G N

pattern τ copula n = 50 n = 200 n = 50 n = 200 n = 50 n = 200

One side 0.25 C 4.3 6.4 32.5 88.8 6.0 41.8

G 50.7 94.2 6.9 5.4 9.4 30.4

N 24.1 69.4 10.7 25.6 2.6 6.8

0.50 C 3.2 4.0 72.9 100.0 21.9 93.8

G 89.2 100.0 4.7 5.2 21.8 42.2

N 59.2 99.8 11.6 38.6 5.0 4.6

0.75 C 1.1 5.2 83.7 100.0 35.1 99.0

G 94.6 100.0 2.9 5.8 17.1 47.6

N 73.3 100.0 7.4 32.2 3.9 4.0

Two sides 0.25 C 4.6 4.4 11.9 55.6 1.5 18.0

G 46.5 73.5 3.3 3.7 10.8 19.2

N 24.2 38.6 6.8 11.8 3.9 4.8

0.50 C 2.9 3.8 53.2 96.8 8.4 55.0

G 86.0 99.0 2.5 5.8 16.1 26.4

N 57.2 85.0 10.3 18.6 3.4 4.2

0.75 C 0.7 4.2 75.9 98.0 34.6 78.4

G 89.8 100.0 1.0 5.4 13.9 30.6

N 60.2 94.8 2.8 15.0 1.8 5.0

is substantially higher than at in the case of two-side ties, a
result of less information loss in the former.

4. REAL DATA EXAMPLES

4.1 Hypertension and obesity

For the aforementioned CHNS data, we consider all of the
three pairs: (SBP, BMI), (DBP, BMI), and (DBP, SBP). As
shown in Figure 1, many ties are present in the data. Out
of the 1,214 observations, DBP and SBP have only 43 and
63 unique values, respectively. Ties are much fewer in BMI,
with 911 unique values. So the (SBP, BMI) and (DBP, SBP)
pairs have a large number of ties in one margin, while the
(SBP, DBP) pair has both margins with heavy ties. For
each pair, we fitted four one-parameter copulas (Clayton,
Gumbel, normal, and Frank) parameterized by Kendall’s τ ,
estimated the standard errors of the parameter estimates,
and checked goodness-of-fit using the proposed methods in
Section 2. The tie-preserving bootstrap procedure was run
with B = 10000. Results from the midrank method and itau
method were also obtained for comparison.

Table 4 summarizes the estimation and goodness-of-fit
results from the three methods. All methods give very sim-
ilar results. At level 5%, only the normal copula passes the
goodness-of-fit test for the (DBP, BMI) pair, with p-values
well around or above 15%. While the p-value from itau

method is obviously larger than the results from the other
two methods. The point estimates from the midrank method
are very close to those from the censoring method in all cases
for the (SBP, BMI) pair and the (DBP, BMI) pair. This is
not surprising as our simulation study suggests more visi-
ble bias of the midrank method for higher τ . The bootstrap
standard errors from the two methods are also similar, with
those from the censoring method more likely to be slightly
higher. The point estimates and the corresponding standard
errors from the itau method are obviously different from
those from the other two methods in all the case. This is
expected since from our simulation studies the itau method
gives more visible bias for moderate dependence level. As for
the (SBP, DBP) pair, since the dependence level is higher,
the estimates of τ from the censoring method are higher than
those from the midrank method and are much lower than
the empirical Kendall’s τ . This is consistent with the results
in the simulation studies: the itau method tends to overes-
timate while the midrank method tends to underestimate
τ when the dependence is strong. The bootstrap standard
errors from the censoring method are slightly larger than
those from the other two methods.

4.2 Stock prices

Consider the closing prices of two SMI constituents,
Swatch Group (UHR) and Cie Financiere Richemont
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Table 4. Estimate (τ̂n) of τ and standard errors (se) obtained from three methods (midrank, itau, censoring) for three pairs
(SBP, BMI), (DBP, BMI), and (DBP, SBP) from the CHNS data fitted to four copulas, along with the p-values of the
goodness-of-fit (GoF) test. The standard errors are in parentheses. Standard errors and p values are computed by taking

average over B = 10000 replicates. All values reported are in percentage.

Clayton Gumbel Normal Frank

Method τ̂n (se) GoF τ̂n (se) GoF τ̂n (se) GoF τ̂n (se) GoF

Pair #1: (SBP, BMI)

Percentage of unique values: (5.2, 75.0); empirical τ : 32.2

midrank 26.9 (1.66) 0.02 25.9 (1.82) 0.00 30.2 (1.62) 0.04 30.8 (1.69) 0.00

itau 32.2 (1.89) 1.72 32.2 (1.88) 0.00 32.2 (1.79) 0.02 32.2 (1.76) 0.03

censoring 27.0 (1.69) 0.04 25.9 (1.83) 0.00 30.2 (1.66) 0.04 31.0 (1.70) 0.04

Pair #2: (DBP, BMI)

Percentage of unique values: (3.5, 75.0); empirical τ : 32.8

midrank 26.2 (1.62) 0.00 27.1 (1.81) 0.00 30.6 (1.63) 15.59 31.4 (1.70) 3.57

itau 32.8 (1.90) 0.00 32.8 (1.95) 0.00 32.8 (1.80) 33.97 32.8 (1.75) 2.40

censoring 26.3 (1.70) 0.00 27.2 (1.84) 0.00 30.6 (1.67) 15.76 31.7 (1.71) 3.15

Pair #3: (DBP, SBP)

Percentage of unique values: (3.5, 5.2); empirical τ : 61.6

midrank 48.0 (1.33) 0.00 53.5 (1.35) 0.00 56.1 (1.14) 0.00 55.8 (1.14) 0.00

itau 61.6 (1.34) 0.00 61.6 (1.29) 0.00 61.6 (1.19) 0.59 61.6 (1.12) 0.00

censoring 51.0 (1.49) 0.00 54.4 (1.43) 0.00 57.0 (1.22) 0.00 57.7 (1.26) 0.00

(CFR), from 2011-09-09 to 2012-03-28. The prices of the
two stocks are highly correlated. The data are available from
the R package copula (Hofert et al., 2016). The 141 daily
observations contained a few ties in both margins, with 135
unique values in UHR and 130 unique values in CFR. For
illustration purpose, we introduced artificial ties to the orig-
inal data to see how different methods perform in response.
Ties were introduced by rounding, which could happen in
many financial applications (Frees and Valdez, 1998). Two
rounding mechanisms were used: rounding on the log scale
of original data to the second decimal place or rounding the
pseudo-observations of the original data to the first decimal
place. Rounding was conducted in the first margin or both
margins of pair for different ties scenarios. Compared with
the single margin rounding, rounding data in both margins
will cause more severe problem, as is shown in the following
Figure 4. We repeated the same estimation and goodness-
of-fit test in each scenario as we do in above Section 4.1.
The tie-preserving bootstrap procedure was also run with
B = 10000.

Table 5 summarizes the estimation and goodness-of-fit re-
sults from the three methods with four one-parameter copu-
las (Clayton, Gumbel, normal and Frank) under the different
rounding mechanisms.

Firstly, for the point estimations of Kendall’s τ from three
methods, we do not see many differences in most cases ex-
cept the cases when Clayton copula is fitted to the pair.
For the Clayton copula, the estimate τ̂ from itau method is
obviously larger than those from other methods under each
of the five severity levels of ties. While for the midrank and

censoring method, the results are still similar. Another thing
we should note is that as the severity of ties increases, the
empirical Kendall’s τ or estimate from itau method has a
noticeable increasing trend. The mixed randomization strat-
egy of Pappadà, Durante and Salvadori (2016) would there-
fore introduce distortion to the dependence structure of the
original data. In contrast, the τ̂s from the midrank and cen-
soring methods remain stable regardless of the severity level
of ties. Then as for the estimated standard error, we do not
see much significant difference between the results from the
midrank and censoring methods. While compared to the re-
sults from above two methods, the estimated standard errors
from itau method are much smaller in most cases except for
the case when Gumbel, Normal and Frank copulas are fit-
ted to the original pair in which there is very few ties. As
the severity of ties increases, we see a noticeable decreas-
ing trend in the estimated standard errors from the itau
method, while the results from other two methods are sta-
ble to the changes of severity of ties. Finally, with respect to
the goodness-of-fit test, the Clayton, Normal and Frank cop-
ulas are rejected at 5% level regardless of the severity of ties.
While for the Gumbel copula, we get different conclusions.
When fitted to the original pair, the Gumbel copula is re-
jected. Nonetheless, as ties are introduced to the pair, the p
values from midrank method lead to the conclusion that the
Gumbel copula cannot be rejected, with the p value chang-
ing from 1.88% to 13.36% when rounding only the first mar-
gin of pair and from 1.88% to 7.58% in the cases that both
margins are rounded. The above results are consistent with
the results in the simulation studies: the censoring method
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Figure 4. Pseudo-observations of the stock prices of (UHR, CRR) under different rounding mechanism.
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Table 5. Estimate (τ̂n) of τ and standard errors (se) obtained from three methods (midrank, itau, censoring) for the closing
prices of (UHR, CFR) fitted to four copulas, along with the p-values of the goodness-of-fit tests, under different rounding

mechanisms, including rounding first margin or both margins and combined with rounding log scale and pseudo-observation.
The standard errors are in parentheses. Standard errors and p values are computed by taking average over B = 10000

replicates. All values reported are in percentage.

Clayton Gumbel Normal Frank

Method τ̂n (se) GoF τ̂n (se) GoF τ̂n (se) GoF τ̂n (se) GoF

Original data

Percentage of unique values: (95.7, 92.2); empirical τ : 84.9

midrank 71.9 (2.77) 0.00 85.2 (1.53) 1.88 83.2 (1.49) 0.03 83.9 (1.33) 0.00

itau 84.9 (1.82) 0.00 84.9 (1.67) 0.75 84.9 (1.48) 0.00 84.9 (1.26) 0.00

censoring 71.9 (2.80) 0.00 85.2 (1.54) 1.93 83.2 (1.51) 0.05 83.9 (1.32) 0.00

Round first margin

Round log scale of pair to digit 2; percentage of unique values: (23.4, 92.2); empirical τ : 86.0

midrank 71.9 (2.72) 0.00 84.8 (1.55) 6.52 83.4 (1.48) 0.09 83.9 (1.32) 0.00

itau 86.0 (1.71) 0.00 86.0 (1.52) 0.89 86.0 (1.37) 0.02 86.0 (1.18) 0.00

censoring 72.4 (2.73) 0.00 85.5 (1.52) 3.59 83.5 (1.50) 0.07 84.0 (1.38) 0.00

Round pobs of pair to digit 1; percentage of unique values: (7.8, 92.2); empirical τ : 85.6

midrank 69.2 (2.74) 0.00 81.6 (1.74) 13.36 81.5 (1.57) 0.15 82.3 (1.46) 0.03

itau 85.6 (1.67) 0.00 85.6 (1.52) 0.74 85.6 (1.38) 0.00 85.6 (1.19) 0.00

censoring 73.9 (2.76) 0.00 84.3 (1.73) 2.81 82.8 (1.63) 0.15 83.0 (1.56) 0.03

Round both margins

Round log scale of pair to digit 2; percentage of unique values: (23.4, 24.1); empirical τ : 86.9

midrank 72.0 (2.66) 0.00 84.7 (1.51) 8.71 83.0 (1.50) 0.11 83.6 (1.31) 0.01

itau 86.9 (1.60) 0.00 86.9 (1.45) 0.56 86.9 (1.29) 0.03 86.9 (1.12) 0.01

censoring 73.3 (2.70) 0.00 85.4 (1.53) 4.42 83.4 (1.50) 0.10 83.9 (1.47) 0.00

Round pobs of pair to digit 1; percentage of unique values: (7.8, 7.8); empirical τ : 88.0

midrank 72.7 (3.12) 0.00 82.5 (1.98) 7.58 81.5 (1.66) 0.17 82.1 (1.53) 0.04

itau 88.0 (1.45) 0.00 88.0 (1.32) 0.38 88.0 (1.21) 0.00 88.0 (1.05) 0.00

censoring 77.3 (2.59) 0.00 84.5 (1.79) 2.62 83.6 (1.71) 0.10 83.4 (1.56) 0.03

is more stable than the other two methods with respect to
handling ties.

5. DISCUSSION

The interval censoring method to handle ties does not
distort the features of the observed data. This is in con-
trast to the midrank method, the independence random-
ization method (Kojadinovic and Yan, 2010), or the co-
monotone/mixed randomization method (Pappadà, Du-
rante and Salvadori 2016). Consequently, it does not have
the bias that other approaches may have introduced, es-
pecially when the dependence is strong. When the depen-
dence is weak, although the point estimates from the cen-
soring method may not be very different from those from
the midrank method, the small difference might still prop-
agate to a noticeable impact when estimation is repeti-
tively needed as in the case of parametric bootstrap pro-
cedures.

Our study provides a proof of concept of the interval
censoring method to handle ties in the bivariate case. Ex-
tending it to higher dimensional cases is straightforward in
principle, but the implementation may not be trivial as it
requires higher-order cross partial derivatives of the distri-
bution function of the copula. The limiting distribution of
the MPLE under interval censoring is a challenging problem
because the interval censored data used in the estimation
are pseudo-observations resulting from the probability in-
tegral transformation with marginal empirical distribution
functions, instead of the real observations. Establishing the
asymptotic properties of the MPLE from interval-censored
pseudo-observations like Genest, Ghoudi and Rivest (1995)
did for the case of no ties would be of interest.

The tie-preserving parametric bootstrap procedure pro-
vides valid finite sample inferences for the estimator from
the interval censoring method. The procedure has been
applied to several inference problems for copula modeling
for data with ties in Kojadinovic (2017), such as tests for
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Table A.1. Empirical coverage rate of the 95% bootstrap confidence intervals of the censoring method and the midrank
method for three copula families from 1,000 replicates. Kendall’s τ ∈ {0.5, 0.6, . . . , 0.9} The bootstrap sample size was

B = 1000. The values in the parentheses are the average width of the confidence intervals from 1000 replications.

Clayton Gumbel Normal

n τ Censoring Midrank Censoring Midrank Censoring Midrank

50 0.5 95.9 (0.26) 98.6 (0.25) 93.1 (0.27) 94.8 (0.26) 91.5 (0.25) 92.2 (0.24)

0.6 95.9 (0.24) 96.5 (0.22) 95.0 (0.23) 98.1 (0.23) 92.8 (0.21) 95.5 (0.20)

0.7 95.6 (0.20) 81.0 (0.19) 96.0 (0.19) 96.8 (0.18) 96.7 (0.17) 97.7 (0.16)

0.8 93.7 (0.16) 3.7 (0.16) 96.8 (0.14) 78.9 (0.14) 97.4 (0.13) 89.4 (0.12)

0.9 88.0 (0.11) 0.0 (0.12) 90.8 (0.09) 0.0 (0.10) 87.1 (0.09) 0.0 (0.08)

100 0.5 96.7 (0.19) 98.2 (0.18) 92.8 (0.19) 96.4 (0.19) 90.9 (0.18) 90.4 (0.17)

0.6 96.0 (0.17) 90.1 (0.16) 95.4 (0.17) 97.4 (0.16) 93.7 (0.15) 96.0 (0.14)

0.7 95.7 (0.14) 38.9 (0.13) 94.6 (0.13) 93.4 (0.13) 95.8 (0.12) 97.0 (0.11)

0.8 93.1 (0.11) 0.0 (0.11) 94.7 (0.10) 33.0 (0.10) 97.3 (0.09) 75.9 (0.08)

0.9 85.5 (0.07) 0.0 (0.08) 89.5 (0.06) 0.0 (0.06) 84.9 (0.06) 0.0 (0.06)

200 0.5 94.7 (0.14) 92.8 (0.13) 94.4 (0.14) 96.8 (0.14) 93.0 (0.13) 93.0 (0.12)

0.6 95.2 (0.12) 64.9 (0.11) 93.9 (0.12) 93.6 (0.12) 94.3 (0.11) 96.2 (0.10)

0.7 95.0 (0.10) 1.6 (0.09) 95.3 (0.09) 79.0 (0.09) 95.7 (0.08) 93.8 (0.08)

0.8 93.8 (0.07) 0.0 (0.08) 95.4 (0.07) 1.6 (0.07) 95.3 (0.06) 36.0 (0.06)

0.9 90.6 (0.04) 0.0 (0.06) 90.0 (0.04) 0.0 (0.05) 87.2 (0.04) 0.0 (0.04)

Table A.2. Empirical coverage rate of the 95% bootstrap confidence intervals of the censoring method and the midrank
method for three copula families from 1,000 replicates. Two conditions are considered: the original pair does not contain any
ties and the first margin of original pair has many ties. Nonparametric bootstrap with replacement is used. The bootstrap

sample size was B = 200. The values in the parentheses are the average width of the confidence intervals from 1000
replications.

Clayton Gumbel Normal

n τ Censoring Midrank Censoring Midrank Censoring Midrank

Original pair does not contain any ties

50 0.25 92.0 (0.328) 91.8 (0.330) 93.5 (0.334) 93.5 (0.335) 92.5 (0.343) 92.3 (0.343)

0.5 93.6 (0.272) 94.2 (0.277) 95.0 (0.280) 95.1 (0.282) 90.9 (0.248) 91.0 (0.249)

0.75 95.9 (0.193) 96.9 (0.204) 96.4 (0.178) 96.7 (0.183) 95.7 (0.155) 96.1 (0.157)

100 0.25 92.4 (0.223) 92.4 (0.224) 94.1 (0.242) 94.1 (0.242) 92.5 (0.232) 92.5 (0.232)

0.5 95.5 (0.190) 95.7 (0.192) 93.4 (0.195) 93.6 (0.196) 91.9 (0.173) 91.9 (0.174)

0.75 94.7 (0.128) 95.4 (0.133) 94.1 (0.119) 94.3 (0.121) 93.9 (0.102) 94.1 (0.103)

200 0.25 93.4 (0.155) 93.4 (0.155) 95.2 (0.171) 95.2 (0.172) 94.0 (0.162) 94.2 (0.162)

0.5 94.8 (0.134) 94.8 (0.134) 93.7 (0.138) 93.7 (0.138) 91.8 (0.121) 91.8 (0.121)

0.75 93.4 (0.085) 94.3 (0.087) 92.8 (0.080) 93.2 (0.081) 94.6 (0.070) 94.8 (0.070)

First margin of original pair is rounded to the first digit

50 0.25 90.5 (0.335) 90.3 (0.330) 94.8 (0.336) 95.0 (0.333) 91.9 (0.346) 91.6 (0.346)

0.5 93.7 (0.273) 94.2 (0.253) 93.7 (0.281) 94.2 (0.273) 93.0 (0.252) 93.5 (0.247)

0.75 96.4 (0.191) 83.9 (0.164) 95.4 (0.180) 95.1 (0.167) 95.1 (0.157) 95.4 (0.149)

100 0.25 91.5 (0.225) 91.3 (0.220) 91.6 (0.244) 91.8 (0.242) 94.0 (0.237) 93.5 (0.237)

0.5 93.7 (0.190) 93.6 (0.172) 92.1 (0.195) 93.0 (0.188) 92.1 (0.175) 92.5 (0.171)

0.75 95.0 (0.127) 53.3 (0.102) 93.7 (0.119) 90.8 (0.107) 94.2 (0.106) 93.6 (0.099)

200 0.25 92.1 (0.157) 92.3 (0.152) 92.3 (0.172) 92.4 (0.170) 92.5 (0.163) 91.6 (0.164)

0.5 94.7 (0.135) 93.2 (0.120) 94.3 (0.139) 94.7 (0.132) 93.5 (0.123) 93.4 (0.121)

0.75 94.1 (0.088) 8.1 (0.067) 94.2 (0.082) 76.8 (0.072) 94.7 (0.072) 88.1 (0.067)

exchangeability, extreme-value dependence, radial symme-
try, and goodness-of-fit. Most of these tests require non-
parametric estimation of copula in the presence of ties,
which has been done with the midrank method. Develop-

ment of nonparametric copula estimation in the presence
of ties with interval censored pseudo-observations may lead
to more efficient test procedures when the dependence is
strong.
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APPENDIX A

A.1 Additional simulation studies for
interval estimation

Based on the conclusions from point estimation, we re-
peat the numerical studies in Table 1 with choices of mod-
erate to high levels of dependence, in order to show more
clearly the differences between our proposed censoring ap-
proach and the midrank rank method. The results are pre-
sented in the following Table A.1. The Kendall’s τ are
τ ∈ {0.5, 0.6, . . . , 0.9} and ties are still introduced by round-
ing the first margin to the first digit.

From the results, we can see that in most cases, the cov-
erage rate from our proposed method is much closer to the
nominal level 95% with compatible length of interval. As the
Kendall’s τ increases, the empirical coverage rate from both
approaches tends to decrease and diverge from the nominal
level. But the proposed censoring method is much less af-
fected by the dependence level than the midrank method.
In the extreme cases like the τ = 0.9, the coverage rate from
midrank method goes down to 0%. Moreover, as the sam-
ple size increases, which means the severity of ties becomes
stronger, our proposed method is almost not affected by the
ties, but the performance of midrank method becomes worse
with the percentage of ties increasing.

A.2 Nonparametric bootstrap with the
censoring method

Our censoring method makes the nonparametric boot-
strap work better in constructing confidence intervals for
data with or without ties. We repeated the simulation stud-
ies in Table 1 with the nonparametric bootstrap procedure
under two conditions: the original pair has no ties and the
first margin of original pair has many ties.

Table A.2 reports the results where original data have
no ties and the first margin of original pair is rounded to
the first digit. For the case of no ties in original pair, the
confidence intervals from both the midrank and the censor-
ing methods give coverage close to the nominal level. While
for the condition where ties are present in one margin, we
see similar observations as reported in paragraph 2, Sec-
tion 3.2: the censoring method still performs well, while
the coverage rates from midrank method are much lower
than the nominal level in many cases. From the additional
simulation studies, we can actually conclude that the cen-
soring method performs better and makes nonparametric
bootstrap work.
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231- 249. MR3288246

Nikoloulopoulos, A. K. and Karlis, D. (2009). Modeling Multi-
variate Count Data Using Copulas. Communications in Statistics:
Simulation and Computation 39 172–187. MR2784560
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marges. Paris: Publications de l’Institut de Statistique de l’Uni-
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