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High throughput biological assays have provided numer-
ous data sources for studying complex interactions between
multiple variables in a biological system. Many computa-
tional tools for exploring the voluminous biological data are
based on pair-wise correlation between variables. Liquid As-
sociation (LA) is a novel statistical concept for inferring
higher order of association between variables in a system.
While LA was originally introduced to study gene-gene in-
teraction involving three genes at a time, it can be applied
for correlating biological measurements with clinical vari-
ables such as drug sensitivity profiling and patient survival
time. It is computationally expensive to compute LA scores
for all possible triplets in very large datasets. Here we show
how to take advantage of Graphic Processing Units (GPUs)
for speeding up the LA computing. Our GPU-accelerated
version of LA computation (GALA) achieved nearly 200-
fold improvement over the traditional CPU-alone version.
A companion package in R was developed for facilitating
follow-up analysis and improving user experience. An ex-
ample on Global Health Observatory data is provided to
showcase how LA analysis can be applied in other data in-
tensive fields.

Keywords and phrases: Liquid Association, Correlation
coefficient, GPU, Gene expression.

1. INTRODUCTION

Correlation is a simple yet powerful concept in analyzing
gene expression data. Two genes with positively correlated
expression profiles are likely to be functionally associated
and they may participate in the same or related biologi-
cal process. However, functionally associated genes may not
have correlation in expression. For instance, they may not
be regulated at the transcription level and they have multi-
ple functions. Co-expressed genes may become uncorrelated
or even turn into contra-expressed when the underlying cel-
lular state changes. Liquid association (LA), as opposed to
“steady” association, is designed to quantify the size and the
direction of the change of correlation between two genes. LA
describes the ternary relationship between variables in a sys-
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tem [6, 8, 7, 16, 13, 14]. In gene expression study, the total
computing complexity of LA is O(n3) where n is the number
of the genes. For integrated studies, it is time-consuming to
compute all possible combinations from whole genome gene
expression, SNP, or copy number variation data. To mitigate
this problem, we developed a program via Compute Unified
Device Architecture (CUDA) language for Graphic Process-
ing Unit (GPU) platforms to accelerate the performance of
LA score computation. A 200 times speed-up over the CPU
version was obtained. A companion R package was also de-
veloped. The users can use it for visualizing the correlation
changes and for conducting further analyses. We expect LA
to have wide application in the big data era other than bioin-
formatics. An example concerning government expenditure
and health outcome indicators is provided.

2. METHOD

2.1 Liquid Association

In the context of gene expression, LA conceptualizes the
mediation of the change in the co-expression pattern of two
genes (X,Y ) by a third gene Z. A positive LA score indi-
cates that the correlation between gene X and gene Y is
likely to change from being negative to positive. Conversely,
a negative LA score indicates the change from positive to
negative correlation. The standard procedure to obtain LA
score LA(X,Y |Z) requires two steps [6]:

1. Normal score transformation. To standardize each gene-
expression profile with normal score transformation,
the m values in the profile are compared with each
other and their ranks R1, ..., Rm are recorded. The
ranks are then used to obtain the transformed profile,
Φ−1(R1/(m+ 1)),Φ−1(R2/(m+ 1)), ...,Φ−1(Rm/(m+
1)), where Φ(.) is the cumulative normal distribu-
tion.

2. LA score computation. Compute the average prod-
uct of the three transformed profiles, (X1Y1Z1 +
. . . + XmYmZm)/m. This gives the LA score
LA(X,Y |Z).

It is computer intensive to obtain LA scores because the
number of combinations in choosing three from N genes or
probes under study grows rapidly as N increases. It is typi-
cal for N to exceed 50K in commercial human gene expres-
sion chips and the number gets 10 times higher in SNP,
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DNA copy number, or methylation arrays. To improve user
experience, we also compare the computed LA scores and
save the top positive LA scores and bottom negative LA
scores. This helps speed up the response time for on-line
queries.

2.2 GPU Accelerated Liquid Association

GPUs were first introduced to accelerate computing
speeds in computer graphics. General Purpose Computing
on GPU (GPGPU) is a technique of using GPUs, which gen-
erally requires a set of stream processors and a hierarchical
memory structure, to execute the computing tasks in paral-
lel. We chose the popular CUDA language for reprograming
the LA computation. The speeds of GALA running on two
different GPUs will be compared to the C version running
on the CPU machine in this article.

Since GPU executes in SIMT (Single Instruction Mul-
tiple Thread) mode, we must design the instruction set
for each thread, the GPU kernel function, to perform LA
computation for the three normal-score transformed pro-
files. In general, an optimized GPU kernel function con-
sists of several steps such as utilization of shared memory
for computation, effective usage of global memory band-
width, efficient coordination of multiple threads. Our kernel
function was constructed with these performance consider-
ations.

Shared memory is the key to the reduction of global
memory traffic. In order to fully utilize the shared mem-
ory, GALA partitions data into subsets so that each sub-
set matches the size of shared memory. Coordinated by
the GPU scheduler, the GPU processing elements execute
a fixed number of the threads at a time and within the
grouped threads, warp, the executed instructions must be
the same at any time point. Because the size of the warp
is limited, we constructed our GPU kernel function to tai-
lor the dimensions of the matrices of the three transformed
profiles declared in the shared memory. As GPU transfers
data by moving one block of consecutive memory bits at
a time, our input data are arranged with the memory coa-
lescing technique to minimize the transfer counts. The GPU
scheduler also determines when and which warp to be exe-
cuted or placed on hold. A barrier synchronization function
is employed to coordinate the parallel activities of multiple
warps, thus enabling the more efficient parallel execution of
threads (Algorithm 1).

Initially, GALA dynamically declares the feasible num-
ber of threads according to the size of input. When the
input is too large to be computed, GALA will split the
input into smaller pieces so that each of them fits in the
allowable number of threads for the kernel function. In ad-
dition, if the input size is too small, GALA will launch
the kernel function with an adjusted number of threads
to prevent the kernel function from running the extra
threads.

Algorithm 1: The kernel function of GALA

kernelOfGALA (X,Y, Z)

inputs : X and Y ∈ �k×m, Z ∈ �v×m

output: LA(X,Y, Z) ∈ �k×k×v

foreach t ∈ v do
foreach i ∈ m by Block Size do

shared xi ← X[Block Size][Block Size];

shared yi ← Y [Block Size][Block Size];

shared zt,i ← Zt[Block Size];

syncthreads();

LA(X,Y |Zt) ← LA(X,Y |Zt)+LA(xi, yi|zt,i);
syncthreads();

return LA(X,Y, Z);

Figure 1. The flowchart of GALA. The normal score
transformation and sorting of computed LA scores are

performed by CPU as shown on the left panel. Computation
of LA scores, the most time-consuming part, is executed by

GPU as shown on the right panel.

The output of the kernel function is an array identifier
and the LA scores with allocated consecutively in the global
memory. Once the kernel function was executed, GALA will
perform a modified version of Quick Sort. This sorting func-
tion is used to sort the outputs from the kernel function and
to filter LA scores according to the parameters of the pref-
erence file. Iterations between the kernel function and the
sorting function will be continued until all LA scores are
computed (Figure 1).
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Table 1. Seven Gene Expression Datasets

ID Sources

S1, S2 NCI-60 cancer cell line [10].
S3 Lung adenocarcinoma [11].
S4 High-grade lung neuroendocrine tumors of the lung [4].
S5 Various human and mouse tissues [12].
S6 Frozen tissue of primary lung tumors [1].
S7 Normal human tissues from selected samples [9].

2.3 Performance

We demonstrated the improvement of GALA over the
original LA program with seven public available gene expres-
sion datasets as Table 1 shows. We used two different types
of GPU cards to implement GALA, Tesla M2050 which con-
tains 448 sets of 1.3 GHz processors with 3 GB dedicated
memory and Tesla M2090 which contains 512 sets of 1.3
GHz processors with 6 GB dedicated memory. On the other
hand, the CPU version of LA is performed on an Intel Core
i7 965 model with the clock-speed at 3.2 GHz and 6 GB
main memory. Comparing the cost of three devices, at this
writing, the CPU was around $998, and the GPU cards were
$149 for M2050 and $165 for M2090. (April 25, 2019 https://
www.amazon.com/)

Since the loading ratio between the LA-score computa-
tion and LA-score sorting was around 10:1, the speed com-
parison for GALA would be focused on the LA-score com-
putation only. We used the most time-demanding on-line
query, i.e. finding the top LA scores of (X,Y |Z) over all
possible pairs of (X,Y ) from an input of Z, as the sub-
mitted job and recorded the elapsed time of computing
in each of the aforementioned test datasets. In addition,
the elapsed time also involved the data transportation be-
tween the main memory and the global memory. In Table 2,
the time listed under Tesla M2050 and Tesla M2090 is the
elapsed time for GPU kernel function. For fair comparison,
the column under CPU, only recorded the time on comput-
ing LA scores. We found that GALA outperformed CPU
version and the improvement generally ranged from 40-fold
to 190-fold. Moreover, the result shows that our implementa-
tion takes full advantage of GPU card upgrade. Compared
to Tesla M2050, Tesla M2090 has 64 more computational

Figure 2. Complexity versus Elapsed Time. The x-axis is the
log(Complexity) and y-axis is the log(Elapsed Time) in log

scale.

cores and 17% higher memory bandwidth. Our implemen-
tation had better performance on Tesla M2090 than that on
Tesla M2050 with a 17% speedup in average. In Figure 2, the
strong linear relationship was also observed between elapsed
time and complexity. The relationship signals that GALA
have the same performance regardless of the complexity of
data.

2.4 LA Package in R

For encouraging the routine use of LA analysis, we also
developed LA package in R to calculate LA scores and draw
LA plots for further inspection of correlation patterns. We
may select one triplet from the outcomes of GALA, and
employ drawla to exam the relationship among three vari-
ables. The package contains drawla function and a dataset
for the demonstration of LA. drawla has the following ar-
guments:

drawla(x, y, z, ename, xyzLabels, switch = 2,...)

Three vectors X, Y, and Z are taken as input variables, and
the order is also arranged as LA(X,Y |Z). We can change
the order of three vectors to observe the changes of LA
plots such as LA(Y, Z|X) or LA(X,Z|Y ). drawla aids the

Table 2. LA Computation Performance Comparison

Dataset M2090(sec.) M2050(sec.) CPU(sec.) Complexity(log) Subjects Genes

S1 0.66 0.79 31 9.75 60 9,706

S2 1.24 1.42 93.01 9.97 59 12,625

S3 8.5 10.5 1049 10.95 179 22,215

S4 14.3 17.52 1774 11.17 91 40,368

S5 13.74 16.33 1566.11 11.21 143 33,689

S6 25.29 28.57 2182.37 11.51 111 54,683

S7 70.61 89.59 13695.81 12.15 473 54,675

The column, Complexity, is defined as the number of subjects multiplied by the square of the number of genes in log scale.
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Algorithm 2: Finding cut points of LA

findCutsOfLA (X,Y, Z)
inputs : X,Y, Z ∈ �1×m

output: cut1, cut2 ∈ �1×1

Sort {X,Y, Z} by Z
foreach Try cut1 ∈ {1, cut2} do

b ← cov(Y1:cut1 , X1:cut1)/σ
2
X1:cut1

;

a ← Ȳ1:cut1 − bX̄1:cut1 ;

RSS1 ← (Y1:cut1 − a− bX1:cut1)
2;

foreach cut2 ∈ {cut1 + 1, n} do
RSS2 ← (Ycut1+1:cut2−1 − Ȳcut1+1:cut2−1)

2;

c ← cov(Ycut2:n, Xcut2:n)/σ
2
Xcut2:n

;

d ← Ȳcut2:n − bX̄cut2:n;

RSS3 ← (Ycut2:n − c− dXcut2:n)
2;

RSS ← RSS1 +RSS2 +RSS3;

l ← −m
2
log(2πRSS) + 1

2
(m− 1);

If Max(l) return cut1, cut2;

visualization of correlation between X and Y given differ-
ent status of Z, where Z are split into three status (low,
median, high). Cut points used to split Z were optimized
by Algorithm 2, which maximizes log-likelihood function
l(μ, σ2;X∗, Y ∗)

RSS =

cut1∑

i=1

(Y ∗
i − α̂0 − α̂X∗

i )
2

+

cut2−1∑

i=cut1+1

(Y ∗
i − β̂0)

2

+

n∑

i=cut2

(Y ∗
i − γ̂0 − γ̂X∗

i )
2

(1)

cut1∑

i=1

(Y ∗
i − α̂0 − α̂X∗

i )
2 = σ2

Y ∗
1:cut1

(1− ρ(Y ∗
1:cut1 , X

∗
1:cut1))

(2)

cut2−1∑

i=cut1+1

(Y ∗
i − β̂0)

2 =

cut2−1∑

i=cut1+1

(Y ∗
i − Ȳcut1+1:cut2−1)

2(3)

n∑

i=cut2

(Y ∗
i − γ̂0 − γ̂X∗

i )
2 = σ2

Y ∗
cut2:n

(1− ρ(Y ∗
cut2:n, X

∗
cut2:n)),

(4)

where (X∗, Y ∗) denotes (X,Y ) sorted by Z, and ρ is the
function of correlation coefficient.

3. APPLICATION

This example concerns the cross-nation comparison
of public health expenditure and efficiency using the

Figure 3. LA plot for (FD75, FMR, GGE). The correlation
between FD75 and FMR is shown to change from negative to
positive between low GGE nations and high GGE nations.

Global Health Observatory (GHO) data released by [15].
Cost/efficiency evaluation between different health care sys-
tems in different nations is a complicate issue requiring deep
analysis from many perspectives and by different models
[2, 5, 3]. The GHO data website is WHO’s gateway to health-
related statistics in its 194 Member States. There are over
a thousand indicators including overall health status indica-
tors, the indicators for the specific health and health-related
targets of the Sustainable Development Goals. We down-
loaded the Year 2012 data, containing 306 female-related
indicators, 306 male-related indicators and 379 gender-
irrelevant indicators. One of our key findings (Figure 3) is
the triplet, X= “Number of people (females) dying between
ages 75 and 791” (FD75), Y = “Age-standardized (female)
mortality rate by all causes” (FMR) Z = “General govern-
ment expenditure on health as a percentage of total govern-
ment expenditure” (GGE) as shown in Figure 3.

The correlation between FD75 and FMR is shown to
change from negative for nations with lower GGE to positive
for nations with higher GGE. This triplet showed the highest
LA score when we set Z = GGE to explore the association
between the set (as Y) of 131 indicators of age-standardized
female mortality rates by different causes and the set (as
X) of all 306 female-related indicators. Further investiga-
tion on how FMR correlates with female mortality rate for
other age intervals, showed an interesting dynamic pattern
of LA (Figure 4). Concerning the statistics in male popula-
tion, similar pattern is also observed for X = “Number of
people (males) dying between ages 70 and 75” (MD75), Y
= “Age-standardized (male) mortality rate by all causes”

1Number of people dying between the beginning of the age group x
and the beginning of the next age group x+ n, n being the interval of
the age group, given the hypothetical birth l0 = 100,000 [15].

122 G. Wu et al.



Figure 4. The changes of LA scores, where X axis is number of females dying between ages (x, x + 5),and Y axis is, FMR, the
age-standardized mortality rate by all causes.

Figure 5. LA plot for (MD70, MMR, GGE). The correlation
between MD70 and MMR is shown to change from negative
to positive between low GGE nations and high GGE nations.

(MMR), Z = GGE (Figure 5), and the corresponding dy-
namic pattern of LA is presented in Figure 6. The interval
shift from 75-79 to 70-75 may reflect that males typically
have shorter life span than women.

4. CONCLUSION

In this article, we demonstrate a hybrid CPU/GPU pro-
gram to obtain LA scores. The input data were arranged
in a certain order for the efficient access from GPUs, and
the configuration took the advantage of multiple cores of
GPUs to speed up the LA scores computation. We recorded
the elapsed time in testing eight real datasets, and com-
pared GALA with the original LA program. GALA was
much faster at executional speed regardless of the complex-
ity of data. The use of the companion R code for visualizing
the dynamic change of association between variable is il-
lustrated. Our package can be widely applied in analyzing
complex data from various scientific areas.
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Figure 6. The changes of LA scores, where X axis is number of males dying between ages (x, x + 5), and Y axis is,
Age-standardized (male) mortality rate by all causes.
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