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Bayesian kernel adaptive grouping learning
for multi-dimensional datasets∗

Xiaozhou Wang
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With the development of information technology, a large
number of datasets with complex structures, such as multi-
dimensional datasets, need to be processed and analyzed.
In this paper we propose a kernel-based statistical learn-
ing algorithm, Bayesian Kernel Adaptive Grouping Learn-
ing (BKAGL), to provide an innovative solution for the
classification problem of multi-dimensional datasets. BK-
AGL can integrate information from different dimensions
adaptively. Meanwhile, we adopt the Bayesian framework
which can infer the approximate posterior distributions of
parameters. The utilization of grouping features can help
find which groups of features have more contributions to
the response. Simulation results illustrate that BKAGL out-
performs some classical classification methods and the cor-
responding ungrouped method. The analysis of the elec-
trocardiogram (ECG) and electroencephalography (EEG)
datasets shows that BKAGL has the highest classification
accuracy and provides explanatory information.

AMS 2000 subject classifications: 62F15, 62H30.
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1. INTRODUCTION

One of the main purposes of machine learning is to infer
the relationship between the outcome Y and the variable X
so as to improve human awareness [1, 7, 16]. However, with
the explosive growth of the data, how to mine and integrate
the information from the data is a challenge to the learning
algorithms.

Support Vector Machine (SVM) [13] is a well-known ma-
chine learning method due to its excellent generalization
properties. The decision function which is used for predict-
ing the label y of one instance x can be written as

(1) f(x) = aTk(x) + e,
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where a = (a1, ..., aN )T is the sample weight, e is the bias,

k(x) = (k(x1,x), ..., k(xN ,x))
T

and the kernel function
k(xi,x) satisfies Mercer’s condition [10]. The parameters
in Eq. (1) can be obtained through a quadratic optimiza-
tion process [27]. Furthermore, the parameters can also be
optimized under a Bayesian framework [26], which is called
Relevance Vector Machine (RVM). The sample weight pa-
rameter a is viewed as a random vector. Both SVM and
RVM are kernel-based methods which have a lot of advan-
tages [14, 25]. Moreover, when we want to integrate data
from different sources, the multiple kernel learning algo-
rithm [12, 22, 24] is usually considered. For example, we
use multiple omics data, including the high-throughput ge-
nomic, epigenomic, and transcriptomic data, to predict a
person’s phenotypic response [29]. From the viewpoint of
data structure, multiple omics data correspond to multi-
ple dimensions. For the aim of integrating these multi-
dimensional data, multiple kernels can be used where each
kernel is a function of each dimension. Then multiple ker-
nels can integrate multi-dimensional data by a kernel-based
decision function as follows:

(2) f(x) = aT

Q∑
q=1

ρqkq(x) + e,

where Q is the number of kernels and also the number of di-
mensions, and ρ = (ρ1, ..., ρQ)

T is the kernel weight parame-

ter. For the q-th kernel, kq(x) = (kq(x1,x), ..., kq(xN ,x))
T
.

Through the estimation of kernel weight parameter, we can
obtain which dimensions contribute more to the response.
Moreover, for single omics data such as gene expression data,
a pathway contains a group of genes. There are different
pathways (groups) in gene expression data. If we want to de-
cipher the correlation between the pathways and response,
Eq. (2) can also be used through defining multiple kernels
based on different pathways. However, a mass of parame-
ters will need to be estimated. In this case, a novel model is
necessary to integrate information from different groups in
different dimensions. Naturally, the extension of Eq. (2) as
below can be utilized.

(3) f(x) = aT
D∑

d=1

cd

Pd∑
m=1

bmdkdm(x) + e,

where D is the number of dimensions and c = (c1, ..., cD)T
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Figure 1. Structures of the dataset x and kernel matrix set K.

is the dimension weight parameter. Pd is the group num-
ber of features in the d-th dimension and b is the two-
dimensional group weight parameter. For the m-th group in
the d-th dimension, kdm(x) = (kdm(x1,x), ..., kdm(xN ,x))

T

and kdm(xi,xj) is the kernel function of xi and xj for the
subjects i and j. Since the grouping result of each dimension
may be different, the group number Pd and the parameter
bmd are decided by the corresponding d-th dimension. As
shown in Eq. (3), we propose a model which extracts infor-
mation layer by layer. In particular, the proposed algorithm
is based on a Bayesian framework [19, 21] and uses an ap-
proximate inference process [6]. BKAGL can simultaneously
integrate information from different groups in different di-
mensions and then predict the outcome. At the same time,
it has good interpretation ability, which enables us to find
which dimensions and groups of features have higher contri-
butions to the outcome. This is our concern.

The rest of the paper is organized as follows: Section 2
firstly introduces the notations used in the paper, and then
explains the model. In Section 3, the process of parameter
estimation and the prediction for a new point are provided.
Section 4 examines the performance of our algorithm includ-
ing accuracy and interpretability by the simulation and the
experiment of the real ECG and EEG datasets. Conclusions
and some extensions for further work are given in Section 5.

2. THE FRAMEWORK

2.1 Notations

Suppose that there are N i.i.d. instances {(xi, yi) : i =
1, ..., N}. Each instance xi has D dimensions and each di-
mension is a vector with R(d) features. More precisely, xidr

represents the r-th feature of the d-th dimension of the i-th
instance. The response yi is the class label of the i-th in-
stance xi. Assume that all the features of each dimension
have been divided into different groups in a certain way. De-
note Pd as the number of the groups of features in the d-th
dimension. Define

• Kernel matrix set K = {Kdm : d = 1, ..., D,m =
1, ..., Pd}, where Kdm is a N ×N kernel matrix of the
m-th group of features in the d-th dimension. (Kdm)·i
is the i-th column of Kdm and (Kdm)j· is the j-th row
of Kdm.

• G = {Gd : d = 1, ..., D}, where Gd is a Pd ×N matrix.
Gd·i is the i-th column of Gd and Gdm· is the m-th row
of Gd.

• L is a D × N matrix. L·i is the i-th column of L and
Ld· is the d-th row of L.

• f is a vector with N elements. In fact, f is a latent
variable connecting the second layer L of intermediate
output and the class label vector y ofN instances. More
details about f are in Section 2.2.

Figure 1 shows the structures of dataset x and kernel matrix
set K in order to help understand the data structure.

2.2 Model

The main aim of BKAGL is to add the interpretability
of the model through grouping features and make the num-
ber of estimated parameters under control at the same time
compared with Eq. (2). The proposed BKAGL algorithm
extracts information from layer to layer. After getting the
kernel matrix set K through the input training set, we cal-
culate the first layer G of intermediate output by combining
different kernels for different groups in each dimension as

(4) Gd =

⎛⎜⎝ aTKd1

...
aTKdPd

⎞⎟⎠ , d = 1, ..., D.

After obtaining the first layer G of intermediate output, the
second layer L of intermediate output can be calculated.

(5) L =

⎛⎜⎝ bT·1G1

...
bT·DGD

⎞⎟⎠ ,
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Figure 2. Classification of multi-dimensional datasets with
BKAGL.

where b·d = (b1d, ..., bPdd)
T for d = 1, 2, ..., D. Then through

combining Eqs. (4) and (5), fi, i = 1, ..., N , takes the fol-
lowing form:

fi = cTL·i + e =

D∑
d=1

cdLdi + e

=

D∑
d=1

cdb
T
·dGd·i + e =

D∑
d=1

cd

Pd∑
m=1

bmdGdmi + e

=
D∑

d=1

cd

Pd∑
m=1

bmda
T(Kdm)·i + e

=

D∑
d=1

cd

Pd∑
m=1

bmd

N∑
j=1

aj(Kdm)ji + e

= aT
D∑

d=1

Pd∑
m=1

cdbmd(Kdm)·i + e � aTKi + e.

This formula indicates that the similarity measure Ki is a
linear combination of kernels defined in different groups in
different dimensions. Through learning the parameters b and
c, we can find the more informative groups and dimensions
for the response. The complete learning process is summa-
rized in Figure 2.

For computational convenience, conjugate prior distri-
butions [11] are applied in BKAGL. Denote all hyper-
parameters Ξ = {αλ, βλ, αη, βη, αγ , βγ , αω, βω} and the
prior set Θ = {λ,η,γ, ω}. Denote weight and bias parame-
ters by the set Λ = {a, b, c, e}, where vector a is the sample
weight parameter, two-dimensional parameter b is the group
weight parameter, vector c is the dimension weight param-
eter and e is the bias. Assume that the distributions of the
related random variables in our proposed model (Eq. (3))
satisfy the following assumption (A1).

Assumption (A1): Note that i = 1, ..., N , d = 1, ..., D and
m = 1, ..., Pd. For parameters in Θ:

λi ∼ Gamma(λi;αλ, βλ),

ηmd ∼ Gamma(ηmd;αη, βη),

γd ∼ Gamma(γd;αγ , βγ),

ω ∼ Gamma(ω;αω, βω).

For parameters in Λ:

ai|λi ∼ N (ai; 0, λ
−1
i ),

bmd|ηmd ∼ N (bmd; 0, η
−1
md),

cd|γd ∼ N (cd; 0, γ
−1
d ),

e|ω ∼ N (e; 0, ω−1).

For intermediate output variables:

Gdmi|a, (Kdm)·i ∼ N (Gdmi;a
T(Kdm)·i, 1),

Ldi|b·d,Gd·i ∼ N (Ldi; b
T
·dGd·i, 1).

For the latent variable and the class label:

fi|c, e,L·i ∼ N (fi; c
TL·i + e, 1),

yi|fi ∼ δ(fiyi > τ),

where τ is a given margin parameter relevant to the low
density area of the distribution [15], Gamma(·;α, β) denotes
the gamma distribution with the mean αβ and the variance
αβ2, N (·;μ,Σ) represents the normal distribution, and δ(·)
represents the Kronecker delta function that equals 1 if the
condition is satisfied and 0 otherwise. In the process of train-
ing the model, we can tune the hyper-parameters (αλ, βλ),
(αη, βη), and (αγ , βγ) to control the sparsity of the sample,
group and dimension weights, respectively.

3. INFERENCE

3.1 Inference using variational approximation

In this section, we apply variational approximation [6] to
the estimation of parameters. There are some advantages.
For instance, there are closed-form iterative formulas and
therefore the computational efficiency of variational approx-
imation is superior to that of Markov Chain Monte Carlo
(MCMC). Denote Φ = Λ ∪ {G,L,f}. The exact posterior
distribution is p(Θ,Φ|y,K) and has the factorable ensem-
ble approximation q(Θ,Φ) [5] as follows:

p(Θ,Φ|y,K) ≈ q(Θ,Φ) =q(λ)q(a)q(G)q(η)q(b)q(L)q(γ)

· q(ω)q(e, c)q(f).

This factored form of q(Θ,Φ) corresponds to mean field
theory [20]. Then, the log marginal likelihood function can
be calculated as

log p(y|K) =Eq(Θ,Φ)[log p(y|K)]

=

∫
q(Θ,Φ)

[
log

p(y,Θ,Φ|K)

q(Θ,Φ)

− log
p(Θ,Φ|y,K)

q(Θ,Φ)

]
dΘdΦ

=L(Θ,Φ) +KL(q‖p),
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where

L(Θ,Φ) �
∫

q(Θ,Φ) log
p(y,Θ,Φ|K)

q(Θ,Φ)
dΘdΦ

and

KL(q‖p) � −
∫

q(Θ,Φ) log
p(Θ,Φ|y,K)

q(Θ,Φ)
dΘdΦ.

Note that the Kullback-Leibler divergence KL(q‖p) ≥ 0,
therefore the log marginal likelihood function satisfies

log p(y|K) ≥ L(Θ,Φ) = Eq(Θ,Φ)[log p(y,Θ,Φ|K)]

− Eq(Θ,Φ)[log q(Θ,Φ)].

Afterwards optimize the lower bound L(Θ,Φ) of the log
marginal likelihood log p(y|K). That means we need to solve
an optimization problem as

argmax
Θ,Φ

L(Θ,Φ).

Then based on the calculus of variations [2], we know that
each factor of q(Θ,Φ) can be calculated from the following
formula:

(6) q(·) ∝ exp(Eq(Θ,Φ\·)[log p(y,Θ,Φ|K)]).

Under the conjugate assumptions, we can compute the ap-
proximate posterior distribution of each parameter. First
update the parameters in Θ and Λ, then the intermediate
output variables {G,L} and finally the class label vector y.
The results are shown in Proposition 1.

Proposition 1. Under the assumption (A1) and formula
6, the calculation results of the approximate posterior dis-
tributions are given below.

λ ∼
N∏
i=1

Gamma (λi;α(λ), β(λi)) ,

η ∼
D∏

d=1

Pd∏
m=1

Gamma (ηmd;α(η), β(ηmd)) ,

γ ∼
D∏

d=1

Gamma (γd;α(γ), β(γd)) ,

ω ∼ Gamma (ω;α(ω), β(ω)) ,

a ∼ N (a;μ(a),Σ(a)) ,

b ∼
D∏

d=1

N (b·d;μ(b·d),Σ(b·d)) ,(
e
c

)
∼ N

((
e
c

)
;μ(e, c),Σ(e, c)

)
,

G ∼
D∏

d=1

N∏
i=1

N (Gd·i;μ(Gd·i),Σ(Gd·i)) ,

L ∼
N∏
i=1

N (L·i;μ(L·i),Σ(L·i)) ,

f ∼
N∏
i=1

T N
(
fi; c̃TL̃·i + ẽ, 1, fiyi > τ

)
,

where

α(λ) = αλ +
1

2
, β(λi) =

(
β−1
λ +

ã2i
2

)−1

,

α(η) = αη +
1

2
, β(ηmd) =

(
β−1
η +

b̃2md

2

)−1

,

α(γ) = αγ +
1

2
, β(γd) =

(
β−1
γ +

c̃2d
2

)−1

,

α(ω) = αω +
1

2
, β(ω) =

(
β−1
ω +

ẽ2

2

)−1

,

μ(a) = Σ(a)

D∑
d=1

Pd∑
m=1

(Kdm)·· ˜GT
dm·,

Σ(a) =

(
diag(λ̃) +

D∑
d=1

Pd∑
m=1

(Kdm)··(Kdm)T··

)−1

,

μ(b·d) = Σ(b·d)G̃d··L̃T
d·,

Σ(b·d) =

(
diag (η̃·d) + ˜Gd··GT

d··

)−1

,

μ(e, c) = Σ(e, c)

(
1Tf̃

L̃f̃

)
,

Σ(e, c) =

(
ω̃ +N 1TL̃T

L̃1 diag(γ̃) + ˜LLT

)−1

,

μ(Gd·i) = Σ(Gd·i)

⎛⎜⎝
⎛⎜⎝ (Kd1)i·

...

(KdPd
)i·

⎞⎟⎠ ã+ b̃·dL̃di

⎞⎟⎠ ,

Σ(Gd·i) =

(
I + ˜b·dbT·d

)−1

,

μ(L·i) = Σ(L·i)(G̃ + c̃f̃i − c̃e),

Σ(L·i) =
(
I + c̃cT

)−1

,

G̃ �

⎛⎜⎜⎝
b̃T·1G̃1·i

...

b̃T·D
˜GD·i

⎞⎟⎟⎠ ,

where (̃·) represents E(·), the expectation operator. 1 is the
all-one vector (1, 1, ..., 1)T, I represents identity matrix and
T N is the truncated normal distribution.
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Proof. The likelihood function and the approximate poste-

rior distribution are

p(y,Θ,Φ|K) =p(λ)p(a|λ)p(G|a,K)p(η)p(b|η)p(L|b,G)

· p(γ)p(c|γ)p(ω)p(e|ω)p(f |c, e,L)p(y|f),

q(Θ,Φ) = q(λ)q(a)q(G)q(η)q(b)q(L)q(γ)q(ω)q(e, c)q(f).

and each factor q(·) of the q(Θ,Φ) can be calculated by for-

mula 6. So we can first compute the approximate posterior

distribution of the prior λ as below.

q(λ) ∝ exp{Eq(Θ,Φ\λ) [log p(y,Θ,Φ|K)]}

∝ exp{log p(λ) + Eq(a)[log p(a|λ)]}

∝
N∏
i=1

{
λ
(αλ+

1
2 )−1

i e
−
(
β−1
λ +

E(a2
i )

2

)
λi

}
.

So far we obtain the approximate posterior distribution

q(λ) =

N∏
i=1

Gamma

(
λi;αλ +

1

2
,

(
1

βλ
+

Ea2i
2

)−1
)
.

Similarly, we can obtain q(η), q(γ) and q(ω).

Second, the approximate posterior distribution of the

sample weight parameter can be calculated as

q(a) ∝ exp{Eq(Θ,Φ\a)[logP (a|λ)p(G|a,K)]}

∝exp

{
− 1

2

[
aT

(
diag(λ̃) +

D∑
d=1

Pd∑
m=1

(Kdm)··(Kdm)T··

)

a− aT
D∑

d=1

Pd∑
m=1

(Kdm)·· ˜GT
dm·

−
D∑

d=1

Pd∑
m=1

˜Gdm·(Kdm)T··a

]}
.

From the formula of q(a) we know that the calculation pro-

cess can update the mean and covariance matrix simulta-

neously which can reveal the correlation information of the

samples. Through similar calculation, the approximate pos-

terior distributions of b and (e, c) can be obtained as

q(b·d) ∝ exp

{
− 1

2

[
bT·d

(
diag(η̃·d) + ˜Gd··GT

d··

)
b·d

− bT·dG̃d··L̃T
d· − L̃d·G̃T

d··b·d

]}
, d = 1, ..., D,

and

q(e, c) ∝ exp

{
− 1

2

[(
e
c

)T

(
ω̃ +N 1TL̃T

L̃1 diag(γ̃) + ˜LLT

)(
e

c

)

−
(
e
c

)T
(

1Tf̃

L̃f̃

)
−

(
1Tf̃

L̃f̃

)T (
e
c

)]}
.

Third, the approximate posterior distributions of the inter-
mediate outputs G and L are

q(G) =

D∏
d=1

N∏
i=1

N
(
Gd·i;Σ(Gd·i)

⎛⎜⎜⎝
⎛⎜⎜⎝

(Kd1)i·

...
(KdPd

)i·

⎞⎟⎟⎠ã+ b̃·dL̃di

⎞⎟⎟⎠ ,

(
I + ˜b·dbT·d

)−1
)
,

q(L) =

N∏
i=1

N
(
L·i;Σ(L·i)(G̃ + c̃f̃i − c̃e),

(
I + c̃cT

)−1
)
.

Through the update of the parameters above, we obtain
the following approximate posterior distribution of f .

q(f) =

N∏
i=1

T N
(
fi; c̃TL̃·i + ẽ, 1, fiyi > τ

)
.

Under the framework of approximate inference [6], the
convergence criterion of the algorithm is summarized in
Proposition 2.

Proposition 2. The update of parameters converges by
achieving the local maximum value of the lower bound as
below.

log p(y|K)

≥ Eq(Θ,Φ)[log p(y,Θ,Φ|K)]− Eq(Θ,Φ)[log q(Θ,Φ)].

Algorithm 1 summarizes the calculation process of up-
dating approximate posterior distributions.

3.2 Classification

Given a new data point x∗, denote the kernel matrix set
as K∗. According to the training parameters, the predictive
distribution of the first layer Gd·∗ of intermediate output
can be obtained by replacing the posterior distribution of a
with its approximation q(a) as follows:

P (Gd·∗|K∗,a,K,y) =

Pd∏
m=1

N (Gdm∗;μ(Gdm∗),Σ(Gdm∗)) ,

Bayesian kernel adaptive grouping learning for multi-dimensional datasets 131



Algorithm 1 Calculation of approximate posterior distri-
butions in BKAGL
Input: the kernel matrix set K and the label vector y of the

training set, the hyper-parameter set Ξ, the iteration number
iter;

1: initial parameters of distributions of {Θ,Φ};
2: for t = 1, . . . , iter do
3: compute βt(λi) and related parameters;
4: compute μt(a), Σt(a) and related parameters;
5: compute μt(Gd·i), Σ

t(Gd·i) and related parameters;
6: compute βt(ηmd) and related parameters;
7: compute μt(b·d), Σ

t(b·d) and related parameters;
8: compute μt(L·i), Σ

t(L·i) and related parameters;
9: compute βt(γd) and related parameters;

10: compute βt(ω) and related parameters;
11: compute μt(e, c), Σt(e, c) and related parameters;
12: compute μt(f ) and related parameters;
13: end for
Output: parameters of the approximate posterior distributions

of {Θ,Φ}.

where

μ(Gdm∗) = μT(a)(Kdm)·∗

and

Σ(Gdm∗) = 1 + (Kdm)T·∗Σ(a)(Kdm)·∗.

Similarly, the predictive distribution of the second layer Ld∗
of intermediate output is

P (Ld∗|Gd·∗, b·d)

= N (Ld∗;μ
T(b·d)Gd·∗, 1 +GT

d·∗Σ(b·d)Gd·∗).

Then the predictive distribution of f∗ can be formulated as

P (f∗|L·∗, c, e) = N (f∗;μ(f∗),Σ(f∗)) ,

where

μ(f∗) = μT(e, c)

(
1
L·∗

)
and

Σ(f∗) = 1 +
(
1 LT

·∗
)
Σ(e, c)

(
1
L·∗

)
.

Moreover, given the margin parameter τ , we can obtain the
predictive distribution of label y∗ as given in Proposition 3.

Proposition 3. The predictive distribution of y∗ for x∗ is

P (y∗ = +1|K∗,K,y) = Z−1
∗ Φ

(
μ(f∗)− τ

Σ(f∗)

)
,

P (y∗ = −1|K∗,K,y) = Z−1
∗ Φ

(
−μ(f∗)− τ

Σ(f∗)

)
,

Algorithm 2 Prediction of the label y∗ for a new point x∗
Input: the kernel vector set K∗ of the new point, the training

parameters obtained from Algorithm 1;
1: compute p(Gd·∗|K∗,a,K ,y);
2: compute p(Ld∗|Gd·∗, b);
3: compute p(f∗|L·∗, c, e);
4: compute p(y∗ = +1|K∗,K ,y) and p(y∗ = −1|K∗,K ,y);
5: if p(y∗ = +1|K∗,K ,y) ≥ 0.5 then
6: label = +1;
7: else
8: label = −1;
9: end if
Output: the label of x∗.

where Z∗ = Φ(μ(f∗)−τ
Σ(f∗)

) + Φ(−μ(f∗)−τ
Σ(f∗)

) is the normalization

coefficient and Φ(·) represents the cumulative distribution
function of the standard normal distribution.

According to Proposition 3, we can calculate the classifi-
cation probability of the test instance by Algorithm 2. Note
that Algorithm 2 distinguishes the label by 0.5. That means
0.5 acts as the cut point. In fact, other cut points can also
be selected through cross-validation techniques if needed.

4. EXPERIMENTS

In this section, we provide experiments on simulated data
and real data to illustrate the performance of the proposed
BKAGL method. We compare the proposed method with
the k-nearest neighbors (KNN) algorithm, support vector
machine (SVM) algorithm, the generalized linear model
(GLM) with lasso, random forest and naive Bayes. For
these contrastive classification methods, matrix data should
be vectorized into a vector pattern before classification. In
other words, a D × R matrix should be transformed into
a DR-dimensional vector for each instance. Select k = 4
for KNN through cross-validation. The generalized linear
model we use is the logistic regression and we use k-fold
cross-validation for GLM with lasso. With regard to BK-
AGL, apply the k-medoids algorithm for grouping. To re-
flect the advantage of grouping, we also compare the pro-
posed method with BKAGL without grouping. For all the
kernel selection problems involved in this section, such as
SVM, BKAGL and BKAGL without grouping, we choose
the linear kernel k(xi,xj) = xT

i xj uniformly for a fair
comparison. Other kernels, including the polynomial ker-
nel and the Gaussian kernel, can be used, but parameter
tuning is computationally expensive. Hence, we choose the
linear kernel. Through the sensitivity analysis of the hyper-
parameters, we find that the proposed method is not sen-
sitive to the choice of the hyper-parameters. Therefore, we
set the hyper-parameters (αλ, βλ, αη, βη, αγ , βγ , αω, βω) =
(1, 1, 1, 1, 1, 1, 1, 1) throughout the experiment study. We im-
plement the proposed BKAGL method in R and the codes
are available at https://github.com/wangxz021/bkagl.
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4.1 Simulated data

In this part, we discuss the classification of two types
of multi-dimensional datasets. We first introduce the gen-
eration models, and then give the comparison of the clas-
sification results. Finally, we analyze the interpretation of
grouping and the learning parameters c and b.

Consider the classification problem of the following two
models. Each data point X has D dimensions and each di-
mension is a vector with R features.

• Model 1: the label Y = +1, X is a D ×R matrix:
Xdr ∼ N (0, 1), 1 ≤ d ≤ D, 1 ≤ r ≤ R.

• Model 2: the label Y = −1, X is a D ×R matrix:
X1r ∼ N (h, 1), (1− p)R+ 1 ≤ r ≤ R, 0 ≤ p ≤ 1;
Xdr ∼ N (0, 1), otherwise.

From the construction, the two generation models only differ
in the last pR features of the first dimension. The parameters
p and h decide the difference between the two models. The
parameter p denotes the proportion of the difference and h
determines the size of the difference. When p and h are large,
classification is obviously easier. On the contrary, small p
and h result in smaller differences, which makes classification
more difficult. On the other hand, the classification method
needs to be sensitive to the fluctuation due to the small
sample size.

GenerateN instances, among which half of them are from
the first model and the rest are from the second model.
In the classification process, 80% of instances are selected
randomly from all of the instances as the training set and
the remaining 20% form the test set. The probability of
successful classification in the test set is used to measure
the performance of each method. The results reported are
the average of 100 independent runs.

First, take N = 100, D = 2, R = 100 and fix p = 50%,
then compare the seven algorithms on different h chosen
from {0.1 × i, 3 ≤ i ≤ 10}. For the sake of comparable
performance measure, the classification accuracy of every
method is calculated on the same training set and test set.
Repeat the computing process and average the results. Fig-
ure 3 displays the relation between the classification accu-
racies of the seven methods and the difference parameter h.
To clearly show the results and the trend, the X-axis is re-
versed. From Figure 3, one can see that BKAGL has the best
classification performance. When the difference parameter
h is large, BKAGL has higher classification accuracies than
GLM with lasso, random forest and KNN. When h becomes
smaller, naive Bayes, SVM and BKAGL without grouping
exhibit a faster drop and the superiority of BKAGL becomes
more obvious. Meanwhile, BKAGL has the advantage of in-
terpretation ability provided by grouping and the learning
parameters, which will be introduced in more detail later.

Then we consider the impact of the difference ratio p on
the classification results. The value of p decides the pro-
portion of differences. We fix N = 100, D = 2, R = 100,

Figure 3. Classification accuracies of the seven methods
under different h.

h = 0.3 and choose p from {10%, 20%, 30%, 40%, 50%}. Re-
peat the calculation process and average the classification
results. Table 1 shows the classification accuracies of the
seven methods under different p. We observe from Table 1
that BKAGL performs constantly better than other meth-
ods under different p.

Next we discuss the learning parameters c and b. Choose
N = 100,D = 2, R = 100, h = 1, p = 50%. Through observ-
ing the learning parameters in each iteration, we find that
the grouping and the analysis results are consistent. There-
fore, we randomly select one classification process from the
iteration to provide the detailed analysis. The results are
recorded in Table 2. We observe that c1 = 0.5029 and
c2 = 0.0000. The value of c indicates that the classifica-
tion result is only determined by the first dimension, which
matches the simulation model. With regard to the learn-
ing parameter b, whether all features are properly divided
into several groups and the parameter b of different groups
in different dimensions correctly reflects the importance of
partial features are two important things that need to be
verified. From the construction of the simulation model, we
know that the key to classification is the second half features
of the first dimension. Therefore, the features of the first di-
mension should become a group. The grouping and learning
parameters in Table 2 provide the explanatory results of the
classification.

The grouping results of the first dimension successfully
select most of the second half features to form Group 2.
Compared to the unimportant Group 1, the learning param-
eter b of Group 2 of the first dimension has a much higher
value. The grouping of the second dimension looks random;
nevertheless, the learning parameter b of each group is 0,
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Table 1. Test accuracies of classification under different p

p 10% 20% 30% 40% 50%

KNN 0.5115±0.1148 0.5338±0.1166 0.5390±0.1102 0.5907±0.0969 0.5920±0.1091
SVM 0.5310±0.1114 0.5981±0.1126 0.5910±0.0960 0.6648±0.0993 0.6965±0.1067

GLM with lasso 0.4635±0.1000 0.4644±0.1004 0.4830±0.1209 0.5456±0.1396 0.5540±0.1263
Random forest 0.5155±0.1275 0.5513±0.1046 0.5690±0.1134 0.6011±0.1103 0.6415±0.1078
Naive Bayes 0.5230±0.1401 0.5438±0.1192 0.5685±0.0926 0.6126±0.1297 0.6665±0.1113

BKAGL without grouping 0.5345±0.1121 0.5894±0.0986 0.6060±0.1018 0.6670±0.0981 0.6815±0.1012
BKAGL 0.5380±0.1146 0.6156±0.1174 0.6325±0.1106 0.7033±0.0933 0.7115±0.1054

Table 2. The grouping of features and learning parameters

d cd Pd = 2 Real group Experimental group bmd

1 0.5029
Group 1 1-50 1-18,20-28,30-32,34-50,52,67,78,98 0.1339
Group 2 51-100 19,29,33,51,53-66,68-77,79-97,99-100 0.4288

d cd Pd = 2 Real group Experimental group bmd

2 0.0000

Group 1 None
1,4,8,11,12,13,14,16,17,18,20,21,22,24,25,28,29,30,32,

0.000033,34,36,37,38,39,41,42,45,52,53,54,57,59,60,63,65,67,
70,71,72,74,75,77,78,80,82,85,87,88,89,94,95,97,98,99,100

Group 2 None
2,3,5,6,7,9,10,15,19,23,26,27,31,35,40,43,44,46,47,48,

0.000049,50,51,55,56,58,61,62,64,66,68,69,73,76,79,81,83,84,
86,90,91,92,93,96

which shows the lack of importance on the final classifica-
tion result.

The grouping and the learning parameters c and b accu-
rately capture the characteristics of the simulation model.
For practical applications, valuable information can be ob-
tained from the grouping and the learning parameters.

4.2 Real data

In this section, we compare the performance of BKAGL
with classical classification methods on two real datasets:
ECG and EEG. Meanwhile, we will analyze the learning
parameters b and c based on the practical meaning. The
results reported are the average of 10 independent runs.

4.2.1 ECG dataset

The electrocardiogram (ECG) dataset [4] contains 200
instances, where 67 instances are abnormal (label +1) and
133 instances are normal (label −1). The researcher col-
lected heartbeat data through two electrodes. Therefore, the
heartbeat record for each instance is a multivariate time se-
ries. For instances in the raw data, the time series of each
electrode have unequal lengths. To solve this problem, we
choose to linearly interpolate the time series of each elec-
trode so that every time series can have the same length as
the longest length in the raw data. This is a common tool for
data pre-processing [3, 9]. Some researchers used this form
of pre-processing to show that for time series classification
problems, the length of the time series is not an issue [23].
After the procedure, the length of the time series of each
electrode for every instance is 152.

Table 3. Test accuracies of the ECG dataset

Method Accuracy

KNN 0.6563±0.0182
SVM 0.7944±0.0474

GLM with lasso 0.6806±0.0526
Random forest 0.7456±0.0405
Naive Bayes 0.7150±0.0928

BKAGL without grouping 0.7738±0.0340
BKAGL 0.8056±0.0387

We note that the dimensions in the model in Section 2.2
are two electrodes and the features are 152 time points in
this problem. We randomly select 40 instances as the train-
ing set and the remaining 160 instances form the test set.
The classification accuracy of each method is shown in Ta-
ble 3. As we can see, the proposed BKAGL outperforms
other classification methods.

Next, we observe the learning parameters c and b. We
find that the grouping and analysis results are consistent
under each iteration by observing each group of learning
parameters. Consequently, we randomly select one process
to give further analysis and the results are recorded in Ta-
ble 4. The learning parameters cd for the two dimensions
(electrodes) are 0.4755 and 0.0000, respectively, which illus-
trates that the records on the first electrode have the most
influence on the final output. On the other hand, Table 4
records the learning parameter b for the two dimensions. For
each dimension, 152 time points are divided into two groups:
earlier-stage (about the first two-thirds of time points) and
later-stage (about the last third of time points). For the
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first dimension, the earlier-stage period has a much higher
absolute value than the later-stage period. For the second di-
mension, the learning parameters bm2 of two groups are very
close to 0. According to the analysis based on the learning
parameters c and b, we know that the earlier-stage records
of the first electrode play the most important role in the
ECG classification problem.

4.2.2 EEG dataset

Next we consider the multiple electrode time series
electroencephalography (EEG) dataset [8] of alcoholism
(http://kdd.ics.uci.edu/databases/eeg/eeg.data.html). The
study consists of 77 alcoholic subjects and 45 control sub-
jects and contains voltage values which are measured from
64 electrodes placed on each subject’s scalp. The 64 elec-
trodes were located at standard sites (Standard Electrode
Position Nomenclature, American Electroencephalographic
Association 1990) [28]. The voltage values are recorded
at 256 time points. Every subject had 120 trials exposed
to three types of stimuli, which are single stimulus, two
matched stimuli and two unmatched stimuli. The goal of
the study is to explore the associations between alcoholism
and voltage values over both channels and time.

We focus on the data exposed to the single stimulus and
average all the trials under the single stimulus for each sub-
ject [17]. For intuitive cognition of the dataset, we average

Table 4. The grouping and learning parameters of the ECG
dataset

d cd Pd = 2 T ime points bmd

1 0.4755
Group 1 1-99 −0.4115
Group 2 100-152 −0.0013

d cd Pd = 2 T ime points bmd

2 0.0000
Group 1 1-100 0.0000
Group 2 101-152 0.0000

the voltage values of all alcoholic and control subjects re-
spectively. Figure 4 displays the average EEG recordings of
two groups. From Figure 4, we can see that the differences
of two groups mainly lie in the medium-term and final per-
formance of the EEG readings. Consider the medium-term
and final data to find the relation among alcoholism, chan-
nels and the medium-term and final performance of the EEG
readings.

Now the dimensions in the model in Section 2.2 are re-
placed by the 64 channels and the features are time points
here. In other words, there are 64 time series data for each
subject. According to the above analysis of Figure 4, the
differences of two groups are mainly concentrated in the
medium-term and final data. Hence, choose the 51st to 70th
time points together with the 237th to 256th time points to
be a time chain with length 40. Randomly select 100 sub-
jects as the training set and the remaining 22 subjects form
the test set. Calculate the classification accuracy of each
method. Repeat the process and average the results. The
classification results are shown in Table 5.

From Table 5 we know that BKAGL shows the best per-
formance. Next we discuss the learning parameters c and
b to find useful information. By observing each group of
learning parameters under each iteration, we find the con-
sistency of grouping and analysis results. Hence, randomly
select one classification process from the iteration and give

Table 5. Test accuracies of the EEG dataset

Method Accuracy

KNN 0.6705±0.0776
SVM 0.7159±0.0227

GLM with lasso 0.6705±0.0937
Random forest 0.7386±0.0435
Naive Bayes 0.6591±0.0587

BKAGL without grouping 0.7159±0.0937
BKAGL 0.7614±0.0435

Figure 4. The average EEG recordings of two groups.
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Table 6. The grouping and learning parameters of the EEG dataset

d Channel name cd Pd = 3 T ime points Period bmd

55 PO7 1.1025

Group 1 51,52,53,54,55,56,57,58 Medium-term 0.2266
Group 2 59,60,61,62,63,64,65,66,67,68,69,70 Medium-term 0.1974

Group 3
237,238,239,240,241,242,243,244,245,246,

Final-stage 0.1794
247,248,249,250,251,252,253,254,255,256

Figure 5. The locations of the top five channels on the scalp.

the following analysis. We obtain 64 c values for all chan-
nels. Different channels have different degrees of influence on
the classification results. The order of the top five channels
from high to low are PO7, P6, PO8, P4 and O2. Accord-
ing to electrode labelling, every placement site has a letter
to identify the region of the brain. For example, P stands
for Parietal and O stands for Occipital. PO means the in-
termediate electrode place between parietal and occipital.
Odd and even numbers mean the left hemisphere and the
right hemisphere, respectively. Each numeric value means a
distance. Take PO7 as an example, number 7 is utilized for
the left hemisphere to stand for 40% of the inion-to-nasion
distance. We can observe from Figure 5 that the locations of
the top five channels marked as grey circles are concentrated
in the parietal region, occipital region and their intermedi-
ate region PO. Hence, the EEG readings of these regions
are the key indices to classify the alcoholic group and the
control group.

Finally, we discuss the learning parameter b. We note
that the 55th channel PO7 has the significantly largest c
value that equals 1.1025, which means PO7 has the great-
est impact on the classification. Therefore, we consider the
learning parameter b of the 55th channel PO7, which is
shown in Table 6. All 40 time points are divided into three
groups where the 20 medium-term data points are split into

two groups and the 20 final data points become a group
independently. The parameters b of the two medium-term
groups have larger values than that of the final-stage group,
which means greater impacts on the final classification. More
specifically, the parameter b of Group 1 has the largest
value, which implies the importance of the time points in
this group. On the whole, the medium-term of EEG read-
ings has a higher influence on classification than the final
performance of the EEG readings, which coincides with the
rough observation of Figure 4.

The grouping and the learning parameters c and b can
provide valuable information for practical applications. The
proposed method BKAGL can be applied to various practi-
cal classification problems. The classification process is sim-
ilar to the above analysis.

5. DISCUSSION AND EXTENSIONS

This paper proposes a novel kernel-based algorithm to
solve the binary classification problem for multi-dimensional
datasets. The proposed method can integrate information
from different groups in different dimensions. Through the
estimation of parameters, BKAGL has good interpretative
ability, which enables us to find the groups of features and
dimensions that have a greater impact on the response.
Meanwhile, the utilization of variational approximation in-
ference and conjugate Bayesian models provides the closed-
form iterative formulas. For the multiclass classification
problem, methods such as one-to-all [18] can be adopted.
In addition, the correlation information between dimensions
can be considered. In fact, if there is a priori knowledge
about the dimensions, we can take advantage of it by de-
signing a more reasonable prior distribution to improve the
classification accuracy.
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