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Non-Gaussian stochastic volatility model
with jumps via Gibbs sampler

Arthur T. Rego
∗
and Thiago R. dos Santos

In this work we propose a model for estimating volatil-
ity from financial time series, extending the non-Gaussian
family of space-state models with exact marginal likelihood
proposed by [6]. On the literature there are models focused
on estimating financial assets risk, however, most of them
rely on MCMC methods based on Metropolis algorithms,
since full conditional posterior distributions are not known.
We present an alternative model capable of automatically
estimating the volatility, since all full conditional posterior
distributions are known, and it is possible to obtain an exact
sample of volatility parameters via Gibbs Sampler. The in-
corporation of jumps in returns allows the model to capture
speculative movements of the data so that their influence
does not propagate to volatility. We evaluate the perfor-
mance of the algorithm using synthetic and real data time
series and the results are satisfactory.

AMS 2000 subject classifications: Primary 62M10,
62P20; secondary 91B70.
Keywords and phrases: Financial time series, Stochastic
volatility, Gibbs Sampler, Dynamic linear models.

1. INTRODUCTION

Understanding the behavior of asset prices is essential for
capital allocation decisions between the available investment
options. Such a decision depends on what one thinks about
risks and returns associated with these investment options.
The most accepted theory is that the returns on high volatil-
ity assets follow a random walk with some outliers points,
that usually occur during abnormal volatility increases, such
as in financial and political crisis events. The future re-
turns would be unpredictable, but the volatility can be esti-
mated and monitored in order to detect such events and an-
ticipate their movements. Under the Bayesian perspective,
the inferential procedure of the stochastic volatility mod-
els commonly used are mostly based on intensive computa-
tional methods, e.g., Markov Chain Monte Carlo (MCMC)
methods using Metropolis-Hastings algorithms, which raises
questions about the usage of more automatic and simpler
computational implementation methods that can be used to
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bring fast and reliable results. Dealing with financial time
series brings three main challenges, which include: finding
a model that fits well to the data and accommodates the
heavy tails that exist in non-Gaussian returns; is fast enough
to bring results on time to be used by market agents; and is
flexible to include a new source of data and accommodate
outliers and skewness, that improve the model fit.

Many models have been developed for risk measuring pur-
poses. For example, [5] adopt the Stochastic Volatility model
(SV) and study the influence of inserting jumps to improve
the model. They suggest including jumps on returns and
volatility in order to improve the model dynamics in case
of spot changes in volatility, as in financial crisis moments.
[13] include the leverage effect on SV models, which refers to
the increase in volatility following a previous drop in stock
returns, and model it as the negative correlation coefficient
between error terms of stock returns. [12] extend its appli-
cation to Stochastic Volatility with Jumps (SVJ) models
with heavy-tailed distribution, obtained by a scale mixture
of a generalized gamma distributed mixture component to-
gether with a normally distributed error in order to gen-
erate generalized Skew-t distributed innovations, and dis-
cuss the fit gains on including such feature. [21] investigate
sequential, or online, Bayesian estimation for inference of
stochastic volatility with variance-gamma jumps in returns
and compare its performance to the model that uses offline
Markov Chain Monte Carlo. [7] use a stochastic volatility
model with a two-step estimation method. In the first step,
they nonparametrically estimate the instantaneous volatility
process, and, in the second step, standard estimation meth-
ods for fully observed diffusion processes are employed, but
with the filtered or estimated volatility process replacing the
latent process. [2] also provide nonparametric methods for
stochastic volatility modeling, allowing the joint evaluation
of return and volatility dynamics with nonlinear drift and
diffusion functions, nonlinear leverage effects and jumps in
returns and volatility with state-dependent jump intensities.
However, those models are either nonparametric or the pa-
rameter estimation is somewhat complex, since there is no
closed-form to the full conditional posterior distributions,
being necessary the use of MCMC methods with Metropolis-
Hastings (MH) steps.

The main objective of this work is to find an alterna-
tive model that accommodates speculative financial asset
returns data, allows for the innovations to assume heavy-
tailed distributions, includes jumps on returns in order to
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get the impact of uncommon events on financial markets
and has a simpler and more automatic inferential procedure,
like Gibbs Sampling together with a block sampling struc-
ture, for estimating the model parameters while mitigating
convergence issues. We introduce a non-Gaussian stochastic
volatility model with jumps, as well as an application to real
S&P-500 index and Brent Crude future returns time series.

The proposed model is innovative on bringing benefi-
cial aspects and characteristics from two different classes of
models: the Stochastic Volatility (SV), used by [5], and the
Dynamic Linear Model, used by [6]. The result is a model
that allows the inclusion of jumps, a multiplicative evolution
equation, and a mixture component to produce heavy-tailed
distributions. The full conditional distribution of model pa-
rameters has a closed-form, including the volatility. Thus, it
is easier to sample these distributions, making the MCMC
algorithm simpler by the use of Gibbs Sampler steps. Fur-
thermore, an exact sample from the full conditional distri-
bution of the volatility can be drawn using a smoothing
procedure feature. The MCMC algorithm presented in this
paper consists of Gibbs Sampler steps only, which is not
seen on other volatility models with jumps available on lit-
erature. The proposed model structure allows an automatic
sampling procedure and implementation simplicity, avoid-
ing the use of Metropolis steps and nonlinear filters, which
require additional implementing effort.

2. THE NON-GAUSSIAN STOCHASTIC
VOLATILITY MODEL WITH JUMPS ON

RETURNS

The non-Gaussian stochastic volatility model with jumps
on returns (NGSVJ) for time series {yt}nt=1 is given by:

yt = μ+ Jy
t + υt, υt|γt ∼ N(0, γ−1

t λ−1
t ),(1)

λt = ω−1λt−1ζt, ζt|Yt−1, ϕ ∼ Beta(ωat−1, (1− ω)at−1),

(2)

where Jy
t = ξyt+1N

y
t+1, ξ

y ∼ N(μy, σ
2
y), and Pr(Ny

t+1 = 1) =
ρy.

In this model, yt represents the log-return in percentage,
defined as yt = 100 × (log(St) − log(St−1)), where St is
the asset price on time t. Jy

t is the jump, composed by the
jump indicator Ny

t+1 and magnitude ξyt+1 ∼ N(μy, σ
2
y), in

the same way proposed by [5]. μ represents the equilibrium
log-return of yt.

γt is the variance mixture component [6]. Using γt ∼
G(ν2 ,

ν
2 ), the unconditional distribution of errors assume a

tν(0, 1) distribution. This structure allows the avoidance of
nonlinear filters, since conditioned on the mixture compo-
nent the model is Gaussian, but unconditionally it follows a
Student-T distribution.

λ−1
t is the volatility of returns, and the main interests lay

on estimating its value over time since it is the main vari-
able on risk and stock options pricing. ω is a discount factor

and is specified, in order to avoid an MH step for its estima-
tion, keeping the estimation procedure more automatic via
Gibbs Sampling. at−1 is the shape parameter of the filtering
distribution of λt, which is described on details in [6].

The model provides the needed flexibility by using the
State Space Model (SSM) form, with mixtures on variance
in order to achieve non-Gaussian distribution for innova-
tions. It has also a formulation that allows the full condi-
tional posterior distributions to be available, so that Gibbs
Sampler can be used to sample from the conditional poste-
rior distributions, bringing implementation simplicity to the
model.

In this case, there are no dimensionality issues with the
parametric space, since all full conditional posterior distri-
butions are obtained through the model properties and can
be sampled via Gibbs Sampler. Using proper priors to pa-
rameters it is possible to obtain the full conditional posterior
distribution, where the priors are chosen in order to obtain
a conjugate posterior distribution. Another advantage lays
on sampling mean μ and volatility λ = {λt}nt=1 in blocks,
speeding up the sampling process. A more detailed descrip-
tion of the model procedures can be seen in [6].

The inclusion of jumps, adapted from [5], gets the advan-
tage of models properties that guarantee a simpler compu-
tational implementation sampling method. This work only
explores the addition of jumps in returns as the inclusion
of jumps on volatility requires a more complex structure to
preserve model properties and ensure fast inference proce-
dures. The inclusion of jumps on volatility will be addressed
to on future papers.

2.1 Bayesian inference

For the mean parameter of the log-returns, μ, a prior
N(m0, C0) is specified and the samples of its posterior dis-
tribution can be obtained through a Forward Filtering Back-
ward Sampling (FFBS) algorithm, available in [15].

For ease of notation, let Φ=(μ, Jy˜, γ˜, λ˜, μy, σ
2
y, ξ˜, ρy, Ny˜ ),

excluding the parameter being evaluated, i.e. Φ[−λ] =
(μ, Jy˜, γ˜, μy, σ

2
y, ξ˜, ρy, Ny˜ ).

With the prior distribution for λt, which is given by
λt|Yt−1 ∼ G(ωat−1, ωbt−1), and following the method pro-
posed by [6], the updating distribution is:
(3)

p(λt|Yt,Φ[−λ]) ∼ G

(
ωat−1 +

1

2
, ωbt−1+γt

(yt − μ− Jt)
2

2

)
.

The procedure for sampling from (λt|Yn,Φ[−λ]) can be
seen on Appendix A [6]. ω is a fixed discount factor.

For the mixture component γt, a prior G(ν2 ,
ν
2 ) is defined,

and, when mixed as γ−1
t (resulting in Inverse-Gamma) leads

to a Student-t with ν degrees of freedom to the innovations.
The full conditional posterior distribution is:

(4) p(γt|Yt,Φ[−γ]) ∼ G

(
ν

2
+

1

2
,
ν

2
+ λt

(yt − μ− Jt)
2

2

)
.
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The parameter ν will be specified, since its posterior dis-
tribution does not have a closed form, leading to a Metropo-
lis step. A grid of values is made for it, comparing deviance
information criterion (DIC), for different values of ν. Recall-
ing that the main objective of the NGSVJ model is to keep
an automatic and simple procedure for the model estimation
and, once it is determined for a specific asset time series, ν
does not need to be changed for future observations.

The jump sizes ξyt+1 follow a N(μy, σ
2
y). For the mean μy

a non-informative prior N(m, v) is set, resulting in a full
conditional posterior:

(5) p(μy|Yn,Φ[−μy ]) ∼ N

(
mσ2

y + vnξ̄y

σ2
y + nv

,
vσ2

y

σ2
y + nv

)
.

For the variance σ2
y a prior IG(α, β) is assumed, resulting

in the full conditional posterior:

p(σ2
y|Yn,Φ[−σ2

y ]
) ∼ IG

⎛⎝α+
n

2
, β +

∑t
i=1
Ji �=0

(ξyi+1 − μy)
2

2

⎞⎠ .

(6)

In both cases, n is the number of times that the jump is
observed, and ξ̄y the mean of jump sizes ξyt+1. As the prior
of jump sizes is assumed to be Normal, the full conditional
posterior is also Normal, given by:

(7) p(ξyt+1|Yt,Φ[−ξ]) ∼ N
(
m∗

ξ , v
∗
ξ

)
,

where:

m∗
ξ =

μyγ
−1
t λ−1

t + ytσ
2
y − μσ2

y

σ2
y + γ−1

t λ−1
t

,(8)

v∗ξ =
σ2
yγ

−1
t λ−1

t

σ2
y + γ−1

t λ−1
t

.(9)

For jump probabilities ρy, a prior Beta(α, β) is set. The
full conditional posterior is given by:

p(ρy|Yn,Φ[−ρy ]) ∼ Beta

(
α+

n∑
t=1

Ny
t , β + n−

n∑
t=1

Ny
t

)
.

(10)

Since the jump indicator Ny can assume only two values,
0 or 1, the probability of observation at t + 1 be a jump is
given by:

P (Ny
t+1 = 1|Yt+1,Φ[−N ]) ∝ ρy × P (Yt+1|Ny

t+1 = 1,Φ[−N ]),
(11)

which is easy to calculate, since P (Yt+1|Ny
t+1 = 1,Φ[−N ]) is

a Normal distribution. Using the concept proposed by [3], if
P (Ny

t+1 = 1|Yt+1,Φ[−N ]) is greater than a threshold α, then
Ny

t+1 = 1. The threshold α is chosen such that the number
of jumps identified corresponds to the estimate of the jump
intensity ρy.

2.2 Gibbs Sampler

Here we present the Gibbs Sampler algorithm to sample
from the NGSVJ model’s parameters.

Let Yn = {yt}nt=1, J˜ = {Jy
t }nt=1 = {ξyt+1N

y
t+1}nt=1, γ˜ =

{γt}nt=1, λ˜ = {λt}nt=1, ξ˜ = {ξyt+1}nt=1, N˜ = {Ny
t+1}nt=1 and

prior probability densities π(γ), π(μy), π(σ
2
y), π(ξ), π(ρy) are

set for γ˜, μy, σ
2
y, ξ˜, ρy. Then, a sample of size M from the joint

posterior distribution π(μ, λ˜, γ˜, μy, σ
2
y, J˜, ρy|Yn) is drawn via

Gibbs Sampler, as follows:

i Initialize μ(0), λ˜(0), γ˜(0), μ
(0)
y , (σ2

y)
(0), ξ˜(0), N˜ (0) and ρ

(0)
y .

ii Set j = 1.
iii Sample μ(j)|Yn, J˜(j−1), λ˜(j−1), γ˜(j−1) using FFBS algo-

rithm.
iv Block sample λ˜(j)|Yn, μ

(j), J˜(j−1), γ˜(j−1) using algorithm

described on Appendix A.
v Block sample γ˜(j)|Yn, μ

(j), J˜(j−1), λ˜(j) as in Eq. (4).

vi Sample μ
(j)
y |ξ˜(j−1), (σ2

y)
(j−1) as in Eq. (5).

vii Sample (σ2
y)

(j)|ξ˜(j−1), μ
(j)
y as in Eq. (6).

viii Block sample J˜(j)|Yn, μ
(j), λ˜(j), γ˜(j), μ

(j)
y , (σ2

y)
(j) by

a Block sample ξ˜(j)|Yn, μ
(j), λ˜(j), γ˜(j), μ

(j)
y , (σ2

y)
(j) as in

Eq. (7).

b Block sample N˜ (j)|Yn, μ
(j), λ˜(j), γ˜(j), ξ˜(j) as in Eq.

(11).

ix Sample ρ
(j)
y |J˜(j) as in Eq. (10).

x Set j = j + 1.
xi If j ≤ M , go to iii, otherwise stop.

Since all full conditional posterior distribution have
closed-form, only Gibbs Sampler steps are used.

2.3 Model diagnostics

The approach to compare different specifications for
model parameters is the BIC and DIC criteria, defined by:

BIC = −2 ln(L̂) + k × ln(n),(12)

DIC = D(y˜, Φ̄) + 2pD,(13)

pD = D̄(y˜,Φ)−D(y˜, Φ̄).(14)

Where, for BIC, L̂ is the maximized value of the likelihood
function for the model, k is the number of parameters eval-
uated and n is the sample size, and, for DIC, statistical
deviance D(y˜,Φ) is defined as:

D(y˜, Φ̄) = −2 ln
(
p(y˜|Φ̄)

)
(15)

for data y, model parameters Φ and its posterior mean Φ̄.
The posterior mean deviance is given by:

D̄(y˜,Φ) = E
[
D(y˜,Φ)|y˜

]
.(16)
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Figure 1. Simulation Study: Simulated realization
(n = 5,000).

3. SIMULATION

To illustrate the performance of the NGSVJ, we apply
the method to synthetic data from the model proposed by
[21], and compare it to the performance of non-Gaussian
State Space Model (NGSSM) in order to highlight the effect
of including jumps on absorbing the abnormal impacts on
observations and preventing them to propagate to volatility.
To generate the volatility, we use:

vt = vt−1 + κ(θ − vt−1)Δ + ρσv

√
vt−1Δε1,t(17)

+σv

√
(1− ρ2)vt−1Δε2,t,

where ε1,t and ε2,t ∼ N(0, 1). Synthetic data for returns is
then generated from:

rt = N(μ+ Jt, γ
−1
t vt),(18)

Jt = Ntξt,(19)

where the jump times, Nt are generated from a
Bernoulli(ρy), jump sizes ξt from N(μy, σ

2
y), and γt from

G(ν2 ,
ν
2 ). Setup of parameters was: log-returns mean μ =

0.05; jump probability ρy = 0.015; jump magnitude mean
μy = −2.5 and standard deviation σy = 4; variance mixture
degrees of freedom ν = 30; volatility components Δ = 1,
θ = 0.8, κ = 0.015, σv = 0.1, ρ = 0.4, same used by [21].

The simulated time series consists of approximately 20
years of daily data (n = 5,000). Figure 1 shows one real-
ization generated from the model. All codes for the model
estimation were written in R software [18], using package
Rcpp, available at The Comprehensive R Archive Network
(CRAN). Machine specifications are Intel Core i7-8700K
3.70 GHz processor, 16 GB RAM, using a 64-bit Windows
10 Operating System. MCMC retained 20,000 samples after
300,000 iterations, burn-in of 60,000 and lag of 11 itera-
tions.

For the NGSVJ model, Table 1 shows a grid with different
values of ν that was made in order to choose the value that
gives better adjustment according to DIC criteria. Smallest

Figure 2. Simulation Study: Posterior estimates of
instantaneous volatility vt for simulated data. True volatility
series shown in solid gray; posterior mean estimates λ−1

t in
dashed black; and 95% credibility interval is the light gray

area.

Figure 3. Simulation Study: Posterior estimates of
instantaneous jumps Jt for simulated data. True values of the

time series shown in gray; posterior mean estimates Jt in
black.

DIC was obtained with ν = 30, which matches the degrees
of freedom used to generate simulated data.

Table 1. Grid analysis for ν

ν 5 15 30 60

DIC 13,572 12,197 12,139 12,145

Figure 2 shows the time series of true instantaneous
volatility vt, together with the estimated volatility λ−1

t . The
NGSVJ is able to closely track the latent state. Almost every
point from the true volatility is inside the 95% credibility in-
terval, even when the estimate mean slightly deviates from
the true value. Figure 3 shows the time series of true in-
stantaneous jumps Jt, together with the estimated jumps
Jt. Note that the jumps represent moments of punctual ab-
normal returns, caused by the market’s speculative move-
ments. The NGSVJ is able to catch most of the simulated
jumps, together with their magnitudes. Jump points that
are not captured by the jump component of the model are
propagated to volatility (λ−1) or heavy tail (γ−1) compo-
nents.

Table 2 presents the model estimates for each static pa-
rameter. The NGSVJ model is able to get estimates very
close to true parameters. Figure 4 compares posterior esti-
mates of instantaneous volatility on NGSVJ and NGSSM
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Table 2. Posterior estimate of NGSVJ and NGSSM (without jumps) static parameters for simulated daily returns (n = 5,000)

NGSVJ NGSSM
True Mean SD RMSE Mean SD RMSE

μ 0.05 0.0529 0.0024 0.0037 0.0187 0.0012 0.0313
ρy 0.015 0.01544 0.0022 0.0024 - - -
μy −2.5 −2.2799 0.5648 0.6245 - - -
σy 4 4.4445 0.4016 0.7475 - - -
log L - −5,783 −6,322
BIC - 11,634 12,669
DIC - 12,139 13,938

Figure 4. Simulation Study: Top graph shows posterior
estimates of main instantaneous jumps Jt for simulated data

together with simulated returns. Bottom graph shows
posterior estimates for instantaneous volatility λ−1

t . NGSVJ
mean estimates in solid line and NGSSM (without the jump

structure) mean estimates in dashed line.

(without jumps) models. It can be seen that the jump com-
ponent absorbs the impact of abnormal returns so that
they do not propagate to volatility measure. Also, BIC and
DIC values are smaller for the NGSVJ model than NGSSM
(without the jump component), indicating a better fit, de-
spite having more parameters to estimate.

Another advantage of the model, as can be seen in Fig-
ure 5, is that it rapidly achieves the converges due to its
automatic and simple sampling structure. The Geweke test
was also performed to check convergence of MCMC chains,
to confirm that there is no significative change on chain’s
mean from the first 10% and the last 50% samples, and re-
sults are in Table 3. This allows the model to be used in
on-line day-trade operations to estimate market volatility
and orient day-trade arbitrage strategies.

Similar results are obtained across alternative simulation
scenarios, using different initial values for the parameters.
As the sample size n grows very large, the dimensionality
of the model raises exponentially, since there are four dy-
namic parameters to be estimated: volatility, λ−1; mixture
component, γ−1; jump times, N; and jump size, ξ. Thus, its

Figure 5. MCMC chain convergence: trace plot for the static
parameters of the model for simulated time series using three

different initial values. Each line represents a chain.

usage is limited by concerns such as computational time and
available computer memory.

One way to deal with larger data is to reduce the sam-
ple size and the number of iterations made by the MCMC
algorithm, taking advantage of the model’s inferential pro-
cedure that enables fast convergence due to its automated
characteristic via Gibbs sampler. As seen in Figure 5, con-
vergence was achieved on the first 200 iterations, regardless
of the initial values for the parameters.

4. MODEL APPLICATIONS

In this section we show two applications of the NGSVJ
model and compare it to the NGSSM proposed by [6] and SV
model proposed by [8], implemented on R’s stochvol package
available on CRAN, in order to attest its efficiency. Since we
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Table 3. MCMC chain convergence: Geweke test statistic for
the static parameters of the model

μ ρy μy σy

Z-score −0.6212 0.6731 −0.425 −0.0173
p-value 0.2672 0.2504 0.3354 0.4930

Figure 6. Log-returns of the S&P 500 Index from January 2,
1980, to December 31, 1999 (n = 5,055).

cannot guarantee full reproduction of models in [5] and [21],
which would be ideally natural competitors to NGSVJ, we
chose to use models that have codes already available and
widely known on literature. The first application deals with
the estimation of S&P500 volatility, as done by [5, 21]. The
second is an application to intra-day Brent Crude future
returns, to estimate volatility before the next minute return
information arrives, in order to present the model as a tool
for strategy making in a real decision problem, while the
user is operating at the market.

4.1 S&P500 index data

The NGSVJ is applied to stock market index data and
results will be compared to the NGSSM proposed by [6] and
SV model proposed by [8] for stock returns data, which do
not include jumps on returns.

The dataset contains S&P 500 stock index returns from
January 2, 1980, to December 31, 1999. Excluding week-
ends and holidays, there are 5,055 daily observations for the
S&P500. Table 4 provides descriptive statistic for the log-
returns, scaled by 100.

Table 4. S&P500 log-returns [×100%] descriptive statistics

Descriptive Statistic Value

Sample size 5,055
Mean 0.05205
Variance 0.9978
Skewness −2.6357
Kurtosis 63.0710
Min −22.8997
Max 8.7089

4.1.1 Parameters specification

When applying on stock market index data, a grid anal-
ysis was made using a sample of the last 500 observations
in order to choose ν. Since the model is relatively robust for
this parameter, the same value was used in all applications.
Based on grid analysis conclusion that suggests ν = 30,
a G(15,15) prior distribution was specified for γt in or-
der to obtain the Student’s t30-errors for the observation
and system disturbances. Recall that we avoid appealing to
Metropolis steps in order to estimate ν, in order to keep an
automatic procedure of sampling via Gibbs sampler. The
threshold was fixed at α = 0.7 and the discount factor ω
fixed at 0.9. For the mean components, μ and μy, N(0,100)
priors were specified and for σ2

y a IG(0.1,0.1) prior. Also,
a0 = 0.1 and b0 = 0.1, as suggested in [22], cited by [6].
A Beta(2,40) prior distribution was specified to ρy, as in [5].
For the NGSSM model, the same specifications were made,
except that this model does not include the jump compo-
nents.

The results were obtained with a 300,000 iteration chain,
a burn-in of 60,000 observations, with a lag of 11 observa-
tions, resulting in 20,000 samples. MCMC chains conver-
gence was verified through graphs and the Geweke diag-
nostic test, using R package coda [14]. All programming
was done in the R software [18], using the Rcpp pack-
age.

4.1.2 Results

Table 5 shows model estimates for each of the static pa-
rameters. For NGSVJ, as observed by [5], it is possible to see
that jumps in returns are infrequent, since jump probability
ρy is small, but have a large magnitude, as can be seen by
the magnitude of jump size mean, μy. BIC and DIC criteria
favor NGSVJ over NGSSM and SV models, which indicates
the former has a better fit to the data. Computational time
for NGSVJ is close to SV model, which makes it competitive
since it includes the jump structure that benefits from the
automatic inference procedure to boost its speed. The inclu-
sion of jumps makes NGSVJ 55.6% slower than the NGSSM
model, but it has a better fit and a more precise estimate for
volatility since abnormal returns are captured by the jump
component.

Figure 7 shows the posterior mean estimates of instan-
taneous square root volatility λ−1/2 for NGSVJ, NGSSM
and SV models. As expected, the NGSVJ model estimates
a lower magnitude volatility measure, since part of the
log-returns variation is absorbed by the jump component,
so they do not propagate to volatility as an increase on
risk.

Figure 8 shows the posterior mean estimates of instan-
taneous volatility λ−1 for NGSVJ with the 95% credi-
bility interval. Also, a zoom into two specific moments
known as market crisis: the Black Monday (1987) and the
Asian/Russian financial crisis (1997, 1998). The solid line
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Table 5. Posterior inference of static parameters for NGSVJ,
NGSSM and SV models for S&P500 daily returns.

Computational time (CT) is given in seconds

NGSVJ NGSSM SV
Mean SD Mean SD Mean SD

μ 0.0616 0.0020 0.0522 0.0012 0 -
ρy 0.0042 0.0012 - - - -
μy −2.4598 1.4302 - - - -
σy 5.2793 1.2598 - - - -
log L −5,972 −6,086 −8,468
BIC 12,012 12,197 12,206
DIC 12,338 12,763 21,719
CT 738 474 753

Figure 7. Top graph shows posterior estimates of main
instantaneous jumps Jt for S&P500 together with log-returns

[×100%]. Bottom graph shows posterior estimates of

instantaneous square-root of volatility λ
−1/2
t for S&P 500

Index data. NGSVJ mean estimates in solid line; NGSSM
mean estimates in dashed line; and SV mean estimates in

dotdashed line.

represents the posterior mean and the gray area indicates
the 95% percentile credibility interval for spot volatility. Re-
sults are consistent with [5] findings, with volatility peaks
occurring at the same time.

Figure 9 provides jump sizes and probabilities for each ob-
servation. Before moments of higher volatility, it is possible
to observe an increase in jump sizes and probabilities, when
compared to periods with lower volatility, thus, evidencing
that such moments are preceded by speculative movements,
captured in the model as jumps.

4.2 Intra-day returns data

The NGSVJ model is applied to intra-day returns of
Brent Crude Futures so that a market agent can use this
information to choose strategies on day-trade operations. In
order to be used during market operations, the model must
be able to deliver reliable and fast results. The proposed

Figure 8. Posterior estimates of instantaneous volatility λ−1
t

for S&P 500 Index data. NGSVJ mean estimates in solid line;
and 95% credibility interval is the gray area.

Figure 9. Posterior estimates of jump times, N, and jump
sizes, J, for S&P 500 Index data from NGSVJ model.

model performance will be compared to NGSSM and SV
models.

The dataset contains Brent Crude futures, ICE:BRN, log
returns from August 13, 2018, to August 17, 2018, in a to-
tal of 6,241 minute observations. Table 6 provides summary
statistics for the log returns scaled by 100.

Table 6. Descriptive statistics of ICE:BRN log-returns
[×100%]

Descriptive Statistic Value

Sample size 6,241
Mean −0.00026
Variance 0.00204
Skewness −1.6751
Kurtosis 42.3833
Min −0.95748
Max 0.39991
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4.2.1 Parameters specifications

The NGSVJ setup considers the same specifications de-
fined on Section 4.1.1. The results were obtained with a
10,000 iteration chain, burn-in of 6,000 observations with a
lag of 2 samples, resulting in 1,667 samples. MCMC chains
convergence was verified through graphs and the Geweke di-
agnostic test, using R package coda [14]. This specification
takes advantage of the fast convergence which enables the
model to give results in about 30 seconds so that a strategy
decision can be taken before the next minute observation
arrives.

4.2.2 Results

Table 7 shows model estimates for each of the static
parameters. BIC and DIC criteria strongly favor NGSVJ
against NGSSM and SV models, since chain convergence is
not achieved for all parameters on the latter model. Both
NGSVJ and NGSSM models are able to deliver reliable re-
sults in less than one minute, before the next information
arrives, but the former has the advantage of including jumps
in returns, thus, providing a better fit to the data and a more
precise volatility estimate.

Table 7. Posterior inference of static parameters for NGSVJ,
NGSSM and SV models for ICE:BRN minute returns.

Computational time (CT) is given in seconds

NGSVJ NGSSM SV
Mean SD Mean SD Mean SD

μ 0.0001 0.0001 −0.0001 0.0000 0 -
ρy 0.0087 0.0015 - - - -
μy −0.02305 0.0334 - - - -
σy 0.0498 0.0119 - - - -
log L 12737 12407 4235
BIC −25405 −24787 −8435
DIC −24919 −23747 −8409
CT 31.83 20.60 28.64

Figure 10 shows trace plot of the final sample and Table 8
presents the results of the Geweke test for the static param-
eters of NGSVJ model. As seen on the simulation study, the
model is able to rapidly achieve convergence due to its auto-
matic and simple sampling structure. This property makes
NGSVJ both fast and reliable enough to provide results in
such a time frame that enables the user to make strategic
decisions.

Figure 11 shows a trace plot for static parameters for
ICE:BRN time series for the SV model, provided by package
stochvol, for the final sample. Despite being fast enough to
bring results on the required time frame, the SV model was
not able to achieve convergence for all parameters. It can be
seen that ρ and σy parameters have still not converged after
six thousand iterations, hence such results are not reliable
to be used for taking strategic decisions.

Figure 12 shows the posterior mean estimates of instan-
taneous square root volatility, λ−1/2, for NGSVJ, NGSSM,

Figure 10. MCMC chain convergence: trace plot for static
parameters for ICE:BRN time series for NGSVJ model.

Convergence is achieved for all static parameters.

Table 8. MCMC chain convergence: Geweke test for static
parameters for ICE:BRN time series for NGSVJ model.

Convergence is achieved for all static parameters

μ ρy μy σy

Z-score −1.248 1.278 −0.4858 −0.7208
p-value 0.1060 0.1006 0.3136 0.2355

and SV models. As observed before, the NGSVJ model es-
timates a lower magnitude volatility measure, since part of
the log-returns variation is absorbed by the jump compo-
nent, so they do not propagate to volatility as an increase
on risk.

Figure 13 shows the posterior mean estimates of instan-
taneous volatility λ−1 for NGSVJ with the 95% credibility
interval, jump sizes and probabilities for each observation.
The solid line represents the posterior mean and the gray
area indicates the 95% percentile credibility interval for spot
volatility.

5. DISCUSSION

The NGSVJ model was able to capture speculative
movements in the market through the jump components
and detect periods with increased market risk through the
volatility component. Results obtained by applying the
model to the S&P 500 return series are consistent with [5]
findings since volatility peaks occurred at the same time.
Historical events of known volatility effects on financial
markets, such as Black Monday and Asian/Russian Finan-
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Figure 11. MCMC chain convergence: trace plot for static
parameters for ICE:BRN time series for SV model, provided

by package stochvol, after burn-in. Convergence is not
achieved for all static parameters.

Figure 12. Top graph shows posterior estimates of main
instantaneous jumps Jt for ICE:BRN together with

log-returns [×100%]. Bottom graph shows posterior estimates

of instantaneous square-root of volatility λ
−1/2
t for ICE:BRN

data. NGSVJ mean estimates in solid line; NGSSM mean
estimates in dashed line; and SV mean estimates in

dotdashed line.

cial Crisis, are detected by the model precisely. Also, the

inclusion of jumps improves the model fit when compared

to NGSSM and SV models.

Figure 13. Top: Posterior mean estimates of instantaneous
volatility λ−1

t for ICE:BRN data. NGSVJ mean estimates in
solid line, and 95% credibility interval is the gray area;

Middle: Posterior mean estimates for jump sizes, Jt; Bottom:
Posterior estimates for jump times Nt.

The most notable advantage of using NGSVJ is its
computational simplicity. Other benefits include using the
NGSSM structure and automatic sampling process for pa-
rameters which allow sampling the volatility in block via
Gibbs sampler, mitigating convergence issues. This struc-
ture allows model parameters to achieve convergence with
less MCMC iterations, providing fast and reliable estimates
and allowing the model to be used in practical situations,
such as taking decisions on intra-day operations arbitrage
strategies.

Using Gibbs Sampler to draw a sample from conditional
posterior distributions is computationally cheaper than re-
curring to Metropolis based algorithms. Since Metropolis is
an accept-reject algorithm, it can take several steps until
a full representative sample is obtained in order to make
suitable statistical inferences, unless a very good proposal
distribution is given to the algorithm. On using Gibbs Sam-
pler, a representative sample can potentially be obtained in
fewer steps. This is especially relevant when dealing with
small time frames, as in intra-day operations.

As the model is built over the dynamic linear model with
scale mixtures proposed by [6] an exact sample of volatility
parameter λ−1

t is drawn. The three main advantages that
come from this process are: there is no need to make ap-
proximations in order to estimate volatility; the volatility is
sampled in blocks from the proposed model; and there is no
need to appeal to Metropolis based algorithms.

Another advantage is the model flexibility. It can be
adapted to include jumps, covariates, heavy tails and dif-
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ferent distributions can be adopted based on the mixture
component used. In this work, Student-t distribution was
obtained through a Gamma mixed component, but other
distributions can also be used to give satisfactory results.
Also, it was shown that the inclusion of jumps raises the
performance of the model when compared to the NGSSM
model.

The inclusion of jumps in the model reduces substantially
the volatility estimate. This would have several impacts on
risk analysis, since less volatility indicates less risk, in other
words, knowing that some event was a jump, or tail event,
and not a recurrent market event would mean that such as-
set is still a safe bet. Usually, an increase of jump frequency
is observed near the occurrences of market anomalies, such
as Black Monday and the Asian and Russian financial crisis,
which may indicate that it can also be used for predicting
near future increases on market risk.

For day-to-day operations, the automatic model is effec-
tive and can be used in order to estimate market volatility,
which can be used for options pricing, VaR calculations,
measuring market regimes, etc.

For future works it is intended to extend the model to
the multivariate case, where, instead of analyzing one as-
set individually, an asset portfolio risk is analyzed as a
whole. Another possible extension is the inclusion of jumps
in volatility, as suggested by [5], without having to appeal
to Metropolis based algorithms, in order to keep the inferen-
tial procedure of the model fast and accessible. Some other
possibilities include working with a skew heavy-tailed dis-
tribution, as in [12] but still maintaining the block sampling
so that it allows the capture of the leverage effect and cor-
relations between mean and volatility.

APPENDIX A. APPENDIX SECTION

This appendix shows how the posterior sample from λ is
drawn [6].

The joint distribution of p(λ|Yn,Φ[−λ]) has density

(20) p(λn|Φ[−λ], Yn)
n−1∏
t=1

p(λt|λt+1,Φ[−λ], Yt)p(Φ[−λ]|Yn)

where the distribution of (λt|λt+1,Φ[−λ], Yt) is given by

(21) λt − ωλt+1|λt+1,Φ[−λ], Yt ∼ G ((1− ω)at, bt) , ∀t ≥ 0,

where at and bt are the filtering parameters. The on-line or
updated distribution λt|Φ[−λ], Yt is given by:

p(λt|Φ[−λ], Yt−1) ∼ G(ωat−1, ωbt−1)(22)

p(λt|Φ[−λ], Yt) ∝ p(λt|Φ[−λ], Yt−1)p(Yt|λt,Φ[−λ])(23)

p(λt|Φ[−λ], Yt) ∼ G

(
ωat−1 +

1

2
, ωbt−1 + γt

(Yt − μ− Jt)
2

2

)(24)

Based on Theorem 2 of [6] and with a sample of
p(Φ[−λ]|Yn), an exact sample of the joint distribution
(λ|Yn,Φ[−λ]) can be obtained following the algorithm:

1. set t = n and sample p(λn|Φ[−λ], Yn);
2. set t = t− 1 and sample p(λt|λt+1,Φ[−λ], Yt);
3. if t > 1, go back to step 2; otherwise, the sample of

(λ1, ..., λn|Φ[−λ], Yn) is complete.

This procedure allows the implementation of the algo-
rithm, described in Section 2.2, step iv and enables us to
obtain an exact sample from the smoothed distribution of
the states conditioned on other parameters.
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