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Fully Bayesian L1/2-penalized linear quantile
regression analysis with autoregressive errors
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In the quantile regression framework, we incorporate
Bayesian L1/2 and adaptive L1/2 penalties into quantile lin-
ear regression models with autoregressive (AR) errors to
conduct statistical inference. A Bayesian joint hierarchical
model is established using the working likelihood of the
asymmetric Laplace distribution (ALD). On the basis of the
mixture representations of ALD and the generalized Gaus-
sian distribution priors of regression coefficients and AR pa-
rameters, a Markov chain Monte Carlo algorithm is devel-
oped to conduct posterior inference. Finally, the proposed
Bayesian estimation procedures are demonstrated by sim-
ulation studies and applied to a real data application con-
cerning the electricity consumption of residential customers.
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1. INTRODUCTION

Early developments of regression analysis frequently as-
sume that the error terms are independent. However, this
independence assumption is likely to be violated in substan-
tive research. Therefore, regression with dependent errors
has attracted considerable attention in the statistical liter-
ature. For example, Tasy (1984) and Lin et al. (2000) pro-
posed linear regression models with time series errors. Lee
and Lund (2004) discussed a linear regression with station-
ary autocorrelated errors. Yang (2012) incorporated serially
correlated errors into regression. Rosadi and Peiris (2015)
investigated a second-order least-squares regression with au-
tocorrelated errors. Nevertheless, a majority of classical re-
gression analyses have focused on mean regression, which
considers only the average of the response variable condi-
tional on covariates and is expected to be sensitive to outliers
or non-normal errors. Koenker and Bassett (1978) proposed
quantile regression (QR) as a comprehensive alternative to
mean regression. In the past decades, QR has become an ap-
pealing statistical modeling tool in modern regression anal-
ysis because it allows to depict the effect of covariates on
the whole conditional distributions of the response variable
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instead of only on its average. A comprehensive overview
of QR can be found in Koenker (2005) and Davino et al.
(2014). Meanwhile, Yu and Moyeed (2001) introduced QR
techniques into the Bayesian framework. Later on, Geraci
and Bottai (2007) conduct Bayesian QR analysis for lon-
gitudinal data using the asymmetric Laplace distribution
(ALD). Reich et al. (2011) proposed Bayesian spatial QR
models. Zhao and Lian (2015) investigated Bayesian Tobit
QR with single-index models. Wang et al. (2015) considered
Bayesian quantile structural equation models. Tian et al.
(2016) proposed Bayesian joint QR for mixed effects models
with censoring and errors in covariates. Huang and Chen
(2016) studied Bayesian QR-based nonlinear mixed-effects
joint models for time-to-event and longitudinal data with
multiple features. Despite the fruitful literature in QR anal-
ysis, the preceding studies concentrated on estimation.

Variable selection is important in obtaining parsimonious
models that retain only significant covariates. A variety of
variable selection methods have been developed in the liter-
ature. These methods include classical criterion-based pro-
cedures, such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC), and modern regular-
ization methods, such as ridge penalty (Hoerl and Ken-
nard, 1970), least absolute shrinkage and select operator
(LASSO; Tibshirani, 1996), adaptive LASSO (Zou, 2006),
smoothly clipped absolute deviation (SCAD; Fan and Li,
2001), elastic-net penalty (Enet; Zou and Hastie, 2005),
bridge penalty (Fu, 1998; Knight and Fu, 2000), and L1/2-
norm penalty (Xu et al., 2010). As a representative penal-
ization approach, an Lξ-norm regularized penalty includes
the best subset selection (ξ = 0), LASSO regression (ξ = 1),
ridge regression (ξ = 2), bridge regression (0 < ξ < 1), and
L1/2 regularizer (ξ = 1/2) as special cases. Among the Lξ-
norm regularizers, bridge regression (0 < ξ < 1), especially
L1/2, has many desirable statistical properties. A theoretical
justification provided by Xu et al. (2010) shows that L1/2

is the most sparse and robust among the Lξ (0 < ξ ≤ 1)
regularizers. Given such nice properties, the L1/2-based reg-
ularized methods have been applied to various statistical
models. For example, Liang et al. (2013) studied sparse lo-
gistic regression with an L1/2 penalty. Zhang et al. (2014)
considered a sharp nonasymptotic bound and phase diagram
of L1/2 regularization. Luan et al. (2014) developed the L1/2

regularization shooting method for Cox’s proportional haz-
ards model. However, these developments were restricted
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within mean regression with independent errors in a fre-
quentist framework. No existing study has ever investigated
the L1/2 regularization method for QR with dependent er-
rors in a Bayesian framework.

In this study, we aim to fill this gap and consider a L1/2

penalized linear QR model with autoregressive (AR) errors.
We propose a fully Bayesian approach because of its po-
tential of managing highly complex data/model structure
and the capability of incorporating additional model inputs
that stem from the prior distributions of model parameters.
Various regularized penalization methods have been avail-
able either for mean regression models with dependent er-
rors (Wang et al., 2007; Wu and Wang, 2012; Fallahpour
and Ahmed, 2014; Yoon et al., 2017) or for Bayesian re-
gression models with independent errors (Park and Casella,
2008; Yu et al., 2013; Polsonet al., 2014; Alhamzawi and Ali,
2018; Mallick and Yi, 2018; Kang et al., 2019). However,
the available methods cannot simultaneously accommodate
all the features of the proposed model. To our knowledge,
we are the first to introduce the L1/2 penalization to the
Bayesian QR model with AR errors.

Several recent works also considered regularized methods
for linear QR models with AR errors (Lim and Oh, 2014;
Jiang and Li, 2014; Tian et al., 2019). Despite a similarity
in the model framework, the present study differs from the
previous works in three aspects. First, the penalties consid-
ered are different. Unlike the previous studies that focused
on SCAD (Lim and Oh, 2014) or LASSO penalties (Jiang
and Li, 2014; Tian et al., 2019), this study considers the
L1/2 penalty, which has been demonstrated to be the most
sparse and robust among Lξ (0 < ξ ≤ 1) in the context
of linear mean regression models (Xu et al., 2010). We are
interested to investigate whether such attractive properties
of the L1/2 regularizer retain for Bayesian QR analysis in
the presence of dependent errors. Second, the inference pro-
cedures are different. Lim and Oh (2014) and Jiang and Li
(2014) developed SCAD- or LASSO-based penalized proce-
dures from a frequentist perspective. Although Tian et al.
(2019) considered a Bayesian approach, they focused also
on LASSO-type penalties. Given different penalized meth-
ods considered, the proposed posterior inferences including
the prior specification, posterior derivation, and the poste-
rior sampling are different from those of Tian et al. (2019).
In particular, we utilize the mixture uniform-Gamma rep-
resentation of the generalized Gaussian distribution (GDD)
proposed by Mallick and Yi (2018) to simplify the prior
specification and posterior derivation of the regression coef-
ficients, thereby facilitating a simple and efficient computing
algorithm. Our simulation studies (Section 5) demonstrate
that the proposed L1/2-based penalized methods are faster
than the LASSO-based methods of Tian et al. (2019). Fi-
nally, the real application results are different. In compar-
ison with Lim and Oh (2014) and Tian et al. (2019) that
analyzed exactly the same dataset, our study provides new
insights into the quantile-specific influential factors of the
response variable (Section 6).

The remainder of this paper is organized as follows. Sec-
tion 2 presents the hierarchical model and the joint like-
lihood function. Section 3 introduces the Bayesian L1/2

penalized QR (BL1/2) of the proposed model. Section 4
presents an adaptive version of BL1/2 (BAL1/2). Section 5
conducts simulation studies to demonstrate the empirical
performance of the proposed methods. Section 6 presents
the application of the proposed methodology to a real-life
study. Section 7 concludes the paper.

2. THE MODEL AND WORKING
LIKELIHOOD

We consider a linear regression model with AR(q) error
as follows:

(1) yt = xT
t β + εt, εt =

q∑
j=1

φjεt−j + ηt, t = q + 1, · · · , n,

where xt = (xt1, · · · , xtp)
T is a p-dimensional covariate, β =

(β1, · · · , βp)
T is the regression coefficient, p is the dimension

of xt, q is the AR order, which is determined either through
model selection criterion, such as AIC and BIC, or based
on the autocorrelation function (ACF) and partial ACF
(PACF) plots of the model residuals, Φ = (φ1, · · · , φq)

T

is the AR coefficient, ηt is an independently and identically
distributed (i.i.d.) error term. The condition of stationarity
for AR(q) error εt in model (1) is that all inverse character-
istic roots of the polynomial 1 −

∑q
j=1 φjz

j are inside the
unit circle.

For any given quantile level τ ∈ (0, 1), according to

Koenker and Bassett (1978), the τth QR estimators β̂ and
Φ̂ of model (1) can proceed by the solution to minimize the
following objective loss function:

(2) Q0(β,Φ) =

n∑
t=q+1

ρτ [(yt−xT
t β)−

q∑
j=1

φj(yt−j−xT
t−jβ)],

where ρτ (u) = u(τ − I(u < 0)) is the quantile check func-
tion. Notably, the loss function (2) is non-convex, non-
differentiable, and multimodal. Thus, directly minimizing
the loss function to perform parameter estimation is infea-
sible.

Yu and Moyeed (2001) suggested a Bayesian approach
to conduct QR estimation by assuming ALD for the model
error as a working model. On the basis of such an assump-
tion, we know that maximizing the working likelihood under
ALD errors of model (1) is equivalent to minimizing the QR
objective loss function (2). The probability density function
of ALD for the error term ηt is written explicitly as

(3) f(ηt|μ, σ, τ) =
τ(1− τ)

σ
exp

{
− ρτ (

ηt − μ

σ
)
}
,

where μ is the location, and σ is the auxiliary scale param-
eter.
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Then, the conditional working likelihood of QR model (2)
can be equivalently written as follows:

H(β,Φ, σ|(xT
1 , y1), · · · , (xT

n , yn)) =
n∏

t=q+1

τ(1− τ)

σ

· exp
{
− ρτ

[yt − xT
t β −

∑q
j=1 φj(yt−j − xT

t−jβ)

σ

]}
.

(4)

However, we cannot derive tractable estimators based on
the aforementioned working likelihood because of computa-
tional difficulty with the inherent non-differentiability. For-
tunately, we can utilize a Gaussian mixture representation
of ALD proposed by Reed and Yu (2009) and Kozumi and
Kobayashi (2011) to overcome this intractability. Using the
mixture representation, we can represent model (1) as

yt = xT
t β +

q∑
j=1

φj(yt−j − xT
t−jβ) + θ1υt +

√
θ2συtet,

t = q + 1, · · · , n,
(5)

where θ1 = 1−2τ
τ(1−τ) , θ2 = 2

τ(1−τ) , υt ∼ Exp( 1σ ), Exp(·) de-

notes the exponential distribution, et ∼ N(0, 1), and υt and
et are independent. From (5), the conditional distribution of
yt is normal with mean xT

t β+
∑q

j=1 φj(yt−j −xT
t−jβ)+θ1υt

and variance θ2συt.

Let v = (v1, · · · , vn). Based on the mixture representa-
tion (5), we can express the joint working likelihood of the
data {y, x, υ} as

L(β,Φ, σ|y, x, v) =
n∏

t=q+1

[
1√

2π ·
√
θ2συt

· exp
{
−

(yt − xT
t β −

∑q
j=1 φj(yt−j − xT

t−jβ)− θ1υt)
2

2θ2συt

}

· 1
σ
exp

{
− 1

σ
υt

}]
.

(6)

For QR model (2), to select significant regression coeffi-
cients and AR parameters, we can employ regularized esti-
mation with proper penalty functions. The penalized objec-
tive loss function of model (2) can be given as follows:

(7) Q1(β,Φ) = Q0(β,Φ) +

p∑
i=1

pλ(|β|i) +
q∑

j=1

pγ(|ϕ|j),

where λ > 0 and γ > 0 are penalty indexes. The L1/2

penalty is imposed on the regression coefficients and AR
parameters as follows:

pλ(|β|i) = λ|βi|1/2, pγ(|φj |) = γ|φj |1/2.

3. BAYESIAN L1/2 PENALIZED QR (BL1/2)

3.1 Prior distributions

To conduct the Bayesian analysis of the L1/2 penalized
QR model (7), we specify GGD priors for the regression
coefficients and AR parameters as follows:

π(β|σ, λ) =
p∏

i=1

π(βi|σ, λ),

π(βi|σ, λ) =
λ2

4σ2
exp

{
− λ

σ
|βi|1/2

}
;

π(Φ|σ, γ) =
q∏

j=1

π(φj |σ, γ),

π(φj |σ, γ) =
γ2

4σ2
exp

{
− γ

σ
|φj |1/2

}
;

where λ > 0 and γ > 0 are defined in (7).

Incorporating the GGD priors into the working likelihood
function (4) results in a marginal posterior density as fol-
lows:

π(β,Φ|(xT
1 , y1), · · · , (xT

n , yn))

= exp
{
−

n∑
t=q+1

ρτ

[yt − xT
t β −

∑q
j=1 φj(yt−j − xT

t−jβ)

σ

]}

· exp
{
− λ

σ

p∑
i=1

|βi|1/2 −
γ

σ

q∑
j=1

|φj |1/2
}

= exp
{
− 1

σ
Q1(β,Φ)

}
.

(8)

The penalized estimators of β and Φ from (7) amount
to the posterior modes of the marginal posterior density
(8). However, the posterior distribution in (8) is analyti-
cally intractable. Polson et al. (2014) proposed a mixture
representation of GGD to conduct Bayesian bridge regres-
sion. Mallick and Yi (2018) further suggested a simple and
efficient mixture uniform-Gamma representation of GGD as
follows:

λ1/α

2Γ(1 + 1/α)
exp

{
− λ|x|α

}

=

∫ ∞

|x|α

1

2u1/α

λ1+1/α

Γ(1 + 1/α)
u1/α exp

{
− λu

}
du.

By using the above result and setting α = 1/2, we can de-
compose the priors of βi and φj as follows:

π(βi|σ, λ) =
∫ ∞

0

π(βi|λ, σ, si)π(si)dsi,

π(φj |σ, γ) =
∫ ∞

0

π(φj |γ, σ, ωj)π(ωj)dωj ,
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where

π(βi|λ, σ, si) = Uniform(−s2i , s
2
i ),

π(si) = Gamma
(
3,

λ

σ

)
, i = 1, · · · , p;

π(φj |γ, σ, ωj) = Uniform(−ω2
j , ω

2
j ),

π(ωj) = Gamma
(
3,

γ

σ

)
, j = 1, · · · , q.

Hence, the prior distributions of β and Φ are

π(β|σ, λ) ∝
p∏

i=1

[π(βi|σ, λ, si)π(si)],

π(Φ|σ, γ) ∝
q∏

j=1

[π(φj |σ, γ, ωj)π(ωj)].

The scale parameter σ is assigned a noninformative prior as
follows:

π(σ) ∝ 1

σ
.

The penalty parameters λ and γ are assigned gamma priors
as follows:

π(λ) ∼ Gamma(a, b), π(γ) ∼ Gamma(c, d.)

Then, the joint prior distribution of all parameters can be
expressed as

π(β,Φ, λ, γ, σ) = π(β|σ, λ)π(Φ|σ, γ)π(σ)π(γ)π(λ).

Incorporating the above prior into the joint hierarchical
likelihood (6) results in the joint posterior distribution, as
shown as follows:

π(β,Φ, σ, λ, γ|y, x) ∝ L(β,Φ, σ|y, x, υ)π(β,Φ, λ, γ, σ).

3.2 MCMC algorithm

Let S = (s1, · · · , sp) and W = (ω1, · · · , ωq). By combin-
ing the prior distributions into the joint hierarchical likeli-
hood (6), we formulate the Bayesian hierarchical model as
follows:

yn×1|X,β,Φ, σ ∼ L(β,Φ, σ|y, x, v),

β|S, λ, σ ∼
p∏

i=1

Uniform(−s2i , s
2
i ),

Φ|W,γ, σ ∼
q∏

j=1

Uniform(−ω2
j , ω

2
j ),

S|λ, σ ∼
p∏

i=1

Gamma
(
3,

λ

σ

)
,(9)

W |γ, σ ∼
q∏

j=1

Gamma
(
3,

γ

σ

)
,

λ ∼ Gamma(a, b),

γ ∼ Gamma(c, d),

σ ∼ π(σ) ∝ 1

σ
.

In the implementation of the Gibbs sampling algorithm,
the involved full conditional posterior distributions of all
parameters are presented as follows:

• π(σ|y, x, υ, β,Φ, λ, γ) ∼ IGamma(δ1, δ2),

where δ1 = 3(n−q)
2 + 3(p + q), δ2 =

∑n
t=q+1

(
e2t

2θ2υt
+ υt

)
+

λ
∑p

i=1 si + γ
∑q

j=1 ωj , et = ỹt − x̃T
t β − θ1υt, ỹt = yt −∑q

j=1 φjyt−j , and x̃t = xt −
∑q

j=1 φjxt−j , t = q + 1, · · · , n.

• π(λ|y, x, υ, β,Φ, σ, γ) ∼ Gamma
(
3p+ a, b+

p∑
i=1

si/σ
)
.

• π(γ|y, x, υ, β,Φ, σ, λ) ∼ Gamma
(
3q + c, d+

q∑
j=1

ωi/σ
)
.

• π(υt|y, x, β,Φ, σ, λ, γ) ∼ GIG
(1
2
,

η2t
θ2σ

,
θ21 + 2θ2

θ2σ

)
,

where ηt = ỹt − x̃T
t β, t = q + 1, · · · , n, and GIG(λ, χ, ψ)

denotes the generalized inverse Gaussian distribution with
index λ and scale parameters χ > 0, ψ > 0.

• π(β|y, x, υ,Φ, λ, γ, σ, S,W ) ∝
p∏

i=1

I(|βi| < s2i ) · exp
{
−

n∑
t=q+1

(yt − xT
t β −

∑q
j=1 φj(yt−j − xT

t−jβ)− θ1υt)
2

2θ2συt

}
.

Equivalently,

π(β|y, x, υ,Φ, σ, λ, γ) ∼ N(β∗, B∗)

p∏
i=1

I(|βi| < s2i ),

where β∗ = B∗
( n∑

t=q+1

x̃t
˜̃yt

θ2συt

)
, B∗ =

( n∑
t=q+1

x̃tx̃
T
t

θ2συt

)−1

, and

˜̃yt = ỹt − θ1υt, t = q + 1, · · · , n.

• π(Φ|y, x, υ, β, λ, γ, σ, S,W ) ∝
q∏

j=1

I(|φj | < ω2
j ) · exp

{
−

n∑
t=q+1

(yt − xT
t β −

∑q
j=1 φj(yt−j − xT

t−jβ)− θ1υt)
2

2θ2συt

}
.

Equivalently,

π(Φ|y, x, υ, β, σ, λ, γ) ∼ N(ψ,Ψ)

q∏
j=1

I(|ϕj | < ω2
j ),
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where ψ = Ψ
( n∑

t=q+1

Rtr̃t
θ2συt

)
, Ψ =

( n∑
t=q+1

RtR
T
t

θ2συt

)−1

, RT
t =

(rt−1, · · · , rt−q), rt−j = yt−j−xT
t−jβ, and r̃t = rt−θ1υt, j =

0, · · · , q, t = q + 1, · · · , n.

• π(S|y,X, υ, β, σ,Φ, λ, γ) ∼
p∏

i=1

Exp(λ/σ)I{si > |βi|1/2}.

• π(W |y, x, υ, β, σ,Φ, λ, γ) ∼
q∏

j=1

Exp(γ/σ)I{ωj > |φj |1/2}.

Remark 1. β and Φ are sampled from truncated multivari-
ate normal distributions.

Remark 2. si is generated from the left-truncated expo-
nential distribution through the inversion method, which
can be implemented in two steps as follows:

(i) generate s∗i ∼ Exp(λ/σ),
(ii) generate si = s∗i + |βi|1/2, i = 1, · · · , p.

Remark 3. ωj is generated from the left-truncated expo-
nential distribution in the same manner as in Remark 2.

By sampling repeatedly from the above full conditional
distributions, we obtain a series of MCMC samples of the
parameters to conduct posterior inference.

4. BAYESIAN ADAPTIVE L1/2 PENALIZED
QR (BAL1/2)

4.1 Prior distributions

Let Λ = (λ1, · · · , λp) and Γ = (γ1, · · · , γq). By forcing
a distinct penalty parameter on each regression coefficient,
BAL1/2 can result in more efficient estimation than BL1/2.
We impose adaptive L1/2 penalization priors on the regres-
sion coefficients and AR parameters as follows:

π(β|σ,Λ) =
p∏

i=1

π(βi|σ, λi),

π(βi|σ, λi) =
λ2
i

4σ2
exp

{
− λi

σ
|βi|1/2

}
;

π(Φ|σ,Γ, ζ) =
q∏

j=1

π(φj |σ, γ),

π(φj |σ, γj) =
γ2
j

4σ2
exp

{
− γj

σ
|φj |1/2

}
.

Similarly, the priors of βi and φj can be decomposed as
follows:

π(βi|σ, λi) =

∫ ∞

0

π(βi|λi, σ, si)π(si)dsi,

π(φj |σ, γj) =
∫ ∞

0

π(φj |γj , σ, ωj)π(ωj)dωj ,

where

π(βi|λi, σ, si) = Uniform(−s2i , s
2
i ),

π(si|ξ) = Ga
(
3,

λi

σ

)
, i = 1, · · · , p;

π(φj |γj , σ, ωj) = Uniform(−ω2
j , ω

2
j ),

π(ωj |ζ) = Ga
(
3,

γj
σ

)
, j = 1, · · · , q.

Hence, the priors of β, Φ, and σ are

π(β|σ, λ) ∝
p∏

i=1

[π(βi|σ, λi, si)π(si)],

π(Φ|σ, γ) ∝
q∏

j=1

[π(φj |σ, γj , ωj)π(ωj)],

π(σ) ∝ 1

σ
.

The priors of Λ and Γ are

π(Λ) =

p∏
i=1

π(λi), π(λi) ∼ Gamma(ai, bi),

π(Γ) =

q∏
j=1

π(γj), π(γj) ∼ Gamma(cj , dj).

Likewise, the joint posterior distribution can be written
as

π(β,Φ, σ, λ, γ|y, x)
∝ L(β,Φ, σ|y, x, υ)π(β|σ,Λ)π(Φ|σ,Γ)π(σ)π(Λ)π(Γ).

(10)

4.2 MCMC algorithm

On the basis of the prior specification, we have the hierar-
chical representation that is similar to (9) except that λ and
γ are replaced by λi and γj , respectively. Consequently, the
full conditional distributions of the parameters are similar
to those of Section 3.2 except the followings:

• π(σ|y, x, υ, β,Φ, λ, γ) ∼ IGamma(δ1, δ2),

where δ1 = 3(n−q)
2 + 3(p + q), δ2 =

∑n
t=q+1

(
e2t

2θ2υt
+ υt

)
+∑p

i=1 λisi +
∑q

j=1 γjωj , and other terms are the same as
before.

• π(λi|y, x, υ, β,Φ, σ,Γ) ∼ Gamma
(
3 + ai, bi + si/σ

)
,

i = 1, · · · , p.
• π(γj |y, x, υ, β,Φ, σ,Λ) ∼ Gamma

(
3 + cj , dj + ωj/σ

)
,

j = 1, · · · , q.

• π(S|y,X, υ, β, σ,Φ,Λ,Γ) ∼
p∏

i=1

Exp(λi/σ)I{si > |βi|1/2}.

• π(W |y, x, υ, β, σ,Φ,Λ,Γ)∼
q∏

j=1

Exp(γj/σ)I{ωj> |φj |1/2}.

Fully Bayesian L1/2-penalized linear quantile regression analysis with autoregressive errors 275



Figure 1. MCMC chains starting from different initial values
of BL1/2 QR for Model 1. Notes: The red line denotes the
first setting; The blue line denotes the second setting; The

black line denotes the third setting.

5. SIMULATION STUDY

In this section, simulation studies are conducted to
demonstrate the empirical performance of the proposed
methods. We generate 50 datasets from model (1) with a
sample size of n = 100 for three cases as follows:

Model 1: dense case, β = (1, 1, 1, 1, 1)T , Φ = (0.4, 0.4)T .

Model 2: sparse case, β = (1, 1, 0, 0, 0)T , Φ = (0.5, 0,
−0.7, 0)T .

Model 3: extremely sparse case, β = (βT
1:2, β

T
3:20)

T , Φ =
(0.5, 0,−0.7, 0)T , where β1:2 = (1, 1)T , β3:20 = (0, · · · , 0)T ,
and βa:b denotes the set {βj ; j = a, · · · , b}.

In the three models, the elements of xt are indepen-
dently generated from the standard normal distribution.
Model error ηt is generated from the following distributions:
(i) N(0, 1), (ii) t(3) (t distribution with three degree of free-
dom), and (iii) χ2(2) (Chi-square distribution with two de-
gree of freedom). Three quantiles τ = (0.25, 0.50, 0.75) are
considered for each case. The hyperparameters of the prior
distributions are set to be a = b = c = d = 0.1 for BL1/2

and ai = bi = cj = dj = 0.1 for BAL1/2. To guide the
convergence of the MCMC algorithm, we consider three dif-
ferent initial values: Initial 1: {β = (−3,−3,−3,−3,−3)T ,
Φ = (0.6, 0.2)T , σ = 1}, Initial 2: {β = (1, 1, 1, 1, 1)T ,
Φ = (0.3, 0.5)T , σ = 5}, and Initial 3: {β = (3, 3, 3, 3, 3)T ,
Φ = (0.5, 0.3)T , σ = 10}, and run three parallel chains with
these initial values in the setting of Model 1, ηt ∼ t(3),
τ = 0.5, and BL1/2 penalty. Figure 1 shows that the three
MCMC chains starting from the different initial values mix
rapidly within hundreds of iterations, thereby indicating a
quick convergence of the MCMC algorithm regardless of ini-

Figure 2. The first row displays one trace plot of 20,000
Gibbs samples of BAL1/2 penalized estimation results, the
second and third rows represent the ACF plots and density

plots of 1,000 sampled values at the median in Model 1 of the
simulation.

Figure 3. The first row displays one trace plot of 20,000
Gibbs samples of BAL1/2 penalized estimation results, the
second and third rows represent the ACF plots and density

plots of 1,000 sampled values at the median in Model 1 of the
simulation.

tial values. To be conservative, in each of the following set-
tings, we run the Gibbs sampling algorithm 20,000 times,
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Figure 4. The first row displays one trace plot of 20,000
Gibbs samples of BAL1/2 penalized estimation results, the
second and third rows represent the ACF plots and density

plots of 1,000 sampled values at the median in Model 2 of the
simulation.

delete 10,000 burn-ins, and preserve the remaining 10,000
samples to generate 1,000 posterior samples with a step size
of 10 for posterior inference. The results are summarized
based on 50 replications.

ForModel 1, the averaged estimation values (Est.), stan-
dard error estimates (St.d), and the lower (C.L.) and upper
(U.L.) bounds of the 95% credible intervals of β and Φ are
reported in Tables 1 and 2. The trace plots of 20,000 Gibbs
samples, ACF plots, and the density plots of 1,000 poste-
rior samples in one of the MCMC iterations of regression
coefficients β1, β2, and β5 and AR parameters φ1 and φ2 in
the setting of ηt ∼ t(3), τ = 0.5, and BAL1/2 are presented
in Figures 2 and 3. The MCMC chains rapidly converge
to their stationary distributions, and their posterior distri-
butions are approximately normal. Tables 1 and 2 indicate
that BL1/2 and BAL1/2 can estimate parameters accurately
for different error distributions over the three quantiles. At
τ = 0.5, BL1/2 and BAL1/2 provide superior estimation
results with smaller bias and Std for most of the param-
eters under symmetric errors (N(0, 1) and t3) than those
under asymmetric error (χ2(2)). The estimation results un-
der normal errors in general perform the best at the three
quantiles.

For Model 2, the main goal is to examine whether BL1/2

and BAL1/2 can specify zero coefficients exactly for a sparse
case. The estimation results are reported in Tables 3 and 4.
The trace plots of 20,000 Gibbs samples, ACF plots, and
the density plots of 1,000 posterior samples in one of the

Figure 5. The first column displays one trace plot of 20,000
Gibbs samples of BAL1/2 penalized estimation results, the

second and third columns represent the ACF plots and density
plots of 1,000 sampled values at the median in Model 2 of the

simulation.

MCMC chains of regression coefficients β1, β2, and β5 and
AR parameter Φ in the setting of ηt ∼ t3, τ = 0.5, and
BAL1/2 are presented in Figures 4 and 5. The MCMC chains
of regression coefficients rapidly converge to their station-
ary distributions. In particular, for zero coefficients β3, β4,
and β5, their MCMC samples converge to zero stationar-
ily. Tables 3 and 4 indicate that BL1/2 and BAL1/2 can
specify significant covariates and zero-valued coefficients ac-
curately regardless of the error distributions and quantile
levels. A comparison of the estimation results of BL1/2 and
BAL1/2 indicates that the latter estimates zero coefficients
more exactly with smaller bias and St.d and shorter cred-
ible interval of covering zero than the former does. The
proportions of the zero coefficients in β that were cor-
rectly identified by BL1/2 at τ = (0.25, 0.5, 0.75) are (0.991,
0.990, 0.990), (0.991, 0.987, 0.985), and (0.994, 0.985, 0.967)
when ηt ∼ N(0, 1), t(3), and χ2(2), respectively. In com-
parison, those identified by BAL1/2 at τ = (0.25, 0.5, 0.75)
are (0.993, 0.996, 0.998), (0.994, 0.996, 0.994), and (0.998,
0.991, 0.983) when ηt ∼ N(0, 1), t(3), and χ2(2), respec-
tively.

For Model 3, we examine whether the proposed meth-
ods can identify zero coefficients exactly for an extremely
sparse case. The estimation results of regression coefficients
β1, β2, β5, β11, and β18 and AR parameters φ1, φ2, φ3, and
φ4 are reported in Tables 5 and 6. The trace plots, ACF
plots, and the density plots of the posterior samples of the
parameters are similar to those of Model 2 and not reported.
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Table 1. Estimation results of BL1/2 in Model 1

Error τ Est. β1 = 1 β2 = 1 β3 = 1 β4 = 1 β5 = 1 φ1 = 0.4 φ2 = 0.4

N(0, 1) 0.25 Est. 0.983 0.981 1.007 1.000 1.004 0.384 0.395
St.d 0.084 0.108 0.113 0.118 0.106 0.112 0.112

95% C.L. 0.807 0.740 0.818 0.777 0.786 0.222 0.185
95% C.U. 1.107 1.201 1.222 1.215 1.216 0.625 0.582

0.50 Est. 0.992 0.991 1.012 0.957 0.974 0.399 0.350
St.d 0.106 0.123 0.106 0.118 0.115 0.120 0.105

95% C.L. 0.795 0.777 0.808 0.731 0.713 0.151 0.115
95% C.U. 1.159 1.213 1.174 1.114 1.117 0.574 0.534

0.75 Est. 0.963 0.992 0.980 1.004 0.968 0.421 0.357
St.d 0.116 0.119 0.129 0.126 0.117 0.106 0.115

95% C.L. 0.766 0.761 0.757 0.742 0.681 0.248 0.212
95% C.U. 1.192 1.217 1.199 1.243 1.147 0.622 0.565

t3 0.25 Est. 0.991 0.989 0.989 0.989 0.997 0.411 0.359
St.d 0.145 0.115 0.152 0.138 0.139 0.076 0.077

95% C.L. 0.707 0.803 0.750 0.718 0.791 0.270 0.196
95% C.U. 0.186 1.190 1.335 1.258 1.252 0.529 0.489

0.50 Est. 0.996 0.987 0.983 0.976 0.993 0.389 0.378
St.d 0.116 0.136 0.119 0.097 0.114 0.071 0.056

95% C.L. 0.834 0.741 0.801 0.770 0.800 0.251 0.278
95% C.U. 1.289 1.254 1.257 1.157 1.178 0.497 0.461

0.75 Est. 1.025 0.988 0.975 0.962 0.940 0.378 0.375
St.d 0.169 0.135 0.113 0.139 0.145 0.096 0.099

95% C.L. 0.748 0.740 0.770 0.691 0.602 0.236 0.180
95% C.U. 1.351 1.218 1.188 1.180 1.112 0.586 0.540

χ2
2 0.25 Est. 0.972 1.015 0.973 0.967 0.971 0.406 0.397

St.d 0.098 0.075 0.090 0.094 0.105 0.045 0.043
95% C.L. 0.783 0.879 0.830 0.775 0.785 0.345 0.315
95% C.U. 1.151 1.159 1.147 1.126 1.151 0.499 0.471

0.50 Est. 0.962 0.939 0.951 0.990 0.960 0.437 0.375
St.d 0.161 0.151 0.168 0.165 0.174 0.094 0.087

95% C.L. 0.646 0.656 0.660 0.681 0.679 0.279 0.209
95% C.U. 1.217 1.215 1.280 1.318 1.184 0.656 0.546

0.75 Est. 0.958 0.946 0.999 0.906 0.975 0.401 0.338
St.d 0.293 0.299 0.261 0.296 0.255 0.136 0.137

95% C.L. 0.441 0.391 0.450 0.397 0.450 0.140 0.137
95% C.U. 1.379 1.442 1.418 1.411 1.458 0.640 0.585

Tables 5 and 6 indicate that BL1/2 and BAL1/2 can specify
significant covariates and zero-valued coefficients accurately
for the extremely sparse case. The proportions of the zero
coefficients in β that were correctly identified by BL1/2 at
τ = (0.25, 0.5, 0.75) are (0.960, 0.979, 0.968), (0.965, 0.972,
0.954), and (0.984, 0.966, 0.900) when ηt ∼ N(0, 1), t(3),
and χ2(2), respectively. In comparison, those identified by
BAL1/2 at τ = (0.25, 0.5, 0.75) are (0.977, 0.983, 0.978),
(0.947, 0.974, 0.961), and (0.978, 0.954, 0.901) when ηt ∼
N(0, 1), t(3), and χ2(2), respectively.

To compare the estimation results of the proposed meth-
ods with Bayesian LASSO (BLASSO) and Bayesian adap-
tive LASSO (BALASSO) penalties, we provide an evalua-
tion quantity MMSE, which is defined as follows:

(11) MMSE = Mean
(
(θ̂ − θtrue)T (θ̂ − θtrue)

)
,

where θ = (βT ,ΦT )T and the Mean(·) denotes the average
value of the mean square errors based on 50 replications.
The MMSE values of Models 1–3 under BL1/2, BAL1/2,
BLASSO, and BALASSO are presented in Table 7.

BLASSO-based methods perform slightly better than
BL1/2-based methods in the dense case (Model 1). How-
ever, in the sparse and extremely sparse cases (Models 2 and
3), the proposed BL1/2-based methods perform much better
than BLASSO-type methods with smaller MMSE values for
most of cases over the three quantiles. Regarding compu-
tational efficiency, the proposed BL1/2-based methods are
generally faster than BLASSO-based methods. Taking the
setting of Model 2: ηt ∼ t(3) and τ = 0.5 as an example,
the computing times of BL1/2 and BAL1/2 for completing
one replication are 4.589 and 4.697 minutes, respectively,
whereas those of BLASSO and BALASSO are 5.132 and
5.241 minutes, respectively.
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Table 2. Estimation results of BAL1/2 in Model 1

Error τ Est. β1 = 1 β2 = 1 β3 = 1 β4 = 1 β5 = 1 φ1 = 0.4 φ2 = 0.4

N(0, 1) 0.25 Est. 0.996 1.002 0.995 1.016 0.973 0.400 0.382
St.d 0.109 0.106 0.106 0.134 0.095 0.108 0.107

95% C.L. 0.778 0.831 0.800 0.779 0.803 0.233 0.134
95% C.U. 1.189 1.236 1.170 1.249 1.127 0.675 0.548

0.50 Est. 0.994 0.999 1.002 0.995 0.990 0.409 0.346
St.d 0.121 0.109 0.117 0.115 0.091 0.111 0.100

95% C.L. 0.783 0.817 0.803 0.720 0.811 0.224 0.173
95% C.U. 1.209 1.184 1.253 1.227 1.135 0.598 0.526

0.75 Est. 0.981 1.019 1.001 1.020 1.003 0.378 0.397
St.d 0.116 0.103 0.122 0.135 0.091 0.114 0.110

95% C.L. 0.799 0.811 0.765 0.790 0.826 0.209 0.201
95% C.U. 1.219 1.196 1.250 1.288 1.169 0.589 0.558

t3 0.25 Est. 0.965 0.983 0.971 1.002 0.969 0.390 0.378
St.d 0.166 0.148 0.173 0.161 0.149 0.085 0.088

95% C.L. 0.608 0.706 0.631 0.692 0.673 0.278 0.218
95% C.U. 1.250 1.307 1.241 1.368 1.306 0.563 0.520

0.50 Est. 0.983 0.996 0.965 1.001 0.975 0.367 0.400
St.d 0.137 0.124 0.119 0.124 0.118 0.067 0.075

95% C.L. 0.696 0.760 0.700 0.759 0.725 0.219 0.266
95% C.U. 1.199 1.202 1.158 1.214 1.134 0.461 0.533

0.75 Est. 0.979 1.024 0.982 0.966 0.972 0.390 0.373
St.d 0.153 0.158 0.159 0.154 0.158 0.089 0.087

95% C.L. 0.665 0.683 0.627 0.669 0.664 0.217 0.223
95% C.U. 1.244 1.279 1.248 1.211 1.238 0.548 0.502

χ2
2 0.25 Est. 0.967 1.028 1.003 1.005 0.980 0.410 0.394

St.d 0.087 0.095 0.082 0.091 0.098 0.050 0.050
95% C.L. 0.778 0.838 0.862 0.860 0.800 0.316 0.299
95% C.U. 1.092 1.171 1.144 1.188 1.165 0.505 0.501

0.50 Est. 0.953 0.951 0.958 0.970 0.970 0.407 0.404
St.d 0.167 0.150 0.168 0.177 0.153 0.079 0.075

95% C.L. 0.574 0.725 0.653 0.621 0.664 0.271 0.268
95% C.U. 1.276 1.227 1.278 1.310 1.260 0.565 0.567

0.75 Est. 0.953 0.971 0.917 1.003 1.016 0.394 0.345
St.d 0.302 0.309 0.311 0.269 0.251 0.113 0.123

95% C.L. 0.345 0.368 0.388 0.487 0.489 0.213 0.183
95% C.U. 1.411 1.453 1.588 1.400 1.450 0.635 0.516

The computations are implemented using statistical soft-

ware R3.5.2 in a laptop [Dell Intel(R) Core(TM) i7-

6600U CPU]. The R codes are freely available upon re-

quest.

6. REAL DATA APPLICATION

In this section, we applied the proposed methods to a

real-life study concerning the electricity consumption by res-

idential customers served by the San Diego Gas and Elec-

tric Company. The dataset was obtained from Ramanathan

(2002) and analyzed by previous studies (e.g., Lim and Oh,

2014; Yoon et al., 2017; Tian et al., 2019). Eighty-seven

quarterly observations were recorded in the dataset. The

response variable is the electricity consumption, which is

measured by the logarithm of the kilowatt-hour (kwh) sales

per residential customer (LKWH). The predictor variables
are the logarithm of per capita income (LIncome), the log-
arithm of average price of residential electricity in dollars
per kwh (LPrice), cooling degree days (CDD), and heat-
ing degree days (HDD). In this application, we aimed to
examine the potential influential factors of electricity con-
sumption at its various quantiles. In particular, we are inter-
ested in investigating how customers’ income and electric-
ity price affect the consumption of electricity for customers
whose consumption level is low or high. Moreover, previous
studies (e.g., Yoon et al., 2017) showed that an ordinary
linear regression model with i.i.d. errors is inadequate be-
cause the model residuals exhibited considerable autocorre-
lations. The proposed QR model with AR errors perfectly
accommodates the abovementioned needs. The BL1/2 and
BAL1/2 procedures were performed for the subsequent in-
ference.
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Table 3. Estimation results of BL1/2 in Model 2

Error τ Est. β1 = 1 β2 = 1 β3 = 0 β4 = 0 β5 = 0 φ1 = 0.5 φ2 = 0 φ3 = −0.7 φ4 = 0

N(0, 1) 0.25 Est. 1.018 0.987 −0.013 −0.013 0.014 0.504 −0.006 −0.663 0.012
St.d 0.109 0.087 0.072 0.065 0.055 0.097 0.099 0.121 0.090

95% C.L. 0.846 0.837 −0.157 −0.168 −0.080 0.348 −0.174 −0.853 −0.144
95% C.U. 1.291 1.127 0.102 0.112 0.116 0.686 0.158 −0.379 0.235

0.50 Est. 0.998 0.976 −0.009 −0.022 −0.005 0.477 −0.005 −0.666 −0.021
St.d 0.085 0.098 0.072 0.079 0.071 0.120 0.100 0.112 0.109

95% C.L. 0.854 0.784 −0.177 −0.223 −0.140 0.223 −0.198 −0.858 −0.221
95% C.U. 1.200 1.156 0.089 0.092 0.135 0.692 0.189 −0.486 0.163

0.75 Est. 0.992 0.998 −0.002 0.005 0.009 0.485 −0.011 −0.674 −0.017
St.d 0.106 0.100 0.077 0.050 0.075 0.102 0.104 0.123 0.090

95% C.L. 0.815 0.850 −0.137 −0.100 −0.117 0.330 −0.272 −0.873 −0.213
95% C.U. 1.210 1.204 0.155 0.086 0.153 0.689 0.135 −0.415 0.145

t3 0.25 Est. 0.997 0.997 0.002 −0.000 −0.040 0.483 −0.014 −0.666 −0.021
St.d 0.133 0.147 0.071 0.072 0.071 0.102 0.097 0.099 0.099

95% C.L. 0.736 0.693 −0.118 −0.144 −0.205 0.279 −0.173 −0.835 −0.217
95% C.U. 1.192 1.316 0.114 0.141 0.117 0.648 0.199 −0.434 0.139

0.50 Est. 0.982 0.974 0.016 −0.016 0.014 0.490 −0.014 −0.666 −0.015
St.d 0.126 0.097 0.083 0.080 0.079 0.088 0.058 0.059 0.077

95% C.L. 0.716 0.817 −0.137 −0.187 −0.162 0.325 −0.180 −0.760 −0.133
95% C.U. 1.201 1.175 0.174 0.133 0.185 0.631 0.072 −0.546 0.119

0.75 Est. 0.982 0.975 0.035 −0.006 0.012 0.468 −0.001 −0.676 −0.018
St.d 0.122 0.121 0.107 0.087 0.097 0.094 0.080 0.081 0.078

95% C.L. 0.773 0.773 −0.110 −0.202 −0.156 0.298 −0.167 −0.813 −0.188
95% C.U. 1.273 1.202 0.231 0.163 0.185 0.650 0.122 −0.510 0.091

χ2
2 0.25 Est. 0.972 0.975 0.012 0.018 −0.008 0.522 −0.010 −0.690 0.016

St.d 0.088 0.093 0.059 0.046 0.064 0.038 0.047 0.053 0.033
95% C.L. 0.779 0.791 −0.080 −0.043 −0.111 0.445 −0.098 −0.784 −0.049
95% C.U. 1.100 1.174 0.108 0.129 0.151 0.595 0.055 −0.597 0.098

0.50 Est. 0.962 0.991 −0.018 −0.001 0.001 0.512 −0.011 −0.680 0.010
St.d 0.137 0.145 0.096 0.088 0.109 0.084 0.054 0.066 0.082

95% C.L. 0.668 0.705 −0.210 −0.138 −0.274 0.375 −0.125 −0.785 −0.139
95% C.U. 1.203 1.226 0.181 0.197 0.178 0.668 0.080 −0.570 0.161

0.75 Est. 0.965 0.906 −0.014 −0.012 0.004 0.473 0.002 −0.669 −0.018
St.d 0.250 0.185 0.148 0.191 0.174 0.132 0.126 0.128 0.120

95% C.L. 0.503 0.580 −0.282 −0.385 −0.268 0.290 −0.321 −0.863 −0.245
95% C.U. 1.434 1.214 0.278 0.304 0.375 0.777 0.215 −0.377 0.257

We centralized the response variable, standardized the
covariates, and considered a model as follows:

LKWHt

(12)

= β1LIncomet + β2LPricet + β3CDDt + β4HDDt + εt.

We first used the ACF and PACF plots to examine the
autocorrelations of the residuals of model (12). Based on
the ACF and PACF plots presented in Figure 6, we set
q = 5. The QQ plots (not reported) of model (12) with
AR(5) errors exhibit linearity over various quantile lev-
els, thereby indicating that the proposed model is plausi-
ble for fitting the data. We chose τ to be the three quar-
tiles (τ = 0.25, 0.5, 0.75) because they are the most rep-
resentative statistics to summarize the lower, central, and
upper tendencies of the response variable. The QR anal-

ysis at these three levels enables us to understand how
potential predictors, such as LIncome, LPrice, CDD, and
HDD, influence electricity consumption for low-, median-,
and high-electricity consumption populations. In certain cir-
cumstances when the extreme tails of the response distribu-
tion is of interest, quantile levels of τ = 0.1 and 0.9 may also
be considered.

The initial values and prior inputs of the parameters were
set in the same manner as those of Simulation 1. After
checking convergence, we collected 20,000 posterior samples,
deleted 10,000 burn-ins, and preserved the remaining 10,000
samples to generate 1,000 posterior samples with a step size
of 10. The estimates, standard error estimates, and the lower
and upper bounds of the 95% credible intervals of the pa-
rameters are presented in Table 8. The trace plots, ACF
plots, and the density functions of the regression coefficients
at τ = 0.5 and BAL1/2 are presented in Figure 7, and those
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Table 4. Estimation results of BAL1/2 in Model 2

Error τ Est. β1 = 1 β2 = 1 β3 = 0 β4 = 0 β5 = 0 φ1 = 0.5 φ2 = 0 φ3 = −0.7 φ4 = 0

N(0, 1) 0.25 Est. 1.004 0.989 0.007 −0.000 0.003 0.481 −0.016 −0.661 −0.018
St.d 0.104 0.087 0.061 0.043 0.057 0.086 0.078 0.125 0.089

95% C.L. 0.865 0.820 −0.112 −0.100 −0.107 0.304 −0.184 −0.838 −0.207
95% C.U. 1.170 1.130 0.157 0.106 0.156 0.617 0.106 −0.392 0.119

0.50 Est. 0.975 0.982 −0.013 0.014 −0.003 0.497 −0.024 −0.650 −0.020
St.d 0.094 0.097 0.043 0.047 0.044 0.104 0.087 0.105 0.101

95% C.L. 0.804 0.834 −0.100 −0.038 −0.119 0.284 −0.203 −0.858 −0.177
95% C.U. 1.147 1.128 0.031 0.135 0.010 0.692 0.129 −0.456 0.181

0.75 Est. 1.002 0.987 −0.005 0.006 −0.003 0.494 −0.007 −0.675 −0.005
St.d 0.091 0.101 0.046 0.037 0.043 0.107 0.113 0.095 0.076

95% C.L. 0.827 0.786 −0.108 −0.057 −0.084 0.258 −0.224 −0.846 −0.148
95% C.U. 1.154 1.179 0.080 0.083 0.082 0.687 0.208 −0.508 0.147

t3 0.25 Est. 1.008 0.975 −0.001 −0.001 0.002 0.495 −0.021 −0.664 −0.012
St.d 0.116 0.135 0.068 0.061 0.067 0.102 0.064 0.086 0.092

95% C.L. 0.836 0.737 −0.142 −0.087 −0.072 0.302 −0.140 −0.800 −0.179
95% C.U. 1.165 1.263 0.177 0.160 0.153 0.707 0.074 −0.498 0.173

0.50 Est. 0.986 0.997 0.009 −0.007 0.009 0.489 −0.009 −0.659 −0.020
St.d 0.115 0.100 0.065 0.061 0.053 0.088 0.081 0.090 0.087

95% C.L. 0.727 0.813 −0.077 −0.121 −0.071 0.324 −0.182 −0.818 −0.219
95% C.U. 1.193 1.186 0.136 0.137 0.100 0.654 0.116 −0.460 0.127

0.75 Est. 0.985 1.010 −0.008 −0.002 −0.014 0.474 0.007 −0.675 −0.021
St.d 0.135 0.129 0.067 0.057 0.051 0.088 0.085 0.101 0.071

95% C.L. 0.714 0.747 −0.153 −0.139 −0.102 0.317 −0.182 −0.865 −0.166
95% C.U. 1.168 1.270 0.098 0.100 0.070 0.624 0.148 −0.501 0.134

χ2
2 0.25 Est. 0.999 0.986 0.006 −0.001 0.005 0.512 −0.001 −0.699 0.018

St.d 0.087 0.096 0.045 0.035 0.039 0.051 0.043 0.052 0.044
95% C.L. 0.809 0.825 −0.056 −0.060 −0.056 0.434 −0.089 −0.781 −0.042
95% C.U. 1.170 1.189 0.132 0.078 0.078 0.607 0.074 −0.594 0.135

0.50 Est. 0.994 0.986 −0.016 0.004 −0.020 0.516 −0.007 −0.681 0.008
St.d 0.113 0.140 0.072 0.066 0.088 0.083 0.074 0.076 0.072

95% C.L. 0.789 0.699 −0.166 −0.097 −0.261 0.408 −0.144 −0.825 −0.118
95% C.U. 1.195 1.214 0.112 0.134 0.081 0.652 0.139 −0.525 0.135

0.75 Est. 0.967 0.983 0.011 −0.038 −0.026 0.501 −0.011 −0.673 −0.006
St.d 0.223 0.239 0.110 0.165 0.131 0.138 0.103 0.125 0.132

95% C.L. 0.600 0.579 −0.193 −0.448 −0.227 0.218 −0.267 −0.890 −0.309
95% C.U. 1.492 1.469 0.207 0.243 0.275 0.726 0.143 −0.448 0.235

of AR parameters are not reported. The model error was
evaluated by the average QR residual sum (AQRRS)

AQRRS=
1

n− q

n∑
t=q+1

ρτ [(yt−xT
t β̂)−

q∑
j=1

φ̂j(yt−j−xT
t−j β̂)].

(13)

Table 8 shows that the proposed methods identified dis-
tinct predictors at each quantile. CDD and HDD show sig-
nificant positive effects on KLWH over the three quantiles,
thereby indicating that a raise in cooling or heating degree
days increases the electricity consumption of residential cus-
tomers regardless of quantile levels. This conclusion is con-
sistent with those of Ramanathan (2002) and Tian et al.
(2019). In addition, we obtained the following new obser-
vations. The effect of LIncome on KLWH is nonsignificant

at τ = 0.25 but positive at τ = 0.5 and 0.75, and this
positive effect becomes increasingly pronounced when τ in-
creases from 0.5 to 0.75. This result implies that at a low
level of electricity consumption, per capital income hardly
affects the amount of electricity consumption. However, at
the median to a relatively high level of electricity consump-
tion, high per capital income results in high electricity con-
sumption. On the contrary, LPrice has a significant negative
effect on KLWH at τ = 0.25, but the effect becomes increas-
ingly insignificant when τ varies from 0.5 to 0.75. This result
indicates that at a low level of electricity consumption, high
electricity price induces low electricity consumption. How-
ever, at the median to a relatively high level of electricity
consumption, the impact of electricity price on its consump-
tion becomes increasingly unimportant. Regarding the AR
parameters, φ1, φ4, and φ5 are apparently different from
zero over the three quartiles, whereas φ2 and φ3 are not
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Table 5. Estimation results of BL1/2 in Model 3

Error τ Est. β1 = 1 β2 = 1 β5 = 0 β11 = 0 β18 = 0 φ1 = 0.5 φ2 = 0 φ3 = −0.7 φ4 = 0

N(0, 1) 0.25 Est. 0.967 0.956 −0.001 −0.002 −0.001 0.434 −0.019 −0.584 −0.055
St.d 0.116 0.110 0.059 0.073 0.059 0.109 0.098 0.099 0.080

95% C.L. 0.735 0.790 −0.105 −0.152 −0.133 0.221 −0.240 −0.766 −0.166
95% C.U. 1.154 1.138 0.113 0.131 0.087 0.617 0.144 −0.402 0.113

0.50 Est. 0.949 0.973 0.000 −0.003 0.008 0.418 −0.019 −0.575 −0.076
St.d 0.107 0.081 0.046 0.043 0.050 0.102 0.081 0.091 0.080

95% C.L. 0.741 0.842 −0.069 −0.094 −0.104 0.190 −0.175 −0.733 −0.276
95% C.U. 1.144 1.119 0.088 0.070 0.084 0.598 0.151 −0.417 0.049

0.75 Est. 0.964 0.938 −0.002 0.003 0.001 0.442 −0.017 −0.586 −0.063
St.d 0.112 0.095 0.064 0.073 0.069 0.113 0.086 0.106 0.090

95% C.L. 0.739 0.727 −0.099 −0.152 −0.135 0.236 −0.180 −0.789 −0.230
95% C.U. 1.163 1.091 0.091 0.126 0.107 0.600 0.129 −0.390 0.074

t3 0.25 Est. 0.869 0.855 0.007 0.005 −0.003 0.431 −0.026 −0.605 −0.082
St.d 0.189 0.177 0.075 0.064 0.081 0.089 0.077 0.093 0.080

95% C.L. 0.427 0.583 −0.111 −0.125 −0.188 0.302 −0.184 −0.768 −0.219
95% C.U. 1.128 1.209 0.185 0.136 0.161 0.627 0.071 −0.412 0.043

0.50 Est. 0.918 0.892 0.001 0.009 −0.004 0.443 −0.021 −0.622 −0.054
St.d 0.143 0.125 0.070 0.053 0.051 0.078 0.063 0.072 0.058

95% C.L. 0.668 0.687 −0.149 −0.077 −0.084 0.295 −0.156 −0.728 −0.169
95% C.U. 1.156 1.126 0.136 0.139 0.070 0.593 0.100 −0.477 0.033

0.75 Est. 0.927 0.914 −0.019 −0.006 0.014 0.422 −0.107 −0.612 −0.077
St.d 0.143 0.143 0.070 0.059 0.074 0.084 0.068 0.078 0.071

95% C.L. 0.644 0.665 −0.148 −0.102 −0.089 0.308 −0.140 −0.736 −0.205
95% C.U. 1.142 1.144 0.067 0.140 0.238 0.591 0.112 −0.467 0.060

χ2
2 0.25 Est. 0.943 0.940 −0.002 −0.002 −0.001 0.503 −0.008 −0.656 −0.002

St.d 0.125 0.124 0.058 0.049 0.046 0.042 0.047 0.059 0.042
95% C.L. 0.733 0.646 −0.122 −0.065 −0.065 0.429 −0.081 −0.770 −0.078
95% C.U. 1.119 1.126 0.093 0.098 0.100 0.575 0.078 −0.567 0.083

0.50 Est. 0.891 0.833 0.005 0.000 −0.009 0.474 −0.010 −0.638 −0.019
St.d 0.160 0.164 0.049 0.052 0.084 0.073 0.061 0.080 0.069

95% C.L. 0.543 0.453 −0.082 −0.088 −0.154 0.320 −0.117 −0.768 −0.146
95% C.U. 1.113 1.080 0.095 0.103 0.110 0.604 0.113 −0.470 0.110

0.75 Est. 0.800 0.852 −0.007 −0.027 −0.018 0.432 −0.044 −0.568 −0.090
St.d 0.271 0.288 0.107 0.152 0.095 0.115 0.099 0.125 0.112

95% C.L. 0.267 0.335 −0.187 −0.362 −0.261 0.217 −0.244 −0.812 −0.329
95% C.U. 1.315 1.341 0.190 0.222 0.113 0.655 0.135 −0.291 0.075

different from zero because their 95% credible intervals con-
sistently cover zero. Table 8 also shows that BAL1/2 can
shrink nonsignificant coefficients closer to zeros than BL1/2

does.
Several previous studies (Ramanathan, 2002; Lim and

Oh, 2014; Yoon et al., 2017; Tian et al., 2019) also ana-
lyzed the same dataset. However, they cannot provide the
aforementioned insights into the quantile-specific predic-
tor effects. Specifically, Ramanathan (2002) and Yoon et
al. (2017) considered a mean regression rather than QR,
thereby only revealing the predictor effects on the mean
of electricity consumption. Lim and Oh (2014) and Tian
et al. (2019) identified either {LIncome, LPrice} or {CDD,
HDD} as common nonzero predictors over the quartile lev-
els. However, they did not differentiate quantile-specific in-
fluential factors from common nonzero predictors, thereby
failing to tell how customers’ income and electricity price in-

fluence electricity consumption for different customer pop-
ulations, especially those of low- and high-electricity con-
sumption.

7. CONCLUSION

We considered BL1/2 and BAL1/2 penalized methods for
a linear QR model with AR errors. By using the work-
ing likelihood of ALD and the GGD priors of the regres-
sion parameters, we constructed hierarchical penalized QR
models to conduct Bayesian inference. Simulations and a
real data example were conducted to demonstrate the pro-
posed methodology. Results show that BL1/2 and BAL1/2

can identify significant regression predictors accurately and
outperform BLASSO and BALASSO in terms of estima-
tion/selection accuracy and computational efficiency for
sparse models.
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Table 6. Estimation results of BAL1/2 in Model 3

Error τ Est. β1 = 1 β2 = 1 β5 = 0 β11 = 0 β18 = 0 φ1 = 0.5 φ2 = 0 φ3 = −0.7 φ4 = 0

N(0, 1) 0.25 Est. 0.969 0.991 −0.000 −0.001 0.002 0.456 −0.020 −0.599 −0.058
St.d 0.119 0.113 0.050 0.058 0.053 0.094 0.091 0.109 0.095

95% C.L. 0.769 0.754 −0.068 −0.107 −0.104 0.289 −0.171 −0.773 −0.209
95% C.U. 1.140 1.201 0.144 0.137 0.070 0.645 0.151 −0.313 0.065

0.50 Est. 1.006 0.997 0.001 0.004 −0.004 0.458 −0.013 −0.621 −0.037
St.d 0.111 0.086 0.033 0.042 0.032 0.114 0.069 0.093 0.074

95% C.L. 0.783 0.854 −0.052 −0.068 −0.048 0.256 −0.156 −0.774 −0.202
95% C.U. 1.206 1.173 0.061 0.104 0.066 0.688 0.092 −0.425 0.072

0.75 Est. 0.981 1.005 −0.002 0.007 −0.003 0.473 −0.019 −0.632 −0.033
St.d 0.112 0.118 0.063 0.054 0.059 0.087 0.085 0.103 0.072

95% C.L. 0.800 0.789 −0.153 −0.067 −0.134 0.316 −0.198 −0.826 −0.175
95% C.U. 1.165 1.210 0.058 0.124 0.085 0.647 0.132 −0.417 0.074

t3 0.25 Est. 1.004 0.984 0.002 0.002 0.021 0.449 −0.020 −0.624 −0.050
St.d 0.148 0.146 0.068 0.062 0.083 0.099 0.076 0.100 0.070

95% C.L. 0.687 0.745 −0.125 −0.108 −0.097 0.245 −0.184 −0.804 −0.190
95% C.U. 1.255 1.268 0.158 0.126 0.193 0.625 0.069 −0.412 0.064

0.50 Est. 0.991 0.978 0.002 0.013 0.005 0.453 0.000 −0.639 −0.036
St.d 0.115 0.112 0.072 0.057 0.045 0.077 0.047 0.082 0.076

95% C.L. 0.813 0.784 −0.143 −0.081 −0.080 0.328 −0.088 −0.778 −0.186
95% C.U. 1.213 1.162 0.132 0.162 0.096 0.601 0.105 −0.472 0.067

0.75 Est. 0.973 0.991 0.001 −0.004 −0.008 0.428 −0.006 −0.634 −0.060
St.d 0.144 0.143 0.047 0.100 0.064 0.094 0.078 0.102 0.086

95% C.L. 0.664 0.709 −0.085 −0.125 −0.166 0.231 −0.211 −0.826 −0.245
95% C.U. 1.205 1.209 0.077 0.310 0.095 0.561 0.128 −0.430 0.059

χ2
2 0.25 Est. 0.978 0.972 0.005 −0.001 0.000 0.503 −0.014 −0.665 −0.005

St.d 0.110 0.097 0.042 0.062 0.037 0.051 0.036 0.052 0.034
95% C.L. 0.733 0.799 −0.081 −0.112 −0.075 0.417 −0.080 −0.756 −0.059
95% C.U. 1.132 1.184 0.084 0.127 0.068 0.602 0.044 −0.563 0.052

0.50 Est. 0.912 1.002 0.012 −0.007 0.006 0.491 −0.024 −0.643 −0.014
St.d 0.180 0.148 0.056 0.085 0.085 0.064 0.055 0.075 0.053

95% C.L. 0.588 0.767 −0.067 −0.177 −0.173 0.388 −0.144 −0.804 −0.115
95% C.U. 1.251 1.288 0.167 0.202 0.168 0.627 0.044 −0.478 0.082

0.75 Est. 0.934 0.959 −0.009 0.013 −0.027 0.464 −0.036 −0.573 −0.061
St.d 0.235 0.259 0.122 0.110 0.187 0.149 0.094 0.145 0.127

95% C.L. 0.421 0.561 −0.314 −0.188 −0.417 0.215 −0.230 −0.804 −0.345
95% C.U. 1.417 1.438 0.226 0.262 0.312 0.772 0.122 −0.311 0.132

There are several directions for further research. First, the
proposed model can be extended to incorporate quadratic
and interaction terms of xt1, · · · , xtp or AR errors of higher
order without difficulty. However, generalizing the current
model to its nonlinear version yt = f(xT

t β) + εt with a
known/unknown function f(·) and a more sophisticated er-
ror structure, such as ARMA(p, q), is nontrivial. Consider-
ing the nonlinearity of f(·) and the complex structure of εt,
the involved posterior distributions and sampling schemes
become complicated. Developing a valid Bayesian regular-
ized procedure (e.g., Feng et al., 2015, 2017; Wang et al.,
2019) to analyze this generalized model is an important
topic but requires further investigation. Second, the pro-
posed model assumes that the regression coefficients are
time invariant. In substantive research, the predictor ef-
fects may vary over time. Thus, an extension of introduc-
ing varying coefficients into the current model framework

is of scientific interest and worthy of future study. Finally,
we assumed that the observed data are complete. How-
ever, missing data are common in practice. How to man-
age missing data, especially missing not at random data, in
the context of QR models with dependent errors is an in-
teresting but challenging problem. Nevertheless, the afore-
mentioned advances require substantial efforts in the fu-
ture.
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Table 7. MMSE values of BL1/2- and BLASSO-type methods

Model Error τ BL1/2 BAL1/2 BLASSO BALASSO

Model 1 N(0, 1) 0.25 0.081 (0.070) 0.084 (0.057) 0.080 (0.038) 0.102 (0.057)
0.50 0.094 (0.065) 0.086 (0.042) 0.072 (0.040) 0.081 (0.041)
0.75 0.102 (0.066) 0.091 (0.049) 0.088 (0.043) 0.088 (0.062)

t3 0.25 0.108 (0.071) 0.144 (0.072) 0.095 (0.050) 0.137 (0.080)
0.50 0.077 (0.045) 0.090 (0.052) 0.084 (0.044) 0.091 (0.056)
0.75 0.125 (0.103) 0.140 (0.114) 0.083 (0.051) 0.119 (0.086)

χ2(2) 0.25 0.050 (0.033) 0.048 (0.031) 0.115 (0.069) 0.054 (0.040)
0.50 0.160 (0.102) 0.151 (0.090) 0.131 (0.092) 0.132 (0.067)
0.75 0.443 (0.251) 0.453 (0.230) 0.225 (0.122) 0.558 (0.309)

Model 2 N(0, 1) 0.25 0.075 (0.061) 0.066 (0.054) 0.193 (0.111) 0.076 (0.043)
0.50 0.084 (0.061) 0.068 (0.049) 0.100 (0.066) 0.085 (0.054)
0.75 0.080 (0.085) 0.063 (0.042) 0.219 (0.112) 0.085 (0.058)

t3 0.25 0.096 (0.079) 0.076 (0.061) 0.128 (0.078) 0.089 (0.059)
0.50 0.068 (0.037) 0.066 (0.056) 0.066 (0.042) 0.062 (0.045)
0.75 0.089 (0.057) 0.077 (0.064) 0.143 (0.067) 0.090 (0.053)

χ2(2) 0.25 0.036 (0.027) 0.031 (0.022) 0.164 (0.102) 0.029 (0.019)
0.50 0.091 (0.065) 0.074 (0.049) 0.099 (0.069) 0.107 (0.071)
0.75 0.258 (0.147) 0.226 (0.142) 0.351 (0.170) 0.301 (0.204)

Model 3 N(0, 1) 0.25 0.155 (0.070) 0.133 (0.099) 0.423 (0.176) 0.153 (0.082)
0.50 0.128 (0.068) 0.097 (0.048) 0.191 (0.089) 0.161 (0.070)
0.75 0.151 (0.084) 0.111 (0.065) 0.434 (0.143) 0.179 (0.089)

t3 0.25 0.226 (0.178) 0.193 (0.112) 0.321 (0.151) 0.264 (0.143)
0.50 0.137 (0.065) 0.111 (0.066) 0.159 (0.090) 0.170 (0.080)
0.75 0.185 (0.091) 0.177 (0.121) 0.352 (0.136) 0.239 (0.150)

χ2(2) 0.25 0.087 (0.064) 0.076 (0.045) 0.370 (0.161) 0.134 (0.072)
0.50 0.186 (0.104) 0.174 (0.103) 0.237 (0.095) 0.235 (0.101)
0.75 0.549 (0.317) 0.555 (0.472) 0.612 (0.228) 0.685 (0.382)

Figure 6. ACF and PACF plots of the residuals of model (12)
at τ = 0.25, 0.5, and 0.75.

Figure 7. The first column displays one trace plot of 20,000
Gibbs samples of BAL1/2 penalized estimation results of βs,
the second and third columns represent the ACF plots and
density plots of 1,000 sampled values of βs at τ = 0.5 in the

real example.
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Table 8. BL1/2 and BAL1/2 results of electricity consumption data set

τ Parameter LIncome LPrice CDD HDD φ1 φ2 φ3 φ4 φ5 AQRRS

Bayesian L1/2 QR

0.25 Est. 0.030 −0.051 0.059 0.057 0.520 −0.002 0.025 0.890 −0.463 0.008
St.d 0.047 0.019 0.007 0.008 0.071 0.033 0.038 0.035 0.066

95% C.L. −0.047 −0.090 0.045 0.041 0.366 −0.065 −0.053 0.819 −0.580
95% C.U. 0.137 −0.014 0.073 0.072 0.640 0.065 0.094 0.957 −0.315

0.50 Est. 0.235 −0.043 0.060 0.058 0.621 −0.005 −0.000 0.911 −0.608 0.009
St.d 0.057 0.027 0.007 0.005 0.090 0.027 0.031 0.035 0.091

95% C.L. 0.063 −0.089 0.046 0.048 0.457 −0.060 −0.060 0.845 −0.792
95% C.U. 0.315 0.007 0.072 0.068 0.814 0.053 0.062 0.980 −0.434

0.75 Est. 0.457 −0.030 0.060 0.054 0.488 0.015 0.004 0.939 −0.477 0.008
St.d 0.048 0.029 0.006 0.005 0.082 0.025 0.028 0.038 0.087

95% C.L. 0.370 −0.088 0.048 0.043 0.316 −0.035 −0.046 0.855 −0.625
95% C.U. 0.565 0.016 0.072 0.066 0.631 0.063 0.070 1.003 −0.293

Bayesian adaptive L1/2 QR

0.25 Est. 0.013 −0.046 0.058 0.058 0.539 0.001 0.015 0.894 −0.482 0.007
St.d 0.037 0.023 0.007 0.008 0.062 0.026 0.032 0.037 0.060

95% C.L. −0.025 −0.088 0.043 0.041 0.377 −0.052 −0.042 0.817 −0.578
95% C.U. 0.129 0.000 0.073 0.073 0.635 0.061 0.089 0.964 −0.332

0.50 Est. 0.220 −0.011 0.060 0.056 0.684 −0.005 0.000 0.933 −0.684 0.009
St.d 0.069 0.023 0.006 0.005 0.079 0.021 0.022 0.035 0.083

95% C.L. 0.000 −0.077 0.047 0.045 0.511 −0.038 −0.046 0.860 −0.834
95% C.U. 0.320 0.006 0.071 0.066 0.838 0.054 0.050 1.000 −0.484

0.75 Est. 0.454 −0.004 0.059 0.053 0.523 0.011 −0.000 0.950 −0.521 0.008
St.d 0.054 0.015 0.006 0.005 0.078 0.021 0.020 0.035 0.077

95% C.L. 0.357 −0.052 0.047 0.043 0.362 −0.029 −0.040 0.867 −0.652
95% C.U. 0.565 0.010 0.070 0.064 0.669 0.053 0.043 1.009 −0.351
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