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Evaluation of bias for outcome adaptive
randomization designs with binary endpoints
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Clinical trial designs applying outcome adaptive random-
ization (OAR) sequentially change randomization probabil-
ities basing on observed outcomes. Compared to the con-
ventional equal randomization procedure, OAR has the fea-
ture to assign more patients to the better treatment arm
and yield higher overall response rates for patients in the
trial. However, the true response rates tend to be under-
estimated in OAR trials. Although the bias converges to
zero asymptotically as the sample size increases, it is non-
negligible in small trials. In this paper, we evaluated the bias
of OAR designs with binary endpoints, with the allocation
probabilities implemented under two respective randomiza-
tion procedures, namely, the sequential maximum likelihood
procedure (SMLE) and the doubly adaptive biased coin de-
sign (DBCD). We found that the patterns of bias are similar
between the two adaptive randomization procedures. When
the true response rate is less than 10%, we discover that
the bias can be as large as 20% of the true response rates
if the sample size is less than 30; the absolute value of the
bias, however, remains small. To better gauge the magnitude
of the bias, we derived some large-sample strategies to ap-
proximate the bias for two target allocation proportions and
two randomization procedures. In addition, we conducted
simulation studies to quantify the magnitude of the bias in
finite samples to assess the accuracy of the asymptotic ap-
proximations. We also provided an intuitive explanation for
the cause of the underestimation under OAR, and discussed
remedies to alleviate bias in the OAR design. A deeper un-
derstanding of this bias can help us design better OAR trials
and provide more accurate estimates.

Keywords and phrases: Adaptive design, Clinical trial,
Estimation.

1. INTRODUCTION

Outcome adaptive randomization (OAR) design has at-
tracted considerable attention in both statistical and clini-
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cal communities. With this design, patients are dynamically
assigned to the treatment groups using a modified alloca-
tion probability based on the current observed data. The
general goal of the OAR design is to offer patients in the
trial a higher chance to be assigned to the better treatment
group, with the accumulated information. This concept can
be traced back to the work of [21] and [17], in which they de-
veloped some nonrandomized outcome adaptive treatment
allocation procedures. In the 1960s, [23] introduced a well-
known nonrandomized outcome adaptive allocation proce-
dure: play-the-winner rule. Subsequently, [22] introduced a
randomized play-the-winner rule, which formally incorpo-
rated the outcome when calculating the randomization prob-
ability. Since then, many other OAR designs have been pro-
posed [5, 9]. [7] provided a thorough theoretical evaluation
of the characteristics of different outcome adaptive random-
ization procedures.

When a clinical trial is launched, the difference between
the effects of the treatments being evaluated is not known.
Hence, equal randomization is reasonable because it is con-
sistent with the equipoise principle, when randomization is
considered in clinical trials. As the trial moves along and the
information about the treatment difference accumulates, it
makes sense to allow patients to have a higher chance of
being assigned to the better performing arm(s) by align-
ing the randomization probability with treatment efficacy.
The process can continue until sufficient information accu-
mulates to make a decision on which treatment is better (or
no difference), then, the trial can be stopped. Compared to
the conventional trial design of equal randomization (ER),
OAR designs allow more patients to be assigned to the bet-
ter treatment, hence have potential to benefit more patients.
However, it still remains controversial to use AR methods
in clinical trials. There has been an active debate in the lit-
erature recently [19, 6, 11, 2] regarding the pros and cons
of AR in terms of whether AR is ethical or not and its op-
erating characteristics. General speaking AR focuses more
on the “individual ethics” with the goal to treat the next
patient better based on the available, cumulative informa-
tion. On the other hand, ER puts emphasis on “collective
ethics” with the goal to benefit the entire population. In
many instances, OAR designs have been shown to be supe-
rior to the traditional fixed randomization designs in terms
of treating patients best in the trial [12]. However, the proce-
dure can have considerable variability [20]. From theoretical
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point of view, statistical inference is usually based on the
asymptotic properties of the estimators using samples from
identical independent distributions. However, OAR proce-
dures induce complicated dependence structures; hence, the
observed data are no longer independent. How does this af-
fect the finite and large-sample properties of the estimators?
Only limited answers can be found in the literature. For ex-
ample, [4] reported bias of the estimators for adaptive urn
designs. [19] also discussed the existence of bias, if there is
parameter drift. In a recent publication, [3] discussed the
estimator bias induced by the process of adaptive random-
ization in response adaptive clinical trials. They discovered
the bias induced in the maximum likelihood estimate for
binary outcome in OAR designs. Two approaches were in-
troduced to improve the estimator precision.

To gain a deeper understanding of the performance of
OAR, we study the properties of the response rate esti-
mators through both theoretical derivation and extensive
simulation studies. We focus on the binary endpoint of a
patient having either a desired response to the treatment
(i.e., response) or not having a desired response to the treat-
ment (i.e., no response). In this study, we consider two
target proportions for allocating patients to treatment 1,
q2/(q1+q2) [22] and

√
p1/(

√
p1+

√
p2) [18], where q1 = 1−p1,

q2 = 1− p2, and (p1, p2) are the response rates in treatment
arms 1 and 2. Furthermore, the allocation probabilities can
be implemented under two respective randomization proce-
dures, namely, the sequential maximum likelihood procedure
(SMLE) [16] and the doubly adaptive biased coin design
(DBCD) [8]. We will use these settings to study the bias of
the response rate estimators.

This paper is organized as follows: Section 2 displays the
detailed theoretical derivation to approximate the bias of the
response rate estimators in OAR under two different target
allocation proportions and two different randomization pro-
cedures. Section 3 presents the performance of the approx-
imated and simulated bias in several scenarios by varying
the true response rates. The results are shown in tables and
figures with detailed theoretical derivations in Appendix A.
Discussions follow in Section 4, for which we provide both
the theoretical and intuitive explanations of the cause of
bias, and offer practical advice regarding how to reduce the
bias and how the underestimated response rates can be ad-
justed when conducting OAR trials.

2. METHODS

In a two-arm clinical trial with size n in which the bi-
nary treatment responses are immediately available, we de-
note the response rate as p1 for treatment 1, and p2 for
treatment 2. Suppose Y1(n) ∼ Bin(N1[n], p1) and Y2(n) ∼
Bin(N2[n], p2), where Yi(n) and Ni(n) denote the respec-
tive number of responses and patients assigned to treatment
i based on the first n patients for i ∈ {1, 2}. These random
variables follow binomial distributions.

The maximum likelihood estimator of pi at stage n can
be shown as p̂i = Yi(n)/Ni(n), where i ∈ {1, 2}. We notice
that the form of the estimator is similar to that in the non-
adaptive design, except that the denominator of the OAR
estimator is random.

Suppose we use the SMLE and set the allocation
probability for treatment i as ρ̂i(p1, p2) =

√
p̂i/(

√
p̂1 +√

p̂2), where i ∈ {1, 2}. The bias of p̂1 and p̂2, which are
expressed as p̂1−p1 and p̂2−p2 respectively, can be approx-
imated by
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The derivation steps are provided in Appendix A.
If instead we set the probability of allocating patients to

treatment 1 as ρ̂1 = q̂2/(q̂1 + q̂2), we can use the same steps
to derive the asymptotic bias. The result is shown in Table 1,
and the steps are described in Appendix A.

Another randomization procedure we consider is the
DBCD, which can be thought of as a generalization of the
SMLE. Hu and Zhang (2004) proposed a satisfied edition
of the allocation function for a different desired proportion
function, ρi

g(α)(0, ρ̂i) = 1, g(α)(1, ρ̂i) = 0

g(α)(
Ni

n
, ρ̂i) =

ρ̂i(ρ̂i/
Ni

n )α

ρ̂i(ρ̂i/
Ni

n )α + (1− ρ̂i)((1− ρ̂i)/(1− Ni

n ))α
,

where i ∈ {1, 2} and α is the tuning parameter controlling
the degree of randomization imbalance. In this study, we
set α = 2 [8]. The bias approximation of p̂1 and p̂2 for the
DBCD are shown in Table 1, and the derivation steps are
listed in Appendix A.

Lemma 1. When p1 < p2, the absolute value of bias of p̂1
is greater than that of p̂2. This holds for all the 4 settings in
Table 1. The proof can be found in Appendix A.

3. SIMULATIONS

To check the performance of the derived bias, we con-
ducted simulation studies to quantify the magnitude of the
bias in several settings under both the SMLE and DBCD.
In the simulations, we consider only binary endpoints in
a two-arm study. First, we assign one start-up patient to
each arm and arbitrarily assign the fractional responses of
each of those two patients proportional to the assumed true
response rates for the convenience of starting the random-
ization procedure in the simulations. These two start-up pa-
tients and their responses are removed when calculating the
final estimated response rates. In the following adaptive ran-
domization procedure, each incoming patient is assigned to
arm 1 with probability ρ̂1 or g(2)(N1/n, ρ̂1), in the SMLE or
DBCD, respectively, and ρ̂1 is the estimated target alloca-
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Table 1. Approximated bias of p̂1 and p̂2

for different procedures and target allocation proportions
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p1 and p2 are the true response rates; q1 = 1− p1 and q2 = 1− p2; ρ1 is the target allocation proportion for treatment 1; the
derivation of the approximated bias is listed in Appendix A.

tion proportion. It can be
√
p̂1/(

√
p̂1+

√
p̂2) or q̂2/(q̂1+ q̂2).

We fix the true response rates p1 and p2 under 9 settings,[
(p1 = 0.1, p2 = 0.2), (p1 = 0.1, p2 = 0.3),

(p1 = 0.1, p2 = 0.4), (p1 = 0.2, p2 = 0.3),

(p1 = 0.2, p2 = 0.4), (p1 = 0.3, p2 = 0.3),

(p1 = 0.3, p2 = 0.5), (p1 = 0.5, p2 = 0.7),

(p1 = 0.5, p2 = 0.9)
]
.

The observed bias is calculated from the mean of the esti-
mated response rate minus the true response rate. We carry
out the simulations with 10,000 iterations.

4. RESULTS

Figures 1–4 demonstrate the bias approximated by theo-
retical derivation (solid lines) and estimated by simulation
(dashed lines) for both p̂1 and p̂2, with sample sizes rang-
ing from 20 to 100. The theoretical approximations for the
bias of the response rate estimators are derived from the for-
mulas in Table 1. The results manifest that both p̂1 and p̂2
always underestimate the true response rates. When sample
sizes increase, the bias decreases and eventually converges to
zero, and the approximated bias approaches the simulated
bias. We notice different patterns of bias for p̂1 and p̂2, when
the true values of p1 and p2 are different. In particular, when
the target allocation proportion is set as

√
p1/(

√
p1 +

√
p2),

p̂1 underestimates its true response rate more than p̂2 in all
settings, as shown in Figures 1 and 2. With this target al-
location proportion, the bias can be as large as 20% of the
true response rates in some settings, when the sample size
is small; the absolute value of bias, however, remains smalls,

as shown in Supplemental Figures 14–15. We also observe
that the derived formulas in Table 1 can approximate the
simulated bias well in all settings when the sample size is
more than 100, as shown in Supplemental Figures 6–9 in
Appendix B.

As seen in Figures 1–4, patterns of bias are similar be-
tween the SMLE and DBCD procedures. However, the pat-
terns of bias varied a lot when we applied different target
allocation proportions. Setting the target allocation propor-
tion as

√
p1/(

√
p1 +

√
p2), we observe wider gaps between

the approximated and simulated bias, when the response
rates are small, e.g., p1 = 0.1 and sample size is small, e.g.,
20–40, as shown in Figures 1 and 2. In addition, the bias
of p̂1 is always larger than the bias of p̂2 when p1 < p2.
Largest difference of the bias between the two treatments
occurs when p1 is small, sample size is small, and p2 − p1
is large. When setting q2/(q1 + q2) as the target allocation
proportion, we observed different bias patterns. In Figures 3
and 4, we observe that the bias of p̂1 is larger as p1 becomes
larger, particularly, for p1 ≥ 0.5. On the other hand, the
bias of p̂2 is small and relatively stable. Largest difference
of the bias between the two treatments occurs when p1 is
large, sample size is small, and p2 − p1 is large. Since we
are dealing with randomized trials, the approximated and
simulated bias in estimating the difference of the treatment
effects (i.e., the difference of the response rates of two treat-
ments) are shown in Figure 5. It shows that the bias can
account for up to 10% of the true difference in the response
rates in some settings. The difference in the treatment effects
is always over estimated for the target allocation proportion
of

√
p1/(

√
p1 +

√
p2) shown in red curves, and the bias de-

creases with the increase of samples sizes or true response
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Figure 1. Bias of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 100.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are true response rates.
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Figure 2. Bias of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 100.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are true response rates.
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Figure 3. Bias of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 100.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are true response rates.
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Figure 4. Bias of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 100.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are true response rates.
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Figure 5. Bias of p̂2 − p̂1 using both procedures and varying the sample size from 20 to 100.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and q2/(q1 + q2) for red and blue lines respectively.
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rates. When the target allocation proportion is q2/(q1+ q2),
the bias of the difference of the treatment effects is very
small when both p1 and p2 are less than 0.5. It can be un-
der estimated in some settings. For this target allocation
setting, the largest over estimation of the treatment effects
occurs when the true response rates are large for both p1
and p2, as shown in the last panel of Figure 5. This result
suggests that when the response rates are less than 0.5, tar-
get allocation of q2/(q1 + q2) is preferred while when the
response rates are larger than 0.5, the target allocation of√
p1/(

√
p1+

√
p2) is preferred to reduce the bias for estimat-

ing the treatment difference. Same as the performance of the
estimates for response rates, the bias for the treatment ef-
fect estimates converge to zero as sample size increases, as
shown in Supplemental Figures 18.

To better evaluate the precision of the asymptotic bias
approximation in Table 1, and to discover the performance
of the OAR estimators in different settings, we fix the sample
size to n = 50 to check the bias trend of p̂1 and p̂2 by vary-
ing the true values of p1 or p2. From Supplemental Figures
10–13 in Appendix B, we can see that both p̂1 and p̂2 un-
derestimate their corresponding parameters, which are con-
sistent with the results from Figures 1–4. In all figures, the
bias of p̂1 and p̂2 are the same when p1 equals to p2 as it
should be. The Supplemental Figure 19 shows that the bias
for the difference of the response rates reach zero, when the
true response rates are same. Furthermore, as the difference
of p1 and p2 becomes larger, the bias grows larger as well.
The bias patterns are different when different target alloca-
tion proportions are selected. When the target proportion
of patients allocated to arm 1 is

√
p1/(

√
p1 +

√
p2), the ap-

proximated bias of p̂2 becomes worse in the scenarios with
p2 < 0.3. When the target proportion of patients allocated
to arm 1 is q2/(q1 + q2), the approximated bias for p̂1 gets
worse in the scenarios with true response rates larger than
0.7. Both Supplemental Figures 10 and 11 show that, when
p1 is small and p2 is large, bias of p̂1 is large, but bias of p̂2
is small. Likewise, when p1 is large and p2 is small, bias of p̂1
is small, but bias of p̂2 is large. These phenomenon can be
proved by the derivation in Table 1, and the related proof
is shown in Appendix A. In the up-left panels of Supple-
mental Figures 10 and 11, there are large gaps between the
approximated and simulated bias for p̂1, which are shown
as solid and dashed black lines. These gaps are consistent
with those top panels in Figures 1 and 2. Since the formulas
in Table 1 are approximated by omitting some high order
terms, it may influence the performance of the approxima-
tion when p1 or p2 are extremely small. For example, if we
use

√
p1/(

√
p1+

√
p2) allocation proportion and SMLE pro-

cedure, the bias of p̂1 is approximated by the omitted terms
with higher orders of p1 in the denominators, accordingly
the gaps between the approximated and simulated bias for
p̂1 gets wider as p2 increases.

Another interesting finding is that both Supplemental
Figures 12 and 13 show that the red lines (bias of p̂2) have

the parabola shape in the sense that when p2 is very small
or very big, the bias is small, but the bias is larger when
p2 is closer to 0.5. Note that the shape of the red lines can
be derived from the formula in Table 1. In that the approx-
imated bias of p̂2 for q2/(q1 + q2) allocation proportion in
SMLE procedure is

−p2q2

[
1

nq1
− q1 + 2q2 − 3

n2q21

]

that is,

−p2(1− p2)

[
1

n(1− p1)
− (1− p1) + 2(1− p2)− 3

n2(1− p1)2

]

To find the p2 which maximizes the bias, we obtain the
following partial differentiation equation,

− ∂

∂p2
p2(1−p2)

[
1

n(1− p1)
− (1− p1) + 2(1− p2)− 3

n2(1− p1)2

]
= 0

The maximized bias is reached when

p2 =
1

6

[√
n2(1− p1)2 + 2n(1− p21) + (p1 + 2)2

−n(1− p1)− p1 + 2]

which are all around 0.5 when p1 is from 0.1 to 0.9. The same
steps can be used to explain the bias curve for p̂2 in DBCD
procedure too. On the other hand, when p2 is large, the bias
of p̂1 can be very large, which are shown as black lines in
Supplemental Figures 12 and 13. This can also be explained
by the formula in 1. In that the approximated bias of p̂1 for
q2/(q1 + q2) allocation proportion in SMLE procedure is

−p1q1

[
1

nq2
− 2q1 + q2 − 3

n2q22

]

that is,

−p1(1− p1)

[
1

n(1− p2)
− 2(1− p1) + (1− p2)− 3

n2(1− p2)2

]

To find the p2 which maximizes the bias of p̂1, we obtain
the following partial differential equation,

− ∂

∂p2
p1(1−p1)

[
1

n(1− p2)
− 2(1− p1) + (1− p2)− 3

n2(1− p2)2

]
= 0

The maximized bias for p̂1 is reached when p2 = (n+4p1 +
1)/(n− 1) which is larger than the upper bound of “[0,1]”.
Since the monotone of the partial differential equation, the
bias of p̂1 get larger with the increase of p2.

To explain the issue of bias in general and clear terms, we
focused on the bias in each treatment parameter pi. How-
ever, the difference in the treatment effects, p2−p1, is likely
to be the primary outcome measure in a clinical trial. We
also evaluated the performance of our bias approximation
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strategy for treatment difference. From Supplemental Fig-
ure 18, we notice that the difference estimators tend to be
over estimated, when the target allocation proportion for
arm 1 is

√
p1/(

√
p1 +

√
p2). If we use q2/(q1 + q2) alloca-

tion proportion, the bias can be either positive or negative,
which depends what the true response rates are. The bias
pattern are similar between SMLE and DBCD procedures.
Our approximation strategy can estimate the bias well.

5. DISCUSSION

In this study, we evaluate and quantify the bias of the re-
sponse rate estimators in outcome adaptive randomization
designs. At first sight, it may seem odd that the response
rate estimators are always underestimated in OAR designs,
and we may wonder what is the cause of this underestima-
tion.

Different from traditional ER trials, in which patients are
assigned to each treatment arm with equal probability in-
dependently, in OAR trials, the randomization probability
of the new incoming patient is dependent on the current
observed data. The Supplemental Figure 20 shows that the
ER is unbiased compared with OAR in different simulation
scenarios. Under the standard assumption of random vari-
ables being identical and independent, such as in ER, the
parameter can be consistently estimated. Under the OAR
design, however, the random variables are still identical but
no longer independent. Hence, the estimator may not be
unbiased. When the sample size is small, the response rates
tend to be underestimated.

It is reasonable to consider that the dependency struc-
ture of the OAR design affects the convergence of the al-
location probability and the response rate estimators. We
provide some heuristic explanation for the under-estimated
bias below. Suppose that p1 = 0.2 and p2 = 0.4 are the true
response rates. The target allocation proportion for arm 1 is√
p1/(

√
p1+

√
p2), as shown in the plots in the center panels

of Figures 1 and 2. Assuming we have assigned 10 patients to
treatment 1, it is not uncommon that we observe only 1 suc-
cess. Then, depending on the current observation, p̂1 = 0.1,
we may assign future patients to treatment 1 with a small
probability that is smaller than the target allocation prob-
ability based on the true parameters. As a result, after 100
patients have been assigned to a treatment, at the end of the
trial it is possible that p̂1 has not yet been restored from 0.1
to 0.2. That is, if the initial estimate of p1 is smaller than
the expected value, fewer patients will be assigned to that
arm, and it is less likely that the trend of the underesti-
mation can be recovered. The same problem exists for the
treatment arm that has a higher response rate, if the initial
estimated response rate is smaller than the expected value.
On the other hand, when pi (where i ∈ {1, 2}) is overesti-
mated, patients have a greater chance of being assigned to
that treatment. With more patients assigned to that treat-
ment, the true response rate can be better estimated. Com-
pared to the underestimating statistic p̂i, the overestimating

statistic p̂i is more likely to be restored to a value closer to
the truth before the end of the trial. This occurs because the
results are more likely to converge toward the truth as more
patients are evaluated. As a result, both p̂1 and p̂2 tend to
be underestimating the true parameters, but the one with a
smaller true response rate tends to be underestimated more.
As the sample size increases, the underestimated values are
restored and approach the true values. A similar explanation
can be applied to the scenario in which the target allocation
proportion for arm 1 is q2/(q1 + q2).

In addition to discovering the cause of the estimator bias
in OAR, we also derived a practical approximation to adjust
the bias for response rate estimator in the OAR design. Our
derived formulas in Table 1 can approximate the bias well,
even when the sample size is less than 100. Substituting p1
and p2 with estimated response rates, we can approximate
the bias of these estimates, and provide a correction.

In general our approximation strategy provide good esti-
mate of the bias. Nevertheless, some of the gaps between the
approximated and simulated values cannot be ignored when
the sample size is small. Setting

√
p1/(

√
p1 +

√
p2) as the

target allocation proportion to arm 1, we find that the ap-
proximate bias curves of p̂1 differ a lot from the simulated
curves when p1 = 0.1, as shown in Figures 1 and 2. The
bias can be as large as 20% of the true response rates, when
the sample size is small. This is consistent with the up-left
panel in Supplemental Figures 10 and 11 and the Supple-
mental Figures 14–15. We suggest future trial designer avoid
the settings which may cause severe bias. For example, when
p1 = 0.1, we suggest to have a simple size greater than 500 to
avoid severely under-estimating p1, as shown in the Supple-
mental Figures 14–15. When setting the target allocation
proportion to arm 1 as q2/(q1 + q2), p1 is severely under-
estimated, when p2 = 0.9, as shown in Figures 3 and 4.
This is consistent with Supplemental Figures 12 and 13.
This result matches the one reported by [15], in which the
limiting distribution of the proportions are unknown when
p1 + p2 > 3/2. From both of the results of theory deriva-
tion and simulation, the bias is reduced and converges to
zero, as the sample size increases. For cases with a small
sample size and low response rate, we can consider applying
some methods to alleviate the large underestimated bias.
Among these strategies, we could choose to introduce ER in
the first stage [14], threshold the randomization probability
to avoid extreme allocation rates, or apply tuning param-
eters to determine the degree of imbalance (Lee and Chu,
2012). In our proposed two allocation proportion settings,
when the assumed true response rates are small, we recom-
mend choosing the target allocation proportion q2/(q1+ q2)
for treatment 1. On the other hand, the allocation propor-
tion

√
p1/(

√
p1 +

√
p2) is recommended when the assumed

response rates are large. We can also perform the Taylor’s
expansion to higher-order terms and propose correspond-
ing estimators by plugging in the estimated response rate
to reduce the bias. However, such estimators could be more
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complicated as the number of higher order terms increase.
Further improvements on the remedy of bias can be topics
of future research.

Outcome adaptive randomization (OAR) in clinical trials
uses observed outcomes of existing patients to compute
randomization probabilities for newly accrued patients. It
requires more resources to plan and implement. Except in
early phase I cancer trials, adaptive designs have not been
widely adopted [13]. However, with the “The 21st Century
Cures Act” on its way, the future precision medicine
development plan is integrating research with patient
care, providing every individual patient with the best
possible treatment based on the available information, and
continuing to learn and improve the knowledge. Both I-SPY
2 and BATTLE are trials applying adaptive design trials
in drug screening under the precision medicine structures
[1, 10]. Some opinions emphasize efficiency above all other
concerns to minimize research resources and expeditiously
pass findings to the care delivery systems, which ER may
perform better, but not always. However, when faced a life-
threatening diseases, cancer for example, is there a single
patient who does not want to benefit from participating
in a clinical trial? Furthermore, physicians’ mandate is to
treat patients with the best treatment based on the current
knowledge. Hence, it is reasonable to assign more patients
to putatively better treatments with higher chance, in
addition to have patients to contribute to generalizable
knowledge in trials.

In summary, the OAR design is useful in many clinical
trial settings to improve the overall response for patients in
the trial. Although we have identified the estimation bias for
OAR, the bias is relatively small in most cases. As the sam-
ple size increases, the bias is reduced and converges to zero.
For cases with small sample sizes, the bias response rates
estimator can not be neglected. Measure can be taken in
implementing adaptive randomization to avoid extreme al-
location proportion. In order to deal with unavoidable bias
from the OAR design, the estimators can be adjusted by
adding measures approximated from the methods we pro-
posed, to improve the performance of the estimators from
the OAR design.

APPENDIX A

A.1 Derivation of asymptotic bias

Suppose Y1(n) ∼ Bin(N1[n], p1) and Y2(n) ∼ Bin(N2[n],
p2), where Yi(n) and Ni(n) denote the respective number of
responses and patients assigned to treatment i based on the
first n patients for i ∈ {1, 2}. These random variables follow
binomial distributions.

Let Pp1,p2 denote the probability measure on the sequence
of responses determined by p1 and p2, and Ep1,p2 denote the
expectation with respect to Pp1,p2 . The likelihood ratio at
stage n under Pp1,p2 relative to P 1

2 ,
1
2
is given by

Ln(p1, p2) =
2∏

i=1

2−Ni(n)p
Yi(n)
i q

Ni(n)−Yi(n)
i .

Thus, the maximum likelihood estimator of pi at stage n
can be shown to be

p̂i =
Yi(n)

Ni(n)
, where i ∈ {1, 2} .

Suppose we use the sequential maximum likelihood pro-
cedure (SMLE) and set the allocation probability for treat-
ment i as

ρ̂i(p1, p2) =

√
p̂i√

p̂1 +
√
p̂2

, where i ∈ {1, 2} .

From (A.1), it then follows that

∂

∂pi
logLn(p1, p2) =

1

Ln(p1, p2)

∂

∂pi
Ln(p1, p2)

=

[
Yi(n)

pi
− Ni(n)− Yi(n)

qi

]
,

where i ∈ {1, 2} .

From the equation above, we can obtain

∂

∂pi
Ln(p1, p2) =

[
Yi(n)

pi
− Ni(n)− Yi(n)

qi

]
Ln(p1, p2),

where i ∈ {1, 2} .

Then, by the fundamental identity of sequential analysis
(Woodroofe, 1982), we can obtain

Ep1,p2

[
1

Ni(n)

]
=

∫
1

Ni(n)
dPp1,p2

=

∫
1

Ni(n)
Ln(p1, p2)dP1/2,1/2,

where i ∈ {1, 2} .

Assuming that Ep1,p2 [Ni(n)] is continuous in pi, we may
differentiate within the integral sign to obtain

∂

∂pi
Ep1,p2

[
1

Ni(n)

]
=

∫
1

Ni(n)

∂

∂pi
Ln(p1, p2)dP1/2,1/2

=

∫
1

Ni(n)

[
Yi(n)

pi
− Ni(n)− Yi(n)

qi

]
Ln(p1, p2)dP1/2,1/2

=
1

piqi

∫
1

Ni(n)
[Yi(n)− piNi(n)]

Ln(p1, p2)dP1/2,1/2

=
1

piqi

∫
1

Ni(n)
[Yi(n)− piNi(n)]dPp1,p2

=
1

piqi
Ep1,p2(p̂i − pi), where i ∈ {1, 2} .
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Hence, we have the relation
(1)

Ep1,p2(p̂i) = pi + piqi
∂

∂pi
Ep1,p2

[
1

Ni(n)

]
, where i ∈ {1, 2} .

Applying Taylor’s expansion, we can obtain suitable approx-

imations for Ep1,p2

[
1

Ni(n)

]
. In particular, we have the fol-

lowing steps:

1

Ni(n)
=

1

Ep1,p2 [Ni(n)]
− Ni(n)− Ep1,p2 [Ni(n)]

(Ep1,p2 [Ni(n)])
2

+
(Ni(n)− Ep1,p2 [Ni(n)])

2

(Ep1,p2 [Ni(n)])
3 + . . .

Ep1,p2

[
1

Ni(n)

]
=

1

Ep1,p2 [Ni(n)]
+

varp1,p2 [Ni(n)]

(Ep1,p2 [Ni(n)])
3

+ . . . , where i ∈ {1, 2} .

(2)

Suppose we use the SMLE and set the allocation probability
for treatment i as

ρ̂i(p1, p2) =

√
p̂i√

p̂1 +
√
p̂2

, where i ∈ {1, 2} .

From the results of Hu and Rosenberger (2003), we know
that

Ep1,p2 [Ni(n)] = n · ρ̂i(p1, p2) =
n · √pi√
p1 +

√
p2

,

where i ∈ {1, 2}

varp1,p2 [Ni(n)] = n ·
p

3
2
1 (p2 +

1
2q2) + p

3
2
2 (p1 +

1
2q1)

(
√
p1 +

√
p2)3

√
p1p2

.

Substituting the expectation and variance in Equation (2)
with the results above, we obtain

Ep1,p2

[
1

N1(n)

]

≈
√
p1 +

√
p2

n
√
p1

+
p

3
2
1 (p2 +

1
2q2) + p

3
2
2 (p1 +

1
2q1)

n2p21
√
p2

Ep1,p2

[
1

N2(n)

]

≈
√
p1 +

√
p2

n
√
p2

+
p

3
2
1 (p2 +

1
2q2) + p

3
2
2 (p1 +

1
2q1)

n2p22
√
p1

.

Applying the above results to Equation (1), we obtain the
approximation for the expectation of the response rate esti-
mators as

Ep1,p2(p̂1)

≈ p1 + p1q1
∂

∂p1
Ep1,p2

[
1

N1(n)

]

≈ p1 − p1q1

[ √
p2

2np
3
2
1

+
p

3
2
1 (p2 + 1) + 2p1p

3
2
2 + 4p

3
2
2

4n2p31
√
p2

]

Ep1,p2(p̂2)

≈ p2 + p2q2
∂

∂p2
Ep1,p2

[
1

N2(n)

]

≈ p2 − p2q2

[ √
p1

2np
3
2
2

+
p

3
2
2 (p1 + 1) + 2p

3
2
1 p2 + 4p

3
2
1

4n2p32
√
p1

]
.

From the above derivation, the bias of p̂1 and p̂2 can be
respectively approximated by

−p1q1

[ √
p2

2np
3
2
1

+
p

3
2
1 (p2 + 1) + 2p1p

3
2
2 + 4p

3
2
2

4n2p31
√
p2

]

−p2q2

[ √
p1

2np
3
2
2

+
p

3
2
2 (p1 + 1) + 2p

3
2
1 p2 + 4p

3
2
1

4n2p32
√
p1

]

In the SMLE randomization procedure, if we choose the
allocation probability for treatment 1 as

ρ̂1 =
q2

q1 + q2
, where i ∈ {1, 2} ,

then from the results of Hu and Rosenberger (2003), we
know that

Ep1,p2 [N1(n)] =
n · q2
q1 + q2

, Ep1,p2 [N2(n)] =
n · q1
q1 + q2

,

where i ∈ {1, 2} ,

varp1,p2 [Ni(n)] =
nq1q2(3− q1 − q2)

(q1 + q2)3
.

Thus we obtain

Ep1,p2

[
1

N1(n)

]
≈ q1 + q2

nq2
+

nq1q2(3− q1 − q2)

(nq2)3

Ep1,p2

[
1

N2(n)

]
≈ q1 + q2

nq1
+

nq1q2(3− q1 − q2)

(nq1)3
.

and

Ep1,p2(p̂1) ≈ p1 + p1q1
∂

∂p1
Ep1,p2

[
1

N1(n)

]

≈ p1 − p1q1

[
1

nq2
− 2q1 + q2 − 3

(nq2)2

]

Ep1,p2(p̂2) ≈ p2 + p2q2
∂

∂p2
Ep1,p2

[
1

N2(n)

]

≈ p2 − p2q2

[
1

nq1
− q1 + 2q2 − 3

(nq1)2

]
.

From the above derivation, the bias of p̂1 and p̂2 can be
respectively approximated by

−p1q1

[
1

nq2
− 2q1 + q2 − 3

(nq2)2

]

−p2q2

[
1

nq1
− q1 + 2q2 − 3

(nq1)2

]
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Using the DBCD randomization procedure, when we
choose the allocation probability for treatment 1 as

ρ̂1(p1, p2) =

√
p̂1√

p̂1 +
√
p̂2

.

From the results of Hu and Rosenberger (2003), we know
that

Ep1,p2 [Ni(n)] = n · ρ̂i(p1, p2) =
n · √pi√
p1 +

√
p2

,

where i ∈ {1, 2} ,

varp1,p2 [Ni(n)] = n ·
p

3
2
1 (p2 +

3
2q2) + p

3
2
2 (p1 +

3
2q1)

3(
√
p1 +

√
p2)3

√
p1p2

.

Hence, we obtain

Ep1,p2

[
1

N1(n)

]

≈
√
p1 +

√
p2

n
√
p1

+
p

3
2
1 (p2 +

3
2q2) + p

3
2
2 (p1 +

3
2q1)

3n2p21
√
p2

Ep1,p2

[
1

N2(n)

]

≈
√
p1 +

√
p2

n
√
p2

+
p

3
2
1 (p2 +

3
2q2) + p

3
2
2 (p1 +

3
2q1)

3n2p22
√
p1

,

and thus we obtain

Ep1,p2(p̂1)

≈ p1 + p1q1
∂

∂p1
Ep1,p2

[
1

N1(n)

]

≈ p1 − p1q1

[ √
p2

2np
3
2
1

− p
3
2
1 (p2 − 3) + 2p1p

3
2
2 − 12p

3
2
2

12n2p31
√
p2

]

Ep1,p2(p̂2)

≈ p2 + p2q2
∂

∂p2
Ep1,p2

[
1

N2(n)

]

≈ p2 − p2q2

[ √
p1

2np
3
2
2

− 2p
3
2
1 (p2 − 6) + p1p

3
2
2 − 3p

3
2
2

12n2p32
√
p1

]

From the above derivation, the bias of p̂1 and p̂2 can be
respectively approximated by

−p1q1

[ √
p2

2np
3
2
1

− p
3
2
1 (p2 − 3) + 2p1p

3
2
2 − 12p

3
2
2

12n2p31
√
p2

]

−p2q2

[ √
p1

2np
3
2
2

− p
3
2
2 (p1 − 3) + 2p

3
2
1 p2 − 12p

3
2
1

12n2p32
√
p1

]

Using the DBCD as the randomization procedure, when
we choose the allocation probability for treatment 1 as

ρ̂1 =
q2

q1 + q2
, where i ∈ {1, 2} ,

from the results of Hu and Rosenberger (2003), we know
that

Ep1,p2 [N1(n)] =
n · q2
q1 + q2

, Ep1,p2 [N2(n)] =
n · q1
q1 + q2

,

where i ∈ {1, 2} ,

varp1,p2 [Ni(n)] =
nq1q2(11− 5q1 − 5q2)

5(q1 + q2)3
.

Hence, we obtain

Ep1,p2

[
1

N1(n)

]
≈ q1 + q2

nq2
+

nq1q2(11− 5q1 − 5q2)

5(nq2)3

Ep1,p2

[
1

N2(n)

]
≈ q1 + q2

nq1
+

nq1q2(11− 5q1 − 5q2)

5(nq1)3
,

and

Ep1,p2(p̂1) ≈ p1 + p1q1
∂

∂p1
Ep1,p2

[
1

N1(n)

]

≈ p1 − p1q1

[
1

nq2
− 10q1 + 5q2 − 11

5(nq2)2

]

Ep1,p2(p̂2) ≈ p2 + p2q2
∂

∂p2
Ep1,p2

[
1

N2(n)

]

≈ p2 − p2q2

[
1

nq1
− 5q1 + 10q2 − 11

5(nq1)2

]
.

From the above derivation, the bias of p̂1 and p̂2 can be
respectively approximated by

−p1q1

[
1

nq2
− 2q1 + q2 − 3

(nq2)2

]

−p2q2

[
1

nq1
− q1 + 2q2 − 3

(nq1)2

]

In the SMLE randomization procedure, if we choose the
allocation probability for treatment 1 as

ρ̂1(p1, p2) =

√
p̂1√

p̂1 +
√
p̂2

,

we can easily prove,

p1q1

[ √
p2

2np
3
2
1

+
p

3
2
1 (p2 + 1) + 2p1p

3
2
2 + 4p

3
2
2

4n2p31
√
p2

]

> p2q2

[ √
p1

2np
3
2
2

+
p

3
2
2 (p1 + 1) + 2p

3
2
1 p2 + 4p

3
2
1

4n2p32
√
p1

]

Since

p1q1 ·
√
p2

2np
3
2
1

> p2q2 ·
√
p1

2np
3
2
2

,

p1q1 ·
p

3
2
1 (p2 + 1) + 2p1p

3
2
2 + 4p

3
2
2

4n2p31
√
p2

> p2q2 ·
p

3
2
2 (p1 + 1) + 2p

3
2
1 p2 + 4p

3
2
1

4n2p32
√
p1
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Similarly, from Table 1, when p1 < p2, we can also prove

p1q1

[
1

nq2
− 2q1 + q2 − 3

(nq2)2

]
> p2q2

[
1

nq1
− q1 + 2q2 − 3

(nq1)2

]

p1q1

[ √
p2

2np
3
2
1

− p
3
2
1 (p2 − 3) + 2p1p

3
2
2 − 12p

3
2
2

12n2p31
√
p2

]

> p2q2

[ √
p1

2np
3
2
2

− p
3
2
2 (p1 − 3) + 2p

3
2
1 p2 − 12p

3
2
1

12n2p32
√
p1

]

p1q1

[
1

nq2
− 2q1 + q2 − 3

(nq2)2

]
> p2q2

[
1

nq1
− q1 + 2q2 − 3

(nq1)2

]

Hence, when p1 < p2, the bias of p̂1 is larger than the bias
of p̂2.

APPENDIX B. SUPPLEMENTAL FIGURES

Figure 6. Bias of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are settings of true response rates.
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Figure 7. Bias of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are settings of true response rates.

Evaluation of bias for outcome adaptive randomization designs with binary endpoints 301



Figure 8. Bias of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are settings of true response rates.
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Figure 9. Bias of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are settings of true response rates.
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Figure 10. Bias of p̂1 and p̂2 using the SMLE procedure and varying p1 and p2.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and n = 50.
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Figure 11. Bias of p̂1 and p̂2 using the DBCD procedure and varying p1 and p2.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and n = 50.
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Figure 12. Bias of p̂1 and p̂2 using the SMLE procedure and varying p1 and p2.

Target allocation proportion for arm 1 is q2/(q1 + q2) and n = 50.
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Figure 13. Bias of p̂1 and p̂2 using the DBCD procedure and varying p1 and p2.

Target allocation proportion for arm 1 is q2/(q1 + q2) and n = 50.
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Figure 14. Bias proportion of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are settings of true response rates.
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Figure 15. Bias proportion of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and p1 and p2 are settings of true response rates.

Evaluation of bias for outcome adaptive randomization designs with binary endpoints 309



Figure 16. Bias proportion of p̂1 and p̂2 using the SMLE procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are settings of true response rates.
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Figure 17. Bias proportion of p̂1 and p̂2 using the DBCD procedure and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is q2/(q1 + q2) and p1 and p2 are settings of true response rates.

Evaluation of bias for outcome adaptive randomization designs with binary endpoints 311



Figure 18. Bias of p̂2 − p̂1 using both procedures and varying the sample size from 20 to 1000.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and q2/(q1 + q2) for red and blue lines respectively.
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Figure 19. Bias of p̂2 − p̂1 using both procedures with p1 = p2.

Target allocation proportion for arm 1 is
√
p1/(

√
p1 +

√
p2) and q2/(q1 + q2) for red and blue lines respectively.
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Figure 20. Bias of p̂2 − p̂1 using both ER and OAR (SMLE) and varying p1 and p2.
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