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Computerized adaptive test using raw responses
for item selection: theoretical results and
applications for the up-and-down method
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Modern computerized adaptive testing (CAT) is finding
applications that contain more intensive assessments, col-
lected over nontraditional devices such as tablets and smart-
phones. In this paper, we introduce an CAT algorithm that
uses raw responses to adaptively select items and does not
require updating the ability estimate at every administra-
tion of an item. The proposed algorithm is especially useful
in adaptive assessment situations in which updating abil-
ity estimate at each administration is either not feasible or
too costly to implement. Specifically, an a-stratified multi-
stage up-and-down method is proposed as an approxima-
tion to the commonly used recursive maximum likelihood
estimate (R-MLE). Using Markov chain tools, we derive
theoretical results for the statistical properties of the up-
and-down method. We also report empirical studies for the
performance of the proposed method. Both simulation ex-
periments and real data analysis are included. Limitations
of the method such as reduced statistical efficiency are also
discussed. Overall, despite the limitations, our results show
that the up-and-down method is a promising alternative to
the classical R-MLE and well-suited for some CAT applica-
tions such as ecological momentary assessments.
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1. INTRODUCTION

Two growing technology-related trends are emerging in
the field of educational, psychological, and health assess-
ment. Consider the assessment of depression and anxiety in
the study of psychopathology. Currently, most such assess-
ments are administered at a few fixed time points, often
times with lengthy instruments. This means that the as-
sessments (1) may not be able to capture the true nature
of the disorders, which might be fluid and dynamic, and
(2) may introduce potential bias into the assessment as a
result of recall bias, respondent burden and fatigue. As an
example for (1), a positive response to a self-reported depres-
sion item like “I feel blue” (today), could be more related
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to daily fluctuation in mood rather than attributable to a
psychopathologic state of depression. To address these lim-
itations of traditional assessment, there is a growing trend
to employ tools such as ecological momentary assessment
(EMA; [7, 26]) to either collect data at regular timepoints
but with much higher frequencies (e.g., several times a day).
Alternatively, adaptive momentary assessment as well as
just-in-time adaptive intervention (JITAI) based on cues
and other information (such as habitual time schedule) are
also becoming commonplace (e.g., [19]). Instead of paper-
and-pencil administration, EMA and JITAI often rely on
modern information and communication technology (ICT)
such as smartphones and tablets to collect realtime or close-
to-realtime information.

The second growing trend is the use of computerized
adaptive tests (CAT; [15, 16, 22, 29, 25]). In a CAT ad-
ministration, items are adaptively presented to the respon-
dent. In other words, for each respondent, a customized set
of items is excerpted from a larger pool of available items.
The items are administered sequentially, and the presented
item is typically selected based on a current estimate of the
targeted latent trait. As an example of CAT in the study
of depression, Gibbons et al. [11] demonstrated that CAT
can be successfully applied to a depression inventory with
increased precision of depression measurement and reduced
respondent burden.

It is natural to envision applications that combine the two
technologies - EMA/JITAI and CAT (e.g., see [27]). Because
of the high frequency of assessing respondents, EMA/JITAI
augmented with CAT could be a powerful tool for delivering
assessment via smartphone and at the same time minimiz-
ing respondent burden. Continuing to use depression as an
example, recent uses of smartphone-enabled JITAI for de-
pression include the EU-sponsored ICT4Depression project
[28]. Examples of mobile platforms for CAT are provided
in [10, 12]. As the field of educational and psychological as-
sessment is gravitating toward using mobile devices as data
collection and assessment tools, there is clear and pressing
need for enhancing the methodology that underlies CAT for
more efficient and sustainable deployment on such devices.

In this paper, we propose a CAT algorithm that is based
on a simple decision rule for selecting items. The decision
is based upon the raw response and does not necessitate

http://www.intlpress.com/SII/


the computationally demanding procedure of computing the
ability estimate. The proposed CAT algorithm is especially
suitable for CAT designs such as EMA/JITAI deployed on
a mobile device. The algorithm is based on the so-called up-
and-down method, originally described in [8], and recently
applied in settings such as dose-design [21]. In psychome-
tric assessment, the idea of not using intermediate ability
estimation to select items can be traced back to intelligence
testing (Binet and Simon [1]), and is related to the multi-
stage test approach proposed by Lord [17]. Dodd et al. [9]
suggested a CAT algorithm that does not update ability at
each iteration when responses are all correct or all incor-
rect. Briefly, the idea underlying the up-and-down method
for CAT is to use the raw response to a current item to de-
cide whether an easier or a more difficult item (assuming
the items are all first linearly ordered) should be presented
next. In other words, if the current response is positive (e.g.,
correct in a cognitive test) then a more difficult item will
be presented, and vice versa. The up-and-down algorithm is
easy to understand, simple to explain, and convenient to im-
plement. Surprisingly, it can be proved that this seemingly
unsophisticated algorithm (at first-glance) possesses many
desirable statistical properties. In this paper we discuss the
behavior of the CAT estimate derived from the up-and-down
method. Additionally we present empirical evidence that the
proposed method performs reasonably well when compared
to traditional and more computationally intensive CAT al-
gorithms.

This article makes several contributions to the psychome-
tric literature. First, the proposed method opens new avenue
for the study of a family of CAT algorithms that is based
on raw responses and does not require realtime updating of
trait estimates at each and every administration of an item.
We call such algorithms raw response driven CAT (RRD-
CAT). This type of RRD-CAT algorithms has the potential
for widespread applications of CAT on mobile devices or
client-server implementations in which technical, logistic, or
intellectual property considerations present challenges for
realtime updates or require elaborate communication be-
tween the mobile device and the remote server. The saving
from not being required to compute an ability estimate has
important implications especially for emerging adaptive de-
signs. We will elaborate on this point and discuss a few ex-
amples of potential applications in the Discussion section.
The paper also contributes to the theory of CAT. Specifi-
cally, we study the behavior of the up-and-down estimates
from a new perspective of Markov chain. Because of the
sequential design of CAT, responses are not conditionally
independent given the trait estimate. Asymptotic analysis
could therefore be challenging and indeed theoretical stud-
ies of the statistical behavior of CAT algorithms are few and
far between. Chang and Ying [4] provides asymptotic anal-
ysis of the standard procedure of selecting items based on
maximizing the Fisher information [18, pg. 151–153]. As far
as we know, our paper represents a first attempt to under-
stand the behavior of a raw-response driven CAT algorithm

from a Markov chain perspective. The Markov chain related
tools developed in this paper have the potential to be trans-
lated and applied to other similar CAT designs. Again, we
discuss such opportunities in the Discussion section.

The paper is organized as follows: First we provide back-
ground on both standard CAT algorithm based on recur-
sive maximum likelihood and the up-and-down method. We
provide the theoretical results regarding the proposed up-
and-down CAT and report results from two simulation ex-
periments. We then describe two real data analyses to in-
vestigate the real world behaviors of the up-and-down CAT
implementation as compared to the standard approach. The
first data analysis uses items from the ACT math test, and
the second data analysis uses depression items from the Pa-
tient Reported Outcome Measurement Information System
(PROMIS). Finally we provide a discussion and a brief con-
clusion.

2. BACKGROUND

2.1 Fisher information based CAT and
R-MLE

Consider the two-parameter logistic (2PL) item response
model, which has the form:

(1) p(θ) = P (Y = 1|θ) = ea(θ−b)

1 + ea(θ−b)
,

where Y = 0, 1 is the binary response, θ is the latent trait,
and a and b are the discrimination and difficulty item pa-
rameters, respectively. The 1PL IRT model can be obtained
by setting a = 1 for all items. The 2PL model appears to be
more commonly used in the CAT literature because of its
flexibility and in many cases, better fit to response data. In
this paper, we report both 2PL and 1PL results.

At a given iteration in CAT, the standard approach is to
select the item with the maximum Fisher item information
as the next presented item [18], computed at the exami-
nee’s current estimated ability level under the 2-PL model.
This method is also known as recursive maximum likelihood
estimation (R-MLE). R-MLE selects an item to maximize
precision in estimating an examinee’s θ. Thus R-MLE re-
quires updating θ after every administration of an item and
the computation of the maximum Fisher information. When
b is close to θ, items with high a values have high informa-
tion. Consequently, items with high a values tend to be more
frequently exposed than items with lower a values. Over-
exposure of some items is a potential problem in R-MLE for
high-stake testing such as licensure exams [3, 14].

2.2 Up-and-down method: one-parameter
logistic IRT

It is easier to illustrate the key features of the up-and-
down method using the one-parameter logistic IRT (i.e.,
a = 1 in Equation (1) for all items):
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0. Order the items by their difficulty parameter b from
smallest to largest. Without loss of generality, we as-
sume that b on consecutive items in the ordered list
differ by one unit Δ.

1. Start the first item that has the median value of b.
2. The difficulty level of the next test item, b, is increased

by one unit when the response is 1. Otherwise, it is
decreased by one unit.

3. Repeat Step 2 until M items have been administered.

The length of the test M is determined a priori. When the
test is finished, the method of maximum likelihood is applied
to the collection of M responses to estimate the examinee’s
ability parameter θ.

Consider an examinee with ability level θ, the data set
generated by the up-and-down procedure produces the se-
quence (x,y) = {(x0, y0), . . . , (xn, yn)}, where xt repre-
sents the difficulty level for the tth selected item and yt
is the corresponding response value. The sequence {Xt, t =
0, 1, · · · , n} forms a Markov chain (MC) on a state space
{bj = x0 + jΔ, j ∈ Z}, where Z is the set of integers. A key
element in understanding the behavior of the up-and-down
method is the Markov kernel, in this case the transition
probability matrix - i.e., how the state xt transitions into
the next state xt+1.

Observe that

P (Xi+1 = Xi +Δ|(Xk, Yk), 0 ≤ k ≤ i)

= P (Yi = 1|Xi) = e(θ−Xi)/[1 + e(θ−Xi)],

P (Xi+1 = Xi −Δ|(Xk, Yk), 0 ≤ k ≤ i)

= P (Yi = 0|Xi) = 1/[1 + e(θ−Xi)].

It follows that the transition probability matrix P = (px1,x2)
is such that px1,x1+Δ + px1,x1−Δ = 1. Specifically,

px1,x2 = P{X2 = x2|X1 = x1}(2)

=

{
e(θ−x1)/[1 + e(θ−x1)], x2 = x1 +Δ,

1/[1 + e(θ−x1)], x2 = x1 −Δ.

For simplicity in our illustration, we assume that X0 = 0,
Δ = 1, and bi = i. Figure 1 graphically depicts the dynamic
of the Markov chain using several values ofX. An arrow rep-
resents the direction of a transition. Table 1 shows subsets
of the the transition probability matrices for two different
levels of θ = 0 (less able student) and θ = 2 (able student).
Only P (X2 = 1|X1) is shown as P (X2 = 0|X1) is simply
the one-complement of the first quantity. Here X2 and X1

can be considered as the difficulty level presented at two
consecutive administrations.

Table 1 shows that for a more able student (θ = 2) the
likelihood of getting a more difficult question (by correctly
responding to the current question) when the current ques-
tion is an easy one (X1 = 0) is high (0.88). However when
the current question is already difficult (X1 = 3) then it is

Figure 1. An illustration of the Markov chain for a subset of
item difficulty level X (−1, 0, 1, 2) in up-and-down CAT.

Table 1. Illustration of transition matrix for sequence of
presented item difficulty for two values of θ

θ = 0 θ = 2
X1 P (X2 = X1 + 1|X1) P (X2 = X1 + 1|X1)

0 0.50 0.88
1 0.27 0.73
2 0.12 0.50
3 0.05 0.27

unlikely he will get a more difficult question (p = 0.27). The
chance is even lower (p = 0.05) for the less able student.
The transition probability matrix encapsulates the dynamic
of which the level of item difficulty is driven by the true
ability, and plays a key role in the proof for convergence
properties of the up-and-down method. More background
for MC is provided later in a separate subsection.

2.3 Up-and-down method: two-parameter
logistic IRT

We follow the a-stratified multistage computerized adap-
tive testing [3], which was designed for the R-MLE. The
idea is to partition the item bank into different groups that
have different levels of a parameter and then apply the one-
parameter logistic IRT CAT within each partition by treat-
ing the a parameter as fixed within the specific partition.
The a-stratified multistage CAT for R-MLE can be repre-
sented as follows:

1. Partition the item bank into K levels according to the
a-parameter values of items. The first item stratum con-
tains items with smallest a’s, the next stratum contains
items with second smallest a’s, etc.

2. Accordingly, partition the test into K stages.
3. Start with stage k = 1, select nk items based on the

matching of item difficulty (b-matching) parameter b

with the updated estimator θ̂n, stop after nk items have
been administered. θ̂n is the MLE of θ [3]. (p. 4 Section
2.4)

4. Repeat Step 3 for k = 2, . . . ,K.

Note that in step 3, depending on the selection method,
the selection of the nk in R-MLE items may take different
forms. For example, one can update θ within the stratum
for each item and match b that is closest to the updated
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θ using the maximum information criterion. Alternatively,
one can use a simpler scheme such as minimizing the cumu-
lative difference between the observed response and the ex-
pected probability of response with respect to θ [29, 13]. For
the up-and-down method, we replace the third step with the
procedure described in 1PL IRT model by treating the a pa-
rameter as fixed. Hereafter we also assume that the number
of items selected from each partition nk are all equal to M .
The total number of administered items is therefore MK.
The up-and-down method also requires an additional step
5 that computes the MLE estimate after all MK responses
have been collected. Unlike standard CAT using R-MLE,
the up-and-down method does not update θ̂ after every re-
sponse; the maximum likelihood estimate is calculated once
after all responses have been collected.

The a-stratified up-and-down procedure inherits the ad-
vantages of stratification scheme in a-stratified multistage
CAT in terms of item exposure. Both decrease exposure
rates of high a items and increase exposure rates of low
a items [3]. In other words, the up-and-down scheme for the
2PL model is also able to balance the exposure of items
across different values of the a parameter.

2.4 Markov chain (MC)

Recall that a MC is a sequence of random variables
{X0, X1, · · · , Xn} characterized by (1) the state space S,
which is a finite or countable set (here we assume S has N
finite elements) (2) an initial distribution π0 of the states,
and (3) the transition probability matrix from a state at
time (t−1) to a state at time t: pxt,xt−1 = P (Xt = xt|Xt−1 =
xt−1), where xt, xt−1 represent states in S. To describe the
Markov property with a pithy phrase: an MC satisfies the
assumption that “conditional on the present, the future does
not depend on the past”. Hence the dynamic of a MC is de-
termined by the initial distribution and the transition prob-
ability matrix. The MC is called homogeneous if the tran-
sition probability matrix does not change over time. Hence
for a homogeneous MC one can use the first two time points
to label the transition probability matrix as px1,x2 . As we
have derived above, in the up-and-down MC (of difficulty
level X), the transition matrix px1,x2 is homogeneous over
time (sequence of items) for each individual; however, the
matrix is a function of θ, which varies across respondents.

The behavior of a MC is often described in terms of sev-
eral attributes. A MC is irreducible if any given state is
accessible to any other state in S; is aperiodic if the pe-
riod is 1 for all states; and is recurrent if for any state, the
probability of returning to the same state (recurrence) is 1.
Positive recurrent refers to a recurrent chain that has finite
expected recurrrence time. Note that aperiodicity and pos-
itive recurrency can be defined at the state level. When a
state in a MC possesses the properties of being irreducible,
aperiodic and positive recurrent, it is said to be ergodic. Er-
godicity of all states of a MC implies that the MC is ergodic,
or in a sense “well behaved.” For example, an ergodic MC

always has a unique stationary distribution, which means
that the distribution of the states remains unchanged with
transition. Mathematically, it means that the stationary dis-
tribution π is invariant: π = πP where P is the transition
probability matrix. The tool that we use to prove conver-
gence and explore asymptotic behavior of the up-and-down
method relies on showing that the MC produced by the se-
quence of the difficulty level of the selected items is ergodic
for any θ, implying a unique stationary distribution exists.

Because observations from the MC do not form indepen-
dent and identically distributed (i.i.d.) samples, traditional
methods for proving large-sample properties do not imme-
diately apply for studying the behavior of the observations
generated by the up-and-down method. In this paper an em-
bedded renewal process within the MC, called a regenerative
process, was used to explore the asymptotic behavior of the
up-and-down estimate. The key idea of the regenerative pro-
cess is that for a recurrent MC, there exists a recurrent state
Δr which is visited infinitely often (i.o.). For a fixed state

Ω, the cycles {Xj ; j = T
(n)
Ω , · · · , T (n+1)

Ω − 1 } are i.i.d. for

n = 1, 2, · · · , where T
(n)
Ω is the time of the n-th return to

Ω. For example, if time for the n-th return is T
(n)
Ω = 100,

and time for the (n + 1)-th return is T
(n+1)
Ω = 121, then

{Xj ; j = 100, · · · , 120} form a cycle in the i.i.d. sample.
The method using the regenerative process of i.i.d. samples
embedded within the MC greatly facilitates the proof of the
asymptotic behavior of the MC.

3. LIKELIHOOD FUNCTION FOR
UP-AND-DOWN

Let Xi be the test level and Yi be the corresponding re-
sponse. The contribution of likelihood function for the 2-PL
IRT during the kth stage is given by

Lnk
(θ)(3)

= C

nk∏
i=0

f(Yi|Xi) = f(X0)

nk∏
i=0

[pi(θ)]
Yi [1− pi(θ)]

1−Yi ,

where C is determined by the design for choosing the diffi-
culty level of the first test item, and

pi(θ) = P (Yi = 1|θ) = eak(θ−bi)

1 + eak(θ−bi)
,

where ak represents the (constant) value of a designated to
the kth stratum. Here Xi = bi and C is independent of θ.
Because for each stratum in the kth stage of a-stratified
multistage computerized adaptive testing the a values of the
items are considered uniform, in the following discussion we
treat a as a fixed value (= 1) in each stage. For simplicity,
the difficulty parameter b of the first test items is set to be
0 hereafter. In this case, C = 1.

In contrast to R-MLE, for the up-and-down method, es-
timates of θ is not needed in the selection process of test
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items. We only need to calculate an estimate of θ at the end
of the test. Here we denote the maximum likelihood estimate
derived from the up-and-down procedure based on the ob-
servations x0, y0, · · · , xn, yn by θ̂n (i.e., θ̂n is the maximizer

of the likelihood function Ln(θ) =
∏K

k=1 Lnk
(θ) in Eq. (3).

There is no closed-form solution for θ̂n in general; there-
fore, numerical algorithms, such as Newton-like method
specifically BFGS [20], are needed to solve for θ̂n. Since
Ln(θ) is a concave function of θ, the initial value does not
impact convergence of BFGS.

Although the likelihood function given in (3) is identical
to the likelihood function of a non-adaptive test (in which
X0, X1, . . . , Xn are determined before the administration of
the test), Yi in (3) now depends on Yi−1, . . . , Y1 in the up-
and-down method. As a result, asymptotic analysis using
standard likelihood methods does not apply to the max-
imizer of

∏K
k=1 Lnk

(θ). We need to study the Markovian
structure imposed by the up-and-down method to under-
stand the asymptotic behaviour of θ̂n.

Continuing from Eq. (2), denote the transition proba-
bility matrix by f(X1, X2; θ), and define g(X1, X2; θ) =
log f(X1, X2; θ). Since for given observations xk, k =
1, · · · , n,

1

n

n∑
k=1

∂2

∂θ2
g(Xk−1, Xk; θ) =

1

n

n∑
k=1

−e(θ−xk)

[1 + e(θ−xk)]2
< 0,

for any θ, Ln(θ) is a concave function, the maximum likeli-
hood estimate is the unique root of the score equation

(4)
1

n

∂

∂θ
Ln(θ) =

1

n

n∑
k=1

∂

∂θ
g(xk−1, xk; θ) = 0.

4. MAIN RESULT REGARDING BEHAVIOR
OF UP-AND-DOWN ESTIMATE

The main result regarding the asymptotic behavior of
the up-and-down estimate follows the following step-by-step
argument.

• The score equation in Eq. (4) has a root near θ0. This
can be established by showing that

lim
n→∞

1

n

n∑
t=1

∂

∂θ
g(Xt−1, Xt; θ)

∣∣∣∣
θ=θ0

(5)

→ 0 in probability.

• The slope of the score equation is negative. We will
show that

lim
t→∞

1

n

n∑
t=1

∂2

∂θ2
g(Xt−1, Xt; θ)

∣∣∣∣
θ=θ0

(6)

→ −I in probability,

where the information matrix I is given by

I = Eθ0

[
∂

∂θ
g(X1, X2; θ)

∣∣∣∣
θ=θ0

]2
(7)

= −Eθ0

{
∂2

∂θ2
g(X1, X2; θ0)

}
< ∞.

• The quantity
√
n(θ̂n−θ0) is asymptotically normal with

mean 0 and asymptotic variance I−1.

The idea of proof for these results requires first approxi-
mating the score function by an additive function of the MC
{Xn, n ≥ 0}. To prove that (5) and (6) hold, we need the
law of large numbers. To prove asymptotic normality, we
need the Central Limit Theorem for an additive function of
the MC. In these proofs, we use the regenerative process to
represent the additive function of the MC as sum of i.i.d.
random variables. Wald’s equations for MC will be applied
to deduce the moment conditions for each time epoch t,
t = 1, · · · , n. We are now ready to present the main result
for the up-and-down estimate.

To avoid singularity of the Fisher information in the two-
parameter logistic model, we assume that there exist 0 <
C1 < C2 < ∞ such that a ∈ [C1, C2].

Theorem 4.1. Consider the two-parameter logistic model
(1). Let {Xn, n ≥ 0} be a Markov chain on a countable state
space S = {· · · ,−2,−1, 0, 1, 2, · · · }, with transition probabil-
ity pij defined as (2) for i, j ∈ S. Then

1) θ̂n = θ̂(x0, · · ·xn) converges in probability to the true
ability θ0,

2)
√
n(θ̂n − θ0) −→ N(0, I−1) in distribution, where I =

Eθ0

[
∂
∂θ log f(X1, X2; θ0)

]2
is the Fisher information,

Eθ0 denotes the expectation Eπ under the true param-
eter θ0, and f(X1, X2; θ) denotes the transition proba-
bility under parameter θ of the Markov chain (2).

The proof of Theorem 4.1 is given in the appendix.

5. EMPIRICAL STUDIES

5.1 Simulation experiment 1

To evaluate the performance of the up-and-down method,
we compare it to R-MLE within the context of the 2PL
model, i.e., using the a-stratified multistage computerized
adaptive testing. Two versions of R-MLE were implemented
in simulation experiment 1. The first version, which we de-
note by R-MLE(A), selected nk = M = L/K items, where
L is the total length of the test, from each of the K strata
and updated the θ estimate within stratum to match dif-
ficulty of the next item. The second version, R-MLE(B),
which was based on selecting nk items (L/K) for each stra-
tum, started with an initial θ, matched items within each
stratum for this value of θ and only updated θ after the
round of K items have been administered. As described
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above, in a-stratified CAT, one often encountered problem
is the overexposure of some items especially those with high
a parameters- i.e., these items are too frequently used when
the algorithm starts to hone in the true ability value. Espe-
cially when a and b are correlated, for a fixed length test,
it means that there may not be sufficient items within some
strata to choose from. For example, when ability is high,
when the algorithm gets to high a stratum, items with high
b will quickly be exhausted. The R-MLE (B) version was
designed to allow for some flexibility in item exposure and
improve the more even use of items across all a-stratified
groups.

For up-and-down, because no updating on ability was
used during item administration, the value of θ is restarted
at default (value of 0) every time when the item selection
process moved to a new stratum.

The metric for evaluation included both bias and root
mean square error (RMSE), which are defined as follows:

Bias =
1

Q

Q∑
i=1

(θ̂ni − θ0), RMSE =

(
1

Q

Q∑
i=1

(θ̂ni − θ0)
2

) 1
2

,

where θ̂ni, θ0 are respectively the estimated value and ei-
ther the true or reference value, and Q is the total number
of responses used for the calculation. The simulation ex-
periments were implemented through R for IRT/CAT data
generation, and for parameter and ability estimation on an
Intel i7-6700 (16 GB) PC. Particularly, the R package ltm
[24] was adopted for IRT estimation.

Data were generated from 3,000 individuals by first sam-
pling 300 θ values from N(0, 1). Then, conditional on θ,
response data from a 2PL model were independently gener-
ated with each θ value replicated 10 times. Two levels were
specified for the number of partitions (K = 5, 10), and 3
levels of test length (n = 20, 30, 40) were specified. There
is a tradeoff between making K too large (implying fewer
items per stratum) and K too small (implying fewer points
of selection). We followed the literature in the choice of K.
The determination of K for data analysis can be found on
page 214, Chang and Ying [4].

For the 2PL model, we used two conditions for the corre-
lation between the a and b parameters. Lord and Wingersky
(1984) reported that a and b parameter estimates often are
positively correlated. This phenomenon is being confirmed
from a retired item bank of a GRE quantitative test of 360
items in [5, 4]. For the first set of conditions, the correlation
between a and b was −0.56, which was the observed corre-
lation for the real educational test data set used (described
later). For the second set, we randomly selected a parame-
ters from the same educational test item parameter set, and
then given a, generated d ∼ U(−1, 1) and assigned b the
value d/a. Correlation was −0.01 for this data set. Eventu-
ally, we created two levels for item parameters - correlated
a and b and uncorrelated a and b, for the simulation study.

The number of items in the item bank was specified at
L = 150 for both data sets. In summary, this simulation
experiment contains a total of 2 (partition) ×3 (test length)
×2 (parameter setting) ×3 (method)= 36 conditions.

Figure 2 shows the trajectories of the ability estimates
for 5 individuals with θ = −2,−1, 0, 1, 2, averaged over 10
replication, with K = 5 and test length n = 40 for the three
methods. They all started at an initial value of θ = 0. This
small sample is representative for the entire sample in the
sense that all three methods tend to converge to the ap-
proximately same value. The values from the three methods
begin to become quite close after 20 items.

Figure 2. Paths of ability estimates from 5 individuals with
true θ = −2,−1, 0, 1, 2, averaged over 10 replications, with

K = 5, and test length n = 40.

The simulation results are shown in the first three rows
in both Tables 2 and 3. Two sets of biases and RMSEs are
reported. The first set, denoted by (θ), used the true gen-
erative θ as reference, whereas the second set, denoted by
(θ̄150), used the estimate from all 150 items as the “true”
reference value. The R-MLE(A) and (B) methods, especially
(A) which had more frequent updating of θ, generally per-
form better than the up-and-down method. The difference,
however, is quite small for n = 20 (e.g., when K = 5 for the
correlated item parameters a and b, the biases across the
three methods of R-MLE(A), R-MLE(B), and up-and-down
are 0.027, −0.01, and −0.026). The differences are deemed
minimal for n = 30, 40.

Computationally, R-MLE (A) is the most intensive
scheme because it requires updating θ after each item
administration. To illustrate computational overhead, we
recorded CPU times for the three methods with the follow-
ing setting: item bank L = 150, strata K = 5; test length
n = 30 and number of individuals N = 300. The CPU times
for R-MLE (A)(30 scorings), and R-MLE (B) (6 scorings),
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Table 2. Biases and RMSEs of simulation experiment 1 with K = 10

correlated a and b uncorrelated a and b
n = 20 n = 30 n = 40 n = 20 n = 30 n = 40

Bias (θ) −0.004 −0.005 −0.012 −0.017 −0.007 −0.011
R-MLE(A) RMSE (θ) 0.580 0.486 0.429 0.574 0.493 0.441

Bias (θ̄150) −0.002 −0.003 −0.010 −0.011 −0.001 −0.005
RMSE (θ̄150) 0.516 0.414 0.347 0.502 0.406 0.348

Bias (θ) −0.017 −0.014 −0.003 −0.024 −0.014 −0.013
R-MLE(B) RMSE (θ) 0.571 0.484 0.435 0.568 0.492 0.440

Bias (θ̄150) −0.015 −0.011 −0.001 −0.018 −0.008 −0.007
RMSE (θ̄150) 0.505 0.413 0.350 0.500 0.409 0.347

Bias (θ) −0.017 −0.013 −0.006 −0.011 −0.014 −0.011
up-and-down RMSE (θ) 0.576 0.508 0.462 0.585 0.506 0.450

Bias(θ̄150) −0.014 −0.011 −0.003 −0.005 −0.008 −0.005
RMSE(θ̄150) 0.511 0.430 0.378 0.518 0.429 0.363

Bias (θ) −0.021 −0.020 −0.008
up-and-down RMSE (θ) 0.592 0.511 0.455
(median) Bias(θ̄150) −0.019 −0.018 −0.006

RMSE(θ̄150) 0.524 0.434 0.372

Table 3. Biases and RMSEs of simulation experiment 1 with K = 5

correlated a and b uncorrelated a and b
n = 20 n = 30 n = 40 n = 20 n = 30 n = 40

Bias (θ) −0.027 −0.012 −0.011 −0.014 −0.015 −0.015
R-MLE(A) RMSE (θ) 0.577 0.484 0.441 0.572 0.492 0.438

Bias (θ̄150) −0.024 −0.009 −0.008 −0.008 −0.009 −0.009
RMSE (θ̄150) 0.511 0.411 0.355 0.507 0.412 0.348

Bias (θ) −0.010 −0.002 0.000 −0.017 −0.009 −0.009
R-MLE(B) RMSE (θ) 0.572 0.500 0.438 0.573 0.495 0.439

Bias (θ̄150) −0.007 0.000 0.003 −0.011 −0.003 −0.003
RMSE (θ̄150) 0.507 0.424 0.354 0.509 0.420 0.352

Bias (θ) −0.026 −0.014 −0.007 −0.019 −0.009 −0.006
up-and-down RMSE (θ) 0.578 0.502 0.452 0.583 0.494 0.444

Bias (θ̄150) −0.024 −0.012 −0.004 −0.013 −0.003 0.000
RMSE (θ̄150) 0.504 0.421 0.363 0.512 0.415 0.356

Bias (θ) −0.021 −0.011 −0.008
up-and-down RMSE (θ) 0.565 0.496 0.444
(median) Bias(θ̄150) −0.018 −0.008 −0.005

RMSE(θ̄150) 0.497 0.419 0.357

and up-and-down (1 scoring) were respectively 481.5s, 15.7s,
and 2.7s.

5.2 Simulation experiment 2

The purpose of this simulation experiment is to exam-
ine the efficiency of the up-and-down method. Two sets
of experiments were respectively designed to evaluate (1)
the performance of the variance estimate for ability, and
(2) coverage probability and length of confidence interval of
the true ability value. For the investigation of these second-
order properties associated with the ability estimate, a large
number of replications were needed for each individual. Ac-
cordingly the simulation setting was simplified. Because the

discrimination parameter a is fixed within a stratum in the
a-stratified scheme, we used a = 1 for data generation, and
step size for b was set at Δ = .1. The up-and-down method
always started at θ = 0 at each stratum. Thus it was ex-
pected that the efficiency loss would be larger for individuals
with θ values that were farther away from 0. Due to sym-
metry, we only studied the following three variations of non-
negative values of ability: θ = 0, 1, 2. For (1), we used 1,000
replications for each individual and varied test length from
at the levels of 10, 20, · · · , 50, 100, 150, 200, and reported
both empirical variances (across the 1,000 replications) and
asymptotic variances. For (2), we used n = 50, 100, 150 and
a larger number of replications of 10,000 for each individual.
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Table 4. Empirical variance (VAR) and asymptotic variance (ASY VAR) of R-MLE and up-and-down methods for θ = 0, 1, 2

n Methods VAR (θ = 0) VAR (θ = 1) VAR (θ = 2) ASY VAR

10 R-MLE 0.473 0.464 0.523
up-and-down 0.550 1.335 11.82 0.410

20 R-MLE 0.212 0.224 0.242
up-and-down 0.206 0.241 0.689 0.205

30 R-MLE 0.146 0.145 0.164
up-and-down 0.139 0.150 0.195 0.137

40 R-MLE 0.113 0.104 0.107
up-and-down 0.115 0.110 0.128 0.103

50 R-MLE 0.085 0.084 0.089
up-and-down 0.079 0.089 0.099 0.082

100 R-MLE 0.042 0.044 0.040
up-and-down 0.041 0.040 0.045 0.041

150 R-MLE 0.027 0.027 0.028
up-and-down 0.026 0.027 0.029 0.027

200 R-MLE 0.020 0.021 0.020
up-and-down 0.022 0.022 0.022 0.021

The up-and-down method was directly compared to R-MLE
(A) (called R-MLE for this simulation experiment).

By Theorem 4.1,
√
n(θ̂n − θ0) −→ N(0, I−1), where I

is the Fisher information determined by the Markov chain
with transition probability (2), with θ̂n being the up-and-
down ability estimate. The asymptotic variance of the R-
MLE and the up-and-down estimate can be derived from
the asymptotic information matrix IRMLE . Let θ̃n denote
the R-MLE based on the observations. It is known (Chang
and Ying, 1999) that

(8)

√
IRMLE(θ̃n)(θ̃n − θ0) −→ N(0, 1) in distribution,

where

IRMLE(θ̃n) =

n∑
i=1

a2i e
ai(θ̃n−bi)

1 + eai(θ̃n−bi)
.

The results for the first set of experiment are summarized
in Table 4. Except when the test is short (e.g., n = 10)
and the true ability is far away from the initial estimate of
0.0, the variances of the R-MLE and up-and-down meth-
ods (VAR) are quite similar, and the asymptotic variance
(ASY VAR) also appears to be a good approximation of the
estimated variance.

The second set of experiments focuses on efficiencies
across the two methods - R-MLE and up-and-down - in
terms of coverage probability (CP) and averaged length of
confidence interval (AL). Table 5 summarizes the compar-
ison of efficiencies. With the same coverage probability, a
small average length indicates a better interval estimation.
Both R-MLE and up-and-down perform well in terms of
coverage probability at the level of α = 0.05 Type I error.
Apparently, the up-and-down method is not as efficient as

Table 5. CP at α = 0.05 and AL of the 95% confidence
intervals for θ = 0, 1, 2

Method n θ = 0 θ = 1 θ = 2

CP AL CP AL CP AL

R-MLE 50 0.950 1.132 0.952 1.136 0.949 1.146

up-and-down 50 0.946 1.117 0.951 1.145 0.950 1.228

R-MLE 100 0.950 0.795 0.950 0.796 0.948 0.800

up-and-down 100 0.947 0.790 0.948 0.800 0.949 0.827

R-MLE 150 0.955 0.647 0.950 0.647 0.949 0.649

up-and-down 150 0.953 0.646 0.950 0.651 0.951 0.666

the R-MLE and requires slightly wider 95% confidence inter-
vals to achieve the same nominal Type I error rate. However,
the differences are small. Generally the loss in efficiency is
less than 10%. Using n = 150 as an example, even at true
ability not close to 0 (θ = 2), the loss in efficiency in terms
of AL is 7.0%.

The CPU times for the R-MLE and up-and-down for test
length n = 100 with 1,000 replications were 935.5s and 9.2s,
respectively.

6. REAL DATA ANALYSIS

We include two real data examples - one from educa-
tion and the other from patient-reported outcomes in health
science - to illustrate the up-and-down method and com-
pare it against the two R-MLE methods - R-MLE (A)
and R-MLE (B). We used a sample of responses from an
ACT test, which contained a total of 150 math and sci-
ence items. We used item parameters from all items in
the simulation experiments, but here we only used the
math items. A total of L = 60 dichotomously scored
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math items were available for this analysis and the items
were calibrated using a 2PL model using responses from
a sample of N = 23,096 students. The item parame-
ters of the 60 items are provided in supplementary ma-
terials http://www.intlpress.com/site/pub/files/ supp/sii/
2020/0013/0003/sii-2020-0013-0003-s001.pdf. A total of
K = 5 partitions were used for the a-stratified item selec-
tion. Test lengths were set at n = 20, 25 and n = 30. Bias
and RMSE were calculated using the entire sample of stu-
dents. Because there is no “true” ability value, we used the
estimate from all 60 items as a proxy for the true value of
θ. The actual raw responses from the students were used in
the analysis for selecting items in CAT. The computational
times of R-MLE (A), R-MLE (B), and up-and-down meth-
ods for test length n = 30 were respectively, 100.6, 24.2, and
4.0 minutes.

Table 6 shows the result of the analysis. The up-and-down
method generally has slightly higher RMSE. Biases across
the three methods are all small and do not differ across
methods. The performance of the up-and-down method is
quite comparable to the other two methods even when the
length of test is short at n = 20. In this analysis, we also
noticed that not all up-and-down method administrated the
designated number of items. This is due to ceiling/flooring
effect within stratum. In other words, when the up-and-
down method administers an item that has maximum (min-
imum) difficulty within a stratum, and receives a correct re-
sponse, the up-and-down method cannot proceed even when
not all required number of within-stratum items have been
administered. The method would simply move on to the next
stratum. In this ACT data analysis, when n = 30 items were
used, respectively 10, 651, and 5713 examinees were admin-
istered fewer than 20, 25, and 30 items.

Table 6. Bias and RMSE: ACT Math

Method Metric n = 20 n = 25 n = 30

R-MLE (A) Bias −0.019 −0.018 −0.015
RMSE 0.288 0.242 0.203

R-MLE (B) Bias −0.023 −0.022 −0.020
RMSE 0.289 0.244 0.206

up-and-down Bias −0.009 0.006 0.003
RMSE 0.317 0.263 0.222

Because fewer items imply lower level of accuracy, we
studied the effect of getting fewer items on standard error
of the ability estimate from the up-and-down method. We
plotted the standard errors of the ability estimates from the
up-and-down method for examinees with fewer than 20, 25,
and 30 items as a function of the estimated ability. Figure 3
(a)–(c) show the different scenarios. We plotted a random
sample of 100 to alleviate overlapping of points. For com-
parison, the corresponding estimates for the R-MLE of the
same individuals are also plotted. Additionally, the graph
also shows those that were given the full set of 60 items

(black dot) for the condition n = 30 (Fig. 3(d)). It can be
seen that the two R-MLE methods provide approximately
the same SE, while the up-and-down method has slightly
higher SE. However, the differences begin to disappear at
approximately 25 items. Note that the R-MLE methods do
not necessarily have the same number of items administered
as the up-and-down method. It is interesting to note that
those that were administered fewer than 20, 25, and 30 items
tended to have ability estimates between 0 and 1. We fur-
ther investigated the phenomenon and found that it was an
artifact of the high correlation between the a and b param-
eters as well as the asymmetric distribution of the difficulty
parameters, which tended to be left-skewed. Figure 4 shows
the distribution of the items on the b parameter on the 5
strata (labeled K1 through K5). When the up-and-down al-
gorithm started at the initial value of θ = 0 for the first
stratum (low a), because of the correlation between a and
b, which was approximately −0.6 for the ACT data, there
were often not sufficient easy items in the same stratum for
lower ability students. We will discuss this further in the
last section on remarks and further research.

In the second real data example, we used 28 items that
measure depression and used a subset of available data col-
lected from the Patient Reported Outcome Measurement
Information System (PROMIS [23]). Data from a total of
N = 768 individuals were made available. Examples of items
on the PROMIS depression scale are “I felt hopeless”, “I felt
that I had nothing to look forward to”, and “I withdrew from
other people.” These items were adopted on a 7-day time-
frame. In the original data, the response format was on a
5-point ordered scale: never(1), rarely(2), sometimes(3), of-
ten(4), and always(5). We used two ways to dichotomize the
responses: (I) {1} versus {2, 3, 4, 5}, and (II) {1, 2} versus
{3, 4, 5}. The correlations between the a and b parameters
for the dichotomizing schemes (I) and (II) were respectively
0.469 and 0.030. Because each participant only responded
to a small subset of questions, we could not use raw re-
sponses for implementing CAT. To circumvent this problem,
we first calibrated the items based on the two dichotomiza-
tion schemes using a 2-PL model, and then generated a full
set of responses for n = 768 individuals.

Table 7 summarizes the result for the PROMIS data anal-
ysis. Consistent with the ACT data analysis, the RMSEs
for up-and-down are generally larger than the other two R-
MLEs. The performance of the up-and-down method for set
(II) is worse than for set (I). Biases are generally low across
the three methods. The higher values in RMSE for short
tests (n = 12, 16) in PROMIS reflect the larger variance
error in the up-and-down estimate. For realistic correlation
values between a and b, the RMSE for the up-and-down
method becomes smaller when the correlations are smaller.
The computational times of R-MLE (A), R-MLE (B), and
up-and-down methods for test length n = 12 were respec-
tively, 283.2, 64.7, and 9.9 seconds.
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Figure 3. Plot of standard error (SE) against ability with sample from up-and-down method stopped before administrating 20
(panel (a)), 25 (panel (b)), and 30 (panel (c)) items. Panel (d) shows SE for up-and-down CAT method stopped after

administrating 30 items (500 randomly selected individuals shown). Methods: red � = R-MLE (A); blue += R-MLE (B);
green ◦ = up-and-down; black •= R-MLE from all 60 items.

7. CONCLUDING REMARKS, DISCUSSION,
AND FURTHER RESEARCH

In this paper we propose an up-and-down method in the
context of CAT. The up-and-down method is not new and
has been applied in areas such as toxicity assessment (e.g.,
Bruce [2]). Applying it to CAT is novel and the method has
several appeals from a psychometric perspective. First, it
is intuitive and easy to understand. Second, the method is
easy to implement in CAT, both in terms of software imple-

mentation as well as deployment on different platforms (e.g.,
smartphone and tablet). Third, the saving in computation
could be substantial. The up-and-down method does not
require computationally intensive procedure for updating
ability estimate at each item selection decision point. From
our simulation study, the ratio between the CPU time for
up-and-down to CPU time for R-MLE was approximately
1 : 200. If the computation requires communication over-
head between the data device and the server where com-
putation of R-MLE occurs, this ratio could even be higher.
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Table 7. Bias and Root Mean Square Error (RMSE): PROMIS data

(I) (II)
Method Metric n = 12 n = 16 n = 12 n = 16

R-MLE (A) Bias −0.028 −0.022 −0.051 −0.041
RMSE 0.166 0.115 0.127 0.088

R-MLE (B) Bias −0.031 −0.024 −0.035 −0.042
RMSE 0.183 0.130 0.152 0.103

up-and-down Bias −0.052 −0.052 −0.043 −0.039
RMSE 0.234 0.187 0.287 0.218

Figure 4. Scatterplot of item parameters by stratum for the
ACT study.

Indeed, in many applications, the overhead input/output
times across client and server are much higher than the ac-
tual CPU times. Additionally, using raw responses to select
item can be easily implemented on the client side. This could
potentially circumvent logistic issues such as software licens-
ing. Thus, using raw responses in the up-and-down method
for CAT is highly suitable for applications that require data
management on distributed client-server systems.

The current article potentially opens a new avenue of re-
search into adaptive algorithms, which we call RRD-CAT -
that are based on raw responses for item selection. A poten-
tial powerful application include JITAI such as adaptation
to mobile phone-delivered interventions to the dynamic of
an individual’s psychological, social, and contextual state.
Another possibility is the application of the algorithm in
the context of learning and cognitive diagnostics in educa-
tion. With the omnipresence of tablet in classroom and the
development of new software-based learning tools, the up-
and-down algorithm could provide an efficient method for
implementing adaptive assessment and learning opportuni-
ties in such situations.

The current article provides both theoretical basis and
empirical evaluation of the up-and-down CAT method. The-
oretical results concerning the asymptotic behavior of the
up-and-down estimate using Markov chain-based method
are derived. Additionally, the tools that were developed
(e.g., Theorem A.1) for this purpose could serve as vehi-
cles for generalizing the up-and-down or Markov chain-based
method in other RRD-CAT settings. In this paper we pro-
vide equations for computing the asymptotic standard error
of up-and-down estimates. Empirical studies including sim-
ulation experiments and real data analysis provide evidence
that the up-and-down method perform reasonably well when
compared to the computationally intensive R-MLE method
in terms of accuracies, coverage probability of confidence
intervals, and efficiency of the estimates. Understandably,
by design the up-and-down is not as efficient as R-MLE.
However, our data analysis shows that the loss in efficiency
is generally quite small especially when the test is not too
short.

The ACT real data analysis reveals a potential improve-
ment of the up-and-down method. Figure 4 suggests that
using a common starting value at 0.0 each strata may not
be highly efficient because for some strata the distributions
of the b parameter are not be centered around 0.0. Therefore
we investigated the performance of a more flexible scheme
- using the median of the b parameter within each stratum
as starting value. We used the same setup as in Simulation
Study I (setting I). The performance of the more flexible
scheme is reported in the last rows of Tables 2 and 3, and
labeled up-and-down (median). The result shows that there
is no noticeable difference between the two up-and-down
methods. For example, the median method appears to per-
form better for n = 30 and K = 5 but for K = 10 the result
is not better. Further work will be required to explore more
efficient solution.

We identify several limitations of the current study and
some other future research directions as well. First, the
asymptotic variance estimate may not work well in short
test. Currently a bootstrap procedure to correct bias in
asymptotic variance is under investigation. Second, our pre-
liminary study suggested that the up-and-down procedure
could be rather robust to model misspecification. Because
misspecification in the parametric form of the item response
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function or in the dimensionality of the item response model
could have an effect on CAT item selection and ability esti-
mate, it is important to study the robustness of RRD-CAT
methods. We speculate that up-and-down could proved to
be robust because of the direct use of raw response for se-
lecting a subsequent item. Clearly the robustness of the up-
and-down algorithm to model misspecification will require
further research. Finally, we have not investigated the per-
formance of the up-and-down for classification purpose (e.g.,
pass versus no pass) such as for licensure exams. The issue
is of practical importance and a comparison between the
R-MLE and the up-and-down methods will be of value to
practitioners of such exams.

APPENDIX A. TECHNICAL RESULTS FOR
ASYMPTOTIC ANALYSIS

We introduce several prerequisite results that would be
used for proving the main theorem (Theorem 4.1). Denote
Pπ as the response probability, whose initial distribution is
the stationary distribution π, and let Eπ be the expecta-
tion under Pπ. In order to employ the technique of regen-
erative process to establish the consistency and asymptotic
normality, we need to show that the Markov chain (2) is
both irreducible and positive recurrent.

Consider a Markov chain {Xn, n ≥ 0} on a countably
state space S = {· · · ,−2,−1, 0, 1, 2, · · · }, with transition
probability pij for i, j ∈ S. Denote

∑∞
n=1 P{Xν(ω) 
= i, 0 <

ν < n;Xn(ω) = i|X0(ω) = i} by f∗
i,i. A state i ∈ S is called

recurrent if f∗
i,i = 1. Assume that state i is recurrent, let Ti

be the first regeneration time of Xn to state i, that is,

Ti =

{
inf{n ≥ 1, Xn = i};
∞, if no such n exist.

A recurrent state i is called positive if and only if E(Ti) <
∞. The irreducibility of the Markov chain implies that if
a state i is positive recurrent, then all states are positive
recurrent.

Now we state the key theorem for proving Theorem 4.1.

Theorem A.1. Let {Xn, n ≥ 0} be an ergodic (irreducible,
aperiodic and positive recurrent) Markov chain on a count-
ably state space S = {· · · ,−2,−1, 0, 1, 2, · · · }, with station-
ary distribution π. Let h be a real-valued function on the
state space S. Suppose Eπ(|h|) < ∞. The following holds.

(a)
∑N

t=1 h(Xt)/N converges to Eπ{h(X1)} in probability.

(b) If Eπ(|h|2) < ∞ and σ2 := Var(
∑Tx0

t=1 h(Xt)) < ∞,
then

√
N

σ
√
π(x0)

{∑N
t=1 h(Xt)

N
− Eπ{h(X1)}

π(x0)

}
(9)

−→ N(0, 1) in distribution.

The proof of Theorem A.1 is given after the proof of The-
orem 4.1. The following theorems lay the ground for the
conditions of ergodicity in Theorem A.1.

By the definition of (2), it is easy to see that the prop-
erties of irreducibility and aperiodicity hold for the Markov
chain produced by the up-and-down method. To prove the
property of positive recurrent, we need following Theorems.

Theorem A.2. Let {Xn, n ≥ 0} be a Markov chain on
a countably state space S = {· · · ,−2,−1, 0, 1, 2, · · · }, with
transition probability pij for i, j ∈ S. Let 0 < αi < 1 and
βi = 1− αi be given numbers such that

pi,i+1 = αi, pi,i−1 = βi, for i ≥ 0;

pi,i−1 = αi, pi,i+1 = βi, for i < 0.

(a) The state 0 is recurrent, i.e., f∗
0,0 = 1 if and only if

∑
r≥1

β1 × · · · × βr

α1 × · · · × αr
= ∞,

∑
r≥1

β−1 × · · · × β−r

α−1 × · · · × α−r
= ∞.

(b) The recurrent state 0 is positive if and only if

∑
r≥1

α1 · · ·αr−1

β1 · · ·βr−1βr
< ∞,

∑
r≥1

α−1 · · ·α−(r−1)

β−1 · · ·β−(r−1)β−r
< ∞.

Remark. Results of Theorem A.2 can be found in [6], in
which only the one-sided Markov chain is studied. The ar-
gument there can be generalized easily to the above results
for two-sided Markov chain.

Using Theorem A.2, we now show that the Markov chain
generated by the up-and-down method is positive recurrent.

Theorem A.3. The Markov chain with transition probabil-
ity defined in (2) is positive recurrent.

Proof. Let n0 be the integer satisfying n0 − 1 ≤ θ < n0.
Denote

pn0+i,n0+i+1 = αi, pn0+i,n0+i−1 = βi, for i ≥ 0,

pn0+i,n0+i−1 = αi, pn0+i,n0+i+1 = βi, for i < 0.

Note that the logistic curve is monotone increasing. Hence
βi/αi > 1 for n ≥ n0. We conclude

∑
r≥1

β1 × · · · × βr

α1 × · · · × αr
= ∞,

∑
r≥1

β−1 × · · · × β−r

α−1 × · · · × α−r
= ∞.

It follows from Theorem A.2 (a) that we have fn0,n0 = 1
and n0 is a recurrent state.

Next we show that E(Tx0) < ∞, for all x0. Recall that
βi > 1/2, αi/βi < 1 and αi is monotone decreasing for
n ≥ n0. We have

∑
r≥1

α1 × · · · × αr−1

β1 × · · · × βr
< ∞.
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By a similar argument, we have

∑
r≥1

α−1 × · · · × α−(r−1)

β−1 × · · · × β−r
< ∞.

Theorem A.2 (b) hence leads that x0 is positive recur-
rent. Since the Markov chain (2) is irreducible and this
implies that whole states in S are positive recurrent.
That is, the Markov chain is an irreducible, aperiodic and
positive recurrent Markov chain. Then, the vector ϕ =
(· · · , 1/E(T−1), 1/E(T0), 1/E(T1), · · · ) is a stationary prob-
ability distribution for (2).

Remark. Note that the up-and-down method is a nonpara-
metric method of selecting test items. Hence, as long as the
item response function is continuous, strictly monotone in-
creasing, and ranges over (0, 1), Theorem A.3 remains to
hold.

APPENDIX B. ASYMPTOTIC BEHAVIOR
OF THE MLE

By using the results in Theorem A.1, we will prove our
main results, the weak consistency and asymptotic normal-
ity of the MLE θ̂n. One major contribution here is the char-
acterization of the Fisher information in Theorem 4.1, for
which it can be used to construct confidence interval of θ0,
the true parameter.

Proof of Theorem 4.1. The proof will follow the argument
outlined in Section 2. First, we show that (5) holds. Note
that X0 = 0, and

Eθ0

{
∂

∂θ
g(X1, X2; θ0)

∣∣∣∣X1

}

= Eθ0

{
∂f(X1, X2; θ0)/∂θ

f(X1, X2; θ0)

∣∣∣∣X1

}

=
∑
x2∈S

∂

∂θ
f(X1, x2; θ0).

Differentiate both side of the equation

∑
x2∈S

f(x1, x2; θ) = 1

with respect to θ leads to

∑
x2∈S

∂

∂θ
f(x1, x2; θ) = 0.

This implies that Eθ0{ ∂
∂θg(X1, X2; θ0)} = 0. Since

∂

∂θ
g(x1, x2; θ) =

{
1/(1 + eθ−x1), x2 = x1 + 1,
−eθ−x1/(1 + eθ−x1), x2 = x1 − 1,

we have

Eθ0

{∣∣∣∣ ∂∂θ g(X1, X2; θ0)

∣∣∣∣
∣∣∣∣X1

}
≤ 1

4
.

By Theorem A.1 (a), (5) holds by

lim
n→∞

1

n

n∑
t=1

∂

∂θ
g(Xt−1, Xt; θ)

∣∣∣∣
θ=θ0

→ Eθ0

{
∂

∂θ
g(X1, X2; θ0)

}
= 0 in probability.

Next, we show that (6) holds. Twice differentiation of∑
x2∈S f(x1, x2; θ) = 1 with respect to θ leads to

∑
x2∈S

∂2

∂θ2
f(x1, x2; θ) = 0,

and

Eθ0

{
∂2

∂θ2
g(X1, X2; θ0)

∣∣∣∣X1

}

= Eθ0

{
∂2

∂θ2 f

f
−

(∂f∂θ )
2

f2

∣∣∣∣∣X1

}

= Eθ0

{
∂2

∂θ2 f

f

∣∣∣∣∣X1

}
− Eθ0

{
(∂f∂θ )

2

f2

∣∣∣∣∣X1

}

= −Eθ0

{[
∂

∂θ
g(X1, X2; θ0)

]2∣∣∣∣∣X1

}
.

Again, for all given x1 ∈ S, we have that

Eθ0

{[
∂

∂θ
g(X1, X2; θ0)

]2∣∣∣∣∣X1

}
=

eθ0−x1

(1 + eθ0−x1)2
≤ 1

4
.

Therefore (7) holds.

We also need to calculate Eθ0{| ∂2

∂θ2 g(X1, X2; θ0)|}. For
x2 = x1 + 1 or x2 = x1 − 1, we have∣∣∣∣ ∂2

∂θ2
g(X1, X2; θ0)

∣∣∣∣ = e(θ0−x1)

[1 + e(θ0−x1)]2
≤ 1

4
,

and this implies that

Eθ0

{∣∣∣∣ ∂2

∂θ2
g(X1, X2; θ0)

∣∣∣∣
}

< ∞.

It follows from Theorem A.1 (b) that (6) holds by

lim
n→∞

1

n

n∑
k=1

∂2

∂θ2
g(Xk−1, Xk; θ)

∣∣∣∣
θ=θ0

→ Eθ0

{
∂2

∂θ2
g(X1, X2; θ0)

}
= −I in probability.
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Denote

G(x1, x2) := sup
θ∈R

∣∣∣∣ ∂3

∂θ3
g(x1, x2; θ)

∣∣∣∣
= sup

θ∈R

∣∣∣∣eθ−x1(1− eθ−x1)

(1 + eθ−x1)3

∣∣∣∣ < 1.

There exists a constant M such that

(10) lim
n→∞

1

n

n∑
t=1

G(Xt−1, Xt) = M in probability.

By the mean value theorem, for some |α| < 1, we have

1

n

∂

∂θ
Ln(θ) =

1

n

n∑
t=1

∂

∂θ
g(xt−1, xt; θ)

=
1

n

n∑
t=1

∂

∂θ
g(xt−1, xt; θ0)

+
1

n
(θ − θ0)

n∑
t=1

∂2

∂θ2
g(xt−1, xt; θ0)

+
α

2n
(θ − θ0)

2
n∑

t=1

G(xt−1, xt).

Let S∗ denote the collection of (x1, · · · , xn) satisfying∣∣∣∣∣ 1n
n∑

k=1

∂

∂θ
g(xt−1, xt; θ0)

∣∣∣∣∣ < δ2,

1

n

n∑
t=1

∂2

∂θ2
g(xt−1, xt; θ0) < −I/2, and

1

n

n∑
t=1

G(xt−1, xt) < 2M.

It follows from (5), (7) and (10) that, for all δ, ε, there
exists an n0 such that P (S∗) > 1− ε when n > n0(δ, ε).

For θ = θ0 ± δ, choose δ < 1
2 I/(M + 1), then,

1

n

∂

∂θ
Ln(θ)

∣∣∣∣
θ=θ0+δ

≤ δ2 − 1

2
(I · δ) +Mδ2 < 0,

if (x1, · · · , xn) ∈ S∗. By the same argument, we have

1

n

∂

∂θ
Ln(θ)

∣∣∣∣
θ=θ0−δ

> 0.

Since 1
n

∂
∂θLn(θ) is continuous, so for any δ, ε > 0, the

likelihood equation will, with probability exceeding 1 − ε,
have a root belongs to (θ0−δ, θ0+δ) as long as n > n0(δ, ε).
We conclude that

(11) θ̂n −→ θ0 in probability.

To prove 2), we first characterize the asymptotic variance

Var
(∑Tx0

t=1
∂
∂θ g(Xt−1, Xt; θ0)

)
, where Tx0 is the first regen-

eration time to state x0. Recall that Eθ0{ ∂
∂θg(X1, X2; θ0)} =

0, and Eθ0{( ∂
∂θg(X1, X2; θ0))

2} = I.

Var

⎛
⎝Tx0∑

t=1

∂

∂θ
g(Xt−1, Xt; θ0)

⎞
⎠

= Eθ0

( Tx0∑
k=1

∂

∂θ
g(Xt−1, Xt; θ0)

)2
−

[
Eθ0

( Tx0∑
t=1

∂

∂θ
g(Xt−1, Xt; θ0)

)]2

= Eθ0

⎛
⎝Tx0∑

k=1

[
∂

∂θ
g(Xt−1, Xt; θ0)

]2⎞⎠+

2
∑
t′>t

Eθ0

( ∂

∂θ
g(Xt, Xt+1; θ0)

∂

∂θ
g(Xt′ , Xt′+1; θ0)

)

=
1

π(x0)
Eθ0{(

∂

∂θ
g(X1, X2; θ0))

2}+

2
∑
t′>t

Eθ0

[
Eθ0

( ∂

∂θ
g(Xt, Xt+1; θ0)×

∂

∂θ
g(Xt′ , Xt′+1; θ0)|Xt, Xt+1, Xt′

)]
=

I

π(x0)
+ 2
∑
t′>t

Eθ0

[ ∂
∂θ

g(Xt, Xt+1; θ0)×

Eθ0 [
∂

∂θ
g(Xt′ , Xt′+1; θ0)

∣∣∣∣Xt′ ]
]

=
I

π(x0)
.

By Theorem A.1, we have

1√
n

n∑
t=1

∂

∂θ
g(Xt−1, Xt; θ0) −→ N(0, I) in distribution.

Note that the score equation n−1 ∂
∂θLn(θ̂n) = 0 can be writ-

ten as

0 =
1

n

n∑
k=1

∂

∂θ
g(xt−1, xt; θ0)

+
1

n
(θ̂n − θ0)

n∑
k=1

∂2

∂θ2
g(xt−1, xt; θ0)

+
α

2n
(θ̂n − θ0)

2
n∑

k=1

G(xt−1, xt).

We have

√
n(θ̂n − θ0)
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=
−n1/2

∑n
t=1

∂
∂θg(Xt−1, Xt; θ0)∑n

t=1

[
∂2

∂θ2 g(Xt−1, Xt; θ0) +
α
2 (θ̂n − θ0)G(Xt−1, Xt)

]
−→ N(0, I−1) in distribution.

Proof of Theorem A.1 (a). For simplicity, set x0 to be the
state 0, which is positive recurrent, and denote m :=∑N

j=1 Ix0(Xj) as the number of visits to state x0 up to
N . It is known (cf. Chung, 1967) that m/N → π(x0) in
probability, where π(x0) = 1/E(Tx0). Let T k

x0
be the kth

regeneration time to state x0, and denote

ηj(h) :=

T j
x0∑

i=T j−1
x0

+1

h(xi)

as the jth regeneration epoch. Note that {ηj(h), j =
1, · · · ,m} forms i.i.d. blocks due to strong Markov property
of the underlying Markov chain. Write

1

N

N∑
j=1

h(Xj)(12)

=
1

N

N∑
j=Tm

x0
+1

h(Xj) +
1

N

⎛
⎝ m∑

j=1

ηj(h)−
[Nπ]∑
j=1

ηj(h)

⎞
⎠

+
1

N

[Nπ]∑
j=1

ηj(h) := I1 + I2 + I3.

By the law of large numbers for i.i.d. random variables, we
have

1

N

[Nπ(x0)]∑
j=1

ηj(h) =
[Nπ(x0)]

N

1

[Nπ(x0)]

[Nπ(x0)]∑
j=1

ηj(h)

−→ π(x0)Eπ(η) = Eπ(h) in probability.

Next, we show that both I1 and I2 converge to zero in
probability. For any ε > 0,

Pπ

⎧⎨
⎩
∣∣∣∣∣∣

N∑
j=Tm

x0
+1

h(Xj)

∣∣∣∣∣∣ > εN

⎫⎬
⎭

≤ Pπ

⎧⎨
⎩

N∑
j=Tm

x0
+1

|h(Xj)| > εN

⎫⎬
⎭

≤ Pπ

⎧⎨
⎩

Tm+1
x0∑

j=Tm
x0

+1

|h(Xj)| > εN

⎫⎬
⎭

= Pπ {η1(|h|) > εN} ≤ Eπ[η1(|h|)]
εN

=
Eπ(|h|)
επ(x0)N

.

The last inequality follows from Markov inequality and
Eπ(|h|)/[επ(x0)N ] → 0 as N → ∞ by Eπ(|h|) < ∞. This
implies that I1 → 0 in probability.

Since m/N −→ π(x0) in probability, we have that for

all ε > 0, there exists N0 such that for N > N0, Pπ{|m −
[Nπ(x0)]| > Nε2} < ε. Then, for N > N0, we have

Pπ

⎧⎨
⎩
∣∣∣∣∣∣
m∑
j=1

ηj(h)−
[Nπ(x0)]∑

j=1

ηj(h)

∣∣∣∣∣∣ > εN

⎫⎬
⎭

≤ Pπ(|m− [Nπ(x0)]| > Nε2)

+Pπ

⎧⎨
⎩ max

|r−[Nπ(x0)]|≤ε2N

∣∣∣∣∣∣
r∑

j=[Nπ(x0)]+1

ηj(h)

∣∣∣∣∣∣ > εN

⎫⎬
⎭

< ε+ 2Pπ

⎧⎨
⎩ max

1≤r≤ε2N

∣∣∣∣∣∣
r∑

j=1

ηj(h)

∣∣∣∣∣∣ > εN

⎫⎬
⎭

= ε+ 2Pπ

⎧⎨
⎩

r∑
j=1

|ηj(h)| > εN

⎫⎬
⎭

< ε+
2ε2NE(|η1|)

εN
=

(
1 +

2Eπ(|h|)
π(x0)

)
ε.

Therefore, I2 → 0 in probability. We conclude the proof of

(a).

Proof of Theorem A.1 (b). Using the same argument as in

the proof of (a), we have

√
N

σ
√
π(x0)

(∑N
j=1 h(Xj)

N
− Eπ[h(X1)]

π(x0)

)
(13)

=
1

σ
√
Nπ(x0)

N∑
j=Tm

x0
+1

h(Xj)

+
1

σ
√

Nπ(x0)

⎛
⎝ m∑

j=1

ηj(h)−
[Nπ(x0)]∑

j=1

ηj(h)

⎞
⎠

+

√
N

σ
√

π(x0)

(∑[Nπ(x0)]
j=1 ηj(h)

N
− Eπ[h(X1)]

π(x0)

)

:= II1 + II2 + II3.

First, we consider II3. Note that ηj are i.i.d. random

blocks. Under the condition of Eπ(|h|2) < ∞ and σ2 :=

Var(
∑Tx0

t=1 h(Xt)) < ∞, by standard central limit theorem

for i.i.d. random variables, we have

II3 =

√
Nπ(x0)

σ

(∑[Nπ(x0)]
j=1 ηj(h)

Nπ(x0)
− Eπ[h(X1)]

π(x0)

)
(14)

−→ N(0, 1) in distribution.

It remains to show that II1 and II2 converges to zero in
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probability. For any ε > 0, we have

Pπ

⎧⎨
⎩
∣∣∣∣∣∣

N∑
j=Tm

x0
+1

h(Xj)

∣∣∣∣∣∣ > εσ
√

Nπ(x0)

⎫⎬
⎭(15)

≤ Pπ

⎧⎨
⎩

N∑
j=Tm

x0
+1

|h(Xj)| > εσ
√

Nπ(x0)

⎫⎬
⎭

≤ Pπ

⎧⎨
⎩

Tm+1
x0∑

j=Tm
x0

+1

|h(Xj)| > εσ
√

Nπ(x0)

⎫⎬
⎭

= Pπ

{
η1(|h|) > εσ

√
Nπ(x0)

}
≤ Eπ[η1(|h|)]

εσ
√

Nπ(x0)
=

Eπ(|h|)
επ(x0)σ

√
Nπ(x0)

.

Hence, II1 converges to 0 in probability as N → ∞ by
assumption.

Sincem/N −→ π(x0) in probability, we have for all ε > 0,
there exists N0 such that N > N0, Pπ(|m − [Nπ(x0)]| >
Nε3) < ε. Clearly, for such N , we have

Pπ

⎛
⎝
∣∣∣∣∣∣

m∑
j=1

ηj(h)−
[Nπ(x0)]∑

j=1

ηj(h)

∣∣∣∣∣∣ > εσ
√
Nπ(x0)

⎞
⎠

≤ Pπ(|m−Nπ(x0)| > Nε3) +

P

⎧⎨
⎩ max

|r−Nπ(x0)|≤ε3N

∣∣∣∣∣∣
r∑

j=Nπ(x0)+1

ηj(h)

∣∣∣∣∣∣ > εσ
√
Nπ(x0)

⎫⎬
⎭

< ε+ 2Pπ

⎧⎨
⎩ max

1≤r≤ε3N

∣∣∣∣∣∣
r∑

j=1

ηj(h)

∣∣∣∣∣∣ > εσ
√

Nπ(x0)

⎫⎬
⎭

< ε+
2ε3Nσ2

ε2σ2Nπ(x0)
= ε

(
1 +

2

π(x0)

)
.

This proves that II2 converges to 0 in probability as N →
∞. We conclude the proof of (b).
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