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In this paper we introduce a new regression model for
positive and skewed data, a log Birnbaum-Saunders model
based on the centred skew-normal distribution, also present-
ing several inference tools for this model. Initially, we devel-
oped a new version of the skew-sinh-normal distribution,
describing some of its properties. For the proposed regres-
sion model, we carry out, through the expectation condi-
tional maximization (ECM) algorithm, parameter estima-
tion, model fit assessment, model comparison and residual
analysis. Finally, our model accommodates more suitably
the asymmetry of the data, compared with the usual log
Birnbaum-Saunders model, which is illustrated through a
real data analysis.
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1. INTRODUCTION

It is well known, in the data analysis, that to consider
some transformation (as, the natural logarithm, square root
among others) on the response variable along the use of
traditional regression models, as the normal linear one, has
some drawbacks, see [1] and [16]. Indeed, such approach can
lead to some problems as: the difficulty in interpreting the
parameters (in the original scale of the response), the in-
creasing in the bias of the estimates, and the impossibility in
obtaining of symmetry and/or homoscedasticity. However,
when the transformed response does not present none of
those problems, such approach can allow the use of well de-
veloped statistical tools for data analysis with no issues. Fur-
thermore, such transformation(s) can be necessary due to
requirements of the problem under investigation/researcher
and/or even due to the nature of the experiment/survey.

When the response variable is positive, the most com-
mon transformation is the log (ln), which can lead to at
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least of one the aforementioned problems. Indeed, when
the original response can be modeled by a log-normal
or a Birnbaum-Saunders distribution, the respective log-
transformation will follow a normal and a sinh-normal dis-
tribution (which are symmetric random variables), respec-
tively. However, sometimes, some trace of asymmetry still
remains, as when the original response can be suitably mod-
eled by a Birnbaum-Saunders based on the skew normal dis-
tributions, see [14]. Therefore, when a log transformation is
needed/suitable/required, and the transformed variable still
presents an asymmetric behavior, a random variable that
account this feature can be considered. This is the case of
the real data set here analyzed. In this work we consider
a log regression model where the response is modeled by
a Birnbaum-Saunders (BS) based on the centred parame-
terization skew normal distribution, see [14]. This implies
that the respective log response follow a sinh-skew normal
distribution, see [14]. More details are provided in the next
sections. In the following, we present a literature review re-
lated to the BS regression models.

Regression models based on the Birnbaum-Saunders (BS)
and the correspondent log-Birnbaum-Saunders (log-BS) dis-
tributions, which are related to the family of sinh-normal
distributions, see [24], have been receiving considerable at-
tention in the past few years. These regression models are
based on the BS or a log-BS distribution which, in their turn,
are based on a random variable different from the standard
normal. Examples of these distributions are: skew-eliptical
BS [32], Student-t BS [10], scale-mixture of normals BS [7]
and skew scale-mixture Birnbaum-Saunders [8]. In terms of
log-BS regression models, we can cite: Student-t BS model
[9], skew-normal BS model [27] and scale-mixture of normals
BS model [35].

In this paper, we develop a set of statistical analysis tools
for the log Birnbaum-Saunders regression model based on
the skew-normal (SN) distribution under the centred pa-
rameterization (also named centred skew-normal distribu-
tion) [6], named log-SNBS regression model. In the work of
[14], the authors provided empirical evidences that their cen-
tred skew-normal BS (SNBS) distribution has advantages,
in terms of inference, over the skew-normal BS distribution
proposed by [34], similarly to those of the centred SN com-
pared with the usual SN [5], see [23] and [4]. In this paper,
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we show that these advantages are inherited by the respec-
tive log-SNBS regression model.

The aforementioned inference tools are: parameter esti-
mation, residual analysis and statistics for model compar-
ison, which are developed through the Expectation condi-
tional maximization (ECM) algorithm. Also, the impact of
some factors of interest (sample size, asymmetry level of the
log-SNBS distribution and the value of the shape parameter)
on the estimates, are measured through suitable simulation
studies. In addition, the performance of two usual statistics
of model comparison is studied concerning the selection be-
tween our model and the log-BS regression model proposed
by Rieck and Nedelman [25], using simulated data.

The paper is outlined as follows. In Section 2, we present
the log-SNBS distribution along with some of its prop-
erties. In Section 3, we introduce the log-SNBS regres-
sion model, discussing the ECM algorithm for maximum-
likelihood (ML) estimation. In Sections 4, 5 and 6, we de-
velope the residual analysis, the statistics for model com-
parison and simulation studies, respectively. In Section 7, a
real data analysis is discussed and finally, in Section 8, the
concluding remarks are given.

2. THE LOG-SNBS DISTRIBUTION

2.1 The centred skew-normal BS
distribution

A random variable (r.v.) T follows the centred skew-
normal BS (SNBS) distribution, denoted by T ∼
SNBS(α, η, γ), α, η ∈ R, γ ∈ (−.99527, .99527), where α is
the shape parameter, η is the location parameter and γ is
the asymmetry parameter, if its density is given by

fT (t) = 2φ [at;μ,σ(α, η)] Φ {λ(γ) at;μ,σ(α, η)}
× At;σ(α, η), t > 0,

where φ(·) and Φ(·) denote the density and distribution
functions of the standard normal distribution, respectively.
Also, at;μ,σ(α, η) = μz + σz at(α, η) and At;σ(α, η) =

σz At(α, η), with at(α, η) = (
√

t/η −
√
η/t) /α and

At(α, η) = d
dtat(α, η) = t−3/2(t+η)

2αη1/2 . Finally, μz = rδ(γ),

σz =
√
1− μ2

z, r =
√
2/π, δ(γ) = λ(γ)/

√
1 + λ(γ)2,

λ(γ) = γ1/3s/
√

r2 + s2γ2/3(r2 − 1) and s = [2/(4 − π)]1/3.
For simplicity, we will refer to δ(γ) only as δ. The parameters
are (α, η, γ)� and it will be called centred parameters, while
the parameters based the usual SN distribution, (α, η, λ)�,
are called as direct parameters. Note that when γ = 0, we
have the usual BS distribution.

More details about this distribution are presented in [14].
In short, we have symmetry around η for γ = 0 and small
values of α. The positive asymmetry is observed as α in-
creases, η decreases and/or γ takes positive values, whereas
negative asymmetry is observed as α decreases, η increases
and/or γ assumes negative values. Also, the smaller α and η,

the smaller the variability. The higher η, the more shifted to
the right is the distribution. Another interesting feature of
this distribution is that it can model properly positive ran-
dom variables with a negatively skewed behavior. In the data
set presented by [17], for example, the response variable (the
failure times of high-speed turbine engine bearings made out
of five different compounds) is positive and presents a neg-
atively skewed behavior for some of the five compounds.
The same can be observed for the data set present by [20],
which is related to football matches of the UEFA Champions
League (more details will be presented in Section 7).

2.2 The centred skew-sinh-normal
distribution

A r.v. Y is said to have a centred skew-sinh-normal dis-
tribution (SSN), denoted by Y ∼ SSN(α, ρ, σ, γ), where α,
ρ and σ are the shape, location and scale parameters and
γ is the Pearson’s skewness coefficient, respectively, if its
probability density function is given by:

fY (y) =
4σz

ασ
φ

[
μz +

2σz

α
sinh

(
y − ρ

σ

)]
Φ

{
λ(γ)

[
μz

+
2σz

α
sinh

(
y − ρ

σ

) ]}
, y ∈ R,(1)

where all quantities are as defined before. Figure 1 presents
the density of the SSN distribution for different values of
α and γ, fixing ρ and σ in suitable values. We can notice
that α and γ affects the kurtosis and skewness, respectively.
Positive and negative asymmetry are observed when γ as-
sumes positive and negative values, respectively. Note that
for γ = 0, we have the sinh-normal (SHN) distribution de-
veloped by [25].

Figure 1. Density of the SSN distribution for different values
of α (a) and different values of γ (b).

2.3 The proposed distribution

Here, we develop a generalization of the usual log-BS dis-
tribution (see [25] and [18]) based on the centred SN distri-
bution.
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A logarithmic version of the SNBS model, called the log-
SNBS distribution, can be obtained by considering Y =
log(T ), where T ∼ SNBS(α, η, γ), which lead the following
pdf

fY (y) = φ (ξ2y;μ,σ) Φ {λ(γ)ξ2y;μ,σ} ξ1y;σ, y ∈ R,(2)

where ξ2y;μ,σ = μz + σz ξ2y, ξ1y;σ = σzξ1y, with ξ2y =
ξ2(y;α, ρ) = 2

α sinh(
y−ρ
2 ), ξ1y = ξ1(y;α, ρ) = 2

αcosh
(
y−ρ
2

)
and ρ = log(η). Furthermore, μz, σz and λ(γ) are as defined
before. When γ = 0, that is, fY (y) = φ (ξ2y) ξ1y; y ∈ R, we
have the log-BS distribution.

We denote this distribution by Y ∼ SSN(α, ρ, σ = 2, γ).
We use this notation, including a specific value for the pa-
rameter σ, since the log-SNBS distribution is a particular
case of the SSN distribution when σ = 2 in (1). This for-
mer distribution can be also defined directly in terms of
a stochastic representation of the centred SN distribution.
That is, Y may be written as

Y = ρ+ 2arcsinh

(
α[δH +

√
1− δ2X − μz]

2σz

)
,(3)

where μz and δ were defined before, H has a standard half-
normal (HN) distribution, denoted by H ∼ HN(0, 1), and
X ∼ N(0, 1), and H⊥X.

Figure 2 presents the density of the SNBS distribution for
different values of γ and α. In short, the distribution is sym-
metric around ρ, for γ = 0 (in this case we have the log-BS
distribution) and for small values of α. Positive asymmetry
is observed as α increases, ρ decreases and/or γ assumes
positive values. On the other hand, negative asymmetry is
observed as α decreases, ρ increases and/or γ assumes neg-
ative values.

Figure 2. Density of the log-SNBS distribution for different
values of γ, with ρ = 0, (a)–(b) α = .5 and (c)–(d) α = .8.

The following theorem is very useful for obtaining the
conditional expectations, which will be used in the imple-
mentation of the ECM algorithm for ML estimation.

Theorem 1. Let Y ∼ SSN(α, ρ, σ = 2, γ) as in (3). Then,

i) The conditional density of Y , given H = h, can be ex-
pressed by

fY |H(y) =
1

2
φ [νh + ξ2(y;αδ, ρ)]

× ξ1(y;αδ, ρ), y ∈ R,(4)

where αδ = α
√
1−δ2

σz
and νh = − μz+δh√

1−δ2
.

ii) fH|Y (h) =
φ

[
h
∣∣∣δ ξ2y;μ,σ; 1− δ2

]
Φ (λ(γ) ξ2y;μ,σ)

, h > 0, where

φ(·|μ, σ2) denotes the density of the N(μ, σ2. Also, we
have that

E(H|Y = y) = ηy +WΦ

(ηy
τ

)
τ,

E(H2|Y = y) = η2y + τ2 +WΦ

(ηy
τ

)
(ηyτ)

where ηy = δ σz

(
ξ2y +

μz

σz

)
, τ =

√
1− δ2 and

WΦ

(ηy
τ

)
=

φ

( ηy
τ

)
Φ

( ηy
τ

) .

The density in Theorem 1 corresponds to the four-
parameter sinh-normal (SHN) distribution proposed by [18].
The proof of this theorem can be found in Appendix A.

3. SNBS REGRESSION MODELS AND ECM
ALGORITHM

In this section, we introduce the SNBS regression model.
Also, we use a modification of the expectation maximization
(EM) algorithm, called the ECM algorithm, proposed by
[21], to perform maximum likelihood estimation (MLE). In
Appendix A, we present some useful results.

Consider Yi
ind∼ SSN(α,x�

i β, σ = 2, γ), i = 1, . . . , n. As-
sociated with the i -th individual, we assume a know p × 1
vector of covariates xi, which we use to specify the linear
predictor x�

i β, where β is the p × 1 vector of regression
coefficients. Thus, the response Yi can be represented as

Yi = x�
i β + εi, εi ∼ SSN(α, 0, σ = 2, γ), i = 1, . . . , n.(5)

Note that, when γ = 0, the log-BS regression model devel-
oped by [25] is obtained.

Considering θ = (α,β�, γ)�, the respective log-
likelihood based on observed data y = (y1, . . . , yn)

� is
�(θ|y) =

∑n
i=1 �i(θ|yi), where

�i(θ|yi) = log [φ (ξ2i;μ,σ)] + log [Φ (λ(γ)ξ2i;μ,σ)]

+ log (ξ1i;σ) ,(6)
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with ξ2i;μ,σ = μz + σzξ2i, ξ1i;σ = σzξ1i, such that ξ1i =

ξ1(yi;α,x
�
i β) = 2

α cosh
(yi−x�

i β
2

)
, ξ2i = ξ2(yi;α,x

�
i β) =

2
α sinh

(yi−x�
i β

2

)
. Since the observed log-likelihood involves

complex expressions, it is difficult to work directly with
it. Thus, instead consider the direct maximization of (6)
we will obtain the ML estimates through a modification of
the EM algorithm, called the ECM algorithm. In this case,
we need to work with the so-called augmented likelihood,
which is obtained from the joint distribution of the observ-
able variables and non-observable variables, leading to more
tractable expressions, both analytically and computation-
ally, under suitable choices of the augmented variables, see
[33]. Also, instead estimating θ = (α,β�, γ)�, we will es-
timate θ = (α,β�, δ)�, where δ was defined before, which
facilitates the related algebra and the optimization process.

From (3), we have the following hierarchical representa-
tion

Yi|(Hi = hi)
ind∼ SHN(αδ,x

�
i β, σ = 2, νhi),

Hi
ind∼ HN(0, 1), i = 1, . . . , n,

where αδ = α
√
1−δ2

σz
and νhi =

μz−δhi√
1−δ2

. Then, defining yc =

(y,h�)�, where h = (h1, .., hn)
�, the augmented likelihood

is given by

�(θ|yc) =
n∑

i=1

log fY |H(yi) +
n∑

i=1

log fH(hi)

= n
[
log(

√
2/π)− log(2)

]
+

n∑
i=1

log
{
φ [νhi

+ ξ2(yi;αδ,x
�
i β)

] }
+

n∑
i=1

log
[
ξ1(yi;αδ,x

�
i β)

]
− 1

2

n∑
i=1

h2
i .

For a current value θ, says θ̂, the E-step requires the eval-

uation of Q(θ|θ̂) = E

[
�(θ|yc)|y, θ̂

]
, where the expecta-

tion is taken with respect to the conditional distribution
H|(Y = y) and evaluated at θ̂. Given a estimate of θ at

r -th iteration, says θ̂
(r)

= (α̂(r), β̂
(r)

, δ(r))�, defines ĥ
(r)
i =

E[Hi|yi,θ = θ̂
(r)

] and ĥ
2(r)
i = E[H2

i |yi,θ = θ̂
(r)

], which are
obtained by using the conditional expectation given in The-
orem 1, which become

ĥi = η̂yi +WΦ

(
η̂yi

τ̂

)
τ̂ , and

ĥ2
i = η̂2yi

+ τ̂2 +WΦ

(
η̂yi

τ̂

)
(η̂yi τ̂) ,(7)

where, η̂yi = δ̂
√

1− r2δ̂2

(
ξ2(yi; α̂,x

�
i β̂) +

rδ̂

1− r2δ̂2

)
, τ̂ =

√
1− δ̂2 and WΦ(z) = φ(z)/Φ(z), z ∈ R.
After some algebra, it follows that the conditional expec-

tation of the augmented log-likelihood is

Q
(
θ|θ(r)

)
= E

[
�(θ|yc)|y, θ̂

(r)
]

= c− δ2(r)

2(1− δ2(r))

n∑
i=1

(
r2 − 2 r ĥ

(r)
i + ĥ

2(r)
i

)
− δ(r)√

1− δ2(r)

n∑
i=1

[(
r − ĥ

(r)
i

)
ξ2

(
yi;α

(r)
δ ,x�

i β(r)
)]

−1

2

n∑
i=1

{
ξ2

(
yi;α

(r)
δ ,x�

i β(r)
)}2

+
n∑

i=1

log
[
ξ1

(
yi;

α
(r)
δ ,x�

i β(r)
)]

− 1

2

n∑
i=1

ĥ
2(r)
i .

Hence, the ECM algorithm corresponds to iterate the fol-
lowing steps:

E-step: Given θ = θ̂
(r)

, to compute ĥi and ĥ2
i , for i =

1, . . . , n using results in (7);

CM-step 1 : To fix β̂
(r)

and δ̂(r) and to update α̂(r)

through the positive root of the following quadratic equation

α̂2 + b̂(r)α̂+ ĉ(r) = 0,

where

b̂(r) =
2δ̂(r)

√
1− r2δ̂2(r)

n(1− δ̂2(r))

[ n∑
i=1

sinh

(
yi − x�

i β̂
(r)

2

)
ĥ
(r)
i

− r

n∑
i=1

sinh

(
yi − x�

i β̂
(r)

2

) ]
,

ĉ(r) = −
4

(
1− r2δ̂2(r)

)
n(1− δ̂2(r))

n∑
i=1

{
sinh

(
yi − x�

i β̂
(r)

2

)}2

.

That is, α̂(r+1) = −b̂(r+1)+
√

b̂2(r+1)−4ĉ(r+1)

2 .

CM-step 2 : To fix α̂(r+1) and to update β̂
(r)

and δ̂(r)

using

β̂
(r+1)

= argmax

β̂

Q
(
α̂(r+1), β̂, δ̂(r)

)
and

δ̂(r+1) = argmax
δ

Q

(
α̂(r+1), β̂

(r+1)
, δ

)
.

The updating of β̂
(r+1)

and δ̂(r+1) need to be done through
some numerical optimization method. In this work we use
the function optim, available at software R [26], considering
the L-BFGS-B optimization algorithm [12].

We start the ECM algorithm with initial values α̂(0),

β̂
(0)

and δ̂(0). The estimates β̂
(0)

can be obtained through
ordinary least squares estimates of the log-SNBS regres-
sion model. The value α̂(0) can be obtained from α̂(0) ={
(4/n)

∑n
i=1

[
sinh

(
yi − x�

i β̂
(r)

/2

)]2
}1/2

, see [19] for de-

tails. Once we have α̂(0) and β̂
(0)

, we can calculate zi =

338 N. L. Chaves et al.



(
2/α̂(0)

)
sinh

(
yi − x�

i β̂
(r)

/2

)
; i = 1, . . . , n, which repre-

sent observations from the SN distribution. Thus, δ̂(0) can
be obtained by maximizing (numerically) the log-likelihood
function of SN distribution with respect to δ, which is given
by

�(θ) =

n∑
i=1

[
log(2) + log(σz) + log [φ (μz + σzyi)]

+ logΦ [λ(γ)(μz + σzyi)]
]
.

According to [34], for ensuring that the true ML estimates
are obtained, it is recommended to run the ECM algorithm
using a range of different starting values, checking whether
all of them result in similar estimates. The steps of the ECM
algorithm are repeated until a suitable convergence criterion

is attained, for example, until
∥∥∥θ(r) − θ(r−1)

∥∥∥ < ε, ε > 0.

The observed information matrix is obtained as I(θ) =
−�̈. Here, �̈ = [�̈θ1θ2 ], where θ1,θ2 ≡ α,β, γ, is the Hes-
sian matrix, where �̈θ1θ2 = �̈θ2θ1 = ∂2�(θ)/∂θ1∂θ

�
2 =∑n

i=1 ∂
2�i(θ)/∂θ1∂θ

�
2 . The second derivatives of �i(θ) are

provided in Appendix B. The approximate standard errors
(SE) of θ̂ can be estimated by using the square roots of the
diagonal elements of I−1(θ), replacing θ by the respective

ML estimates θ̂.

3.1 Some advantages of the proposed model

i) It is well known that there is some difficulty in esti-
mating the parameters of the usual SN distribution by
maximum likelihood, when the asymmetry parameter
is near to zero. The log-SNBS regression model, based
on the usual SN, inherits such problem. On the other
hand, the log-SNBS regression model (which is based
on the centred SN distribution) circumvents problems
inherited of the log-BS regression model, based on the
usual SN distribution.

ii) When the asymmetry parameter is equals to zero, the
expected Fisher information is singular, even if all pa-
rameters are identifiable. This fact affects the asymp-
totic properties of the maximum likelihood estimators
(MLEs). To illustrate such behavior, we have run a little
simulation experiment generating 5,000 samples of size
n = 200, from the log-SNBS model, based on the usual
SN distribution. For each sample the MLEs (α̂, β̂, λ̂)�

have been computed. In this case, we fix α = .8,
β = (β0, β1) = (1, 2)� and λ = 1. Figure 3 displays the

corresponding empirical distributions of α̂ and (α̂, β̂0)
�,

left panel and a right panel, respectively. Furthermore,
it was generated 5,000 samples of size n = 200, from
the log-SNBS model based on the centred SN distribu-
tion. For each sample the MLEs (α̂, β̂, γ̂)� have been
computed. In this case, we fix α = .8, β = (1, 2)�

and γ = .137. The values of λ and γ were the same

ones used by [2]. The empirical distribution of the esti-
mates of α is shown in the left panel of Figure 4, while
that of (α̂, β̂0)

� is presented in the right panel. Clearly,
these empirical distributions are much closer to nor-
mality than those in Figure 3. In fact, it can be shown
that the singularity of the expected Fisher information
matrix, when the skewness parameter is null, does not
occur any longer.

iii) Some advantages of the BSCP distribution can be ob-
served in terms of parameter recovery. A short simu-
lation study, for the original skew normal distributions
(both direct and centered ones) can be found in [28].

Figure 3. Estimated distributions of the MLEs when samples
of size n = 200 are drawn from log-SNBS based on the usual
SN distribution; the left panel displays the histogram of α̂,

the right panel displays the scatter plot of (α̂, β̂0)
�.

Figure 4. Estimated distributions of the MLEs when samples
of size n = 200 are drawn from log-SNBS based on the

centred SN distribution; the left panel displays the histogram
of α̂, the right panel displays the scatter plot of (α̂, β̂0)

�.

4. RESIDUAL ANALYSIS

Residual analysis is an important tool for model fit as-
sessment. It allows for checking the presence of outliers, as
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well as the departing from model assumptions. Following
the methodology proposed by [15], we consider the quantile
residual.

Let Yi|θ ∼ SSN(α,x�
i β, σ = 2, γ) be a r.v.

with a cumulative distribution function (cdf) given by
FYi(yi) = Φ(μz + σzξ2i) − 2T (μz + σzξ2i, λ(γ)), where

T (a, λ(γ)) =
1

2π

∫ λ(γ)

0

exp[−0.5 a2(1 + x2)]

1 + x2
dx was defined

by [22]. Therefore we can define the quantile residual as

Ri = Φ−1

{
Φ

[
μz + σzξ2

(
yi; α̂,x

�
i β̂

)]
−2T

[
μz + σzξ2

(
yi; α̂,x

�
i β̂

)
, λ(γ)

]}
,(8)

where (̂·) is the respective ML estimator. Therefore, with

α̂, γ̂ and β̂ being consistent estimators of α, γ and β, re-
spectively, we have that Ri converges in distribution to a
standard normal distribution.

5. STATISTICS FOR MODEL COMPARISON

There exist a variety of methodologies to compare several
competing models, for a given data set. We consider model
selection tools which can be easily computed using the avail-
able ECM algorithm output, namely: the Akaike’s informa-
tion criterion (AIC) proposed by [3] and Bayesian informa-
tion criterion (BIC) proposed by [30]. The AIC is based on
the likelihood, penalized by the number of parameters. On
the other hand, BIC, considers both the number of parame-
ters and the sample size. The respective formulas are given
by: AIC = −2�(θ|y) + 2k and BIC = −2�(θ|y) + k log(n),
where �(θ|y) is the likelihood defined in (6), k is the total
number of parameters and n is the number of observations.
Lower values of AIC or BIC indicate models with a better
quality of fit.

6. SIMULATION STUDIES

In this section we present three simulation studies,
namely: parameter recovery (PRC), behavior of the pro-
posed residuals (R) and performance of the statistics of
model comparison (SMC). Several relevant scenarios were
considered, which correspond to the combination of the
levels of some factors of interest. The factors (with the
respective levels within parenthesis) are: sample size (n)
(10, 50, 200), that is, small, medium and large sample sizes,
values of α (.5, 1.5), that is, low and moderate variabil-
ity, and value of γ (−.67,−.45, 0, .45, .67), that is high and
medium negative skewness, symmetry and high and medium
positive skewness, respectively. Therefore, we have a total
of 30 scenarios. For the PRC and SMC studies, all sce-
narios and R = 1,000 replicas (simulated responses from
the model) were considered. For the other study (R), only
one replica and only scenario is presented. Specifically for

the PRC study, we here present only the results for nine
scenarios, since for the other scenarios, the patterns were
similar and they can be found in the supplementary ma-
terial, http://intlpress.com/site/pub/files/ supp/sii/2020/
0013/0003/SII-2020-0013-0003-s002.pdf. Additional details
are presented in the following subsections.

The general structure of the model here used is

Yi = x�
i β + εi, εi ∼ SSN(α, 0, σ = 2, γ), i = 1, . . . , n,

where β = (1, 2)�.

6.1 Parameter recovery

As previously mentioned, we present only the results re-
lated to the scenarios where α = .5, γ ∈ (−.67, 0, .45), vary-
ing the sample size. The values for the sample size were cho-
sen in order to verify the proprieties of the ML estimators,
as consistency and accuracy.

We calculated the usual statistics to measure the accu-
racy of the estimates, that are: standard deviation (SD),
coverage probability (CP) of the 95% equi-tailed confi-
dence intervals (CI), bias, root mean squared error (RMSE)
and absolute value of the relative bias (AVRB). Let θ be

the parameter of interest, θ̂r be some estimate related to

the replica r and θ̂ = (1/R)
∑R

r=1 θ̂r. The respective for-

mulas of the statistics are: SD =

√
(1/R)

∑R
r=1(θ̂r − θ̂)2,

CP = (1/R)
∑R

r=1 I([θ̂r,LCL, θ̂r,UCL] ⊃ θ), where θ̂r,LCL

and θ̂r,UCL are the estimated lower and upper limits of the

95% equi-tailed CI’s, respectively; Bias = θ̂ − θ, RMSE =√
(1/R)

∑R
r=1(θ − θ̂r)2, AVRB = |θ̂− θ|/|θ|. We considered

(< .001) to represent positive values (statistics and/or esti-
mates) and (> −.001) to denote negative values, when they
are close to zero.

Tables 1, 2 and 3 present some results. We can notice
that the estimates related to α, β0 and β1 tend to the cor-
respondent true values in all scenarios, as the sample size
increases. On the other hand, γ is always underestimated.
This is probably due to that the estimation of the asym-
metry parameter is more complicated, than to the other
parameters. In general, as the sample size increases, we can
notice that standard deviation, bias, RMSE and AVRB de-
crease. Furthermore, as the sample size increases, the cover-
age probabilities of the 95% equi-tailed confidence intervals
tend to 0.95, regardless the selected true values for α and γ,
unless for the parameter γ, for which a larger sample size is
required to have desirable the coverage probabilities.

6.2 Behavior of the residuals

Here we considered the scenario where α = .5, γ = .67
and n = 200. We simulated only one set of observations un-
der four different models: log-SNBS, log-BS, log-BS-t [13]
and log-StBS [8]. The first one is the model given by Equa-
tion (5) while the second corresponds to its particular case
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Table 1. Results of simulation study (PRC) - γ = −.67.

Parameter n Mean SD CP Bias RMSE AVRB

10 .610 .091 .631 .110 .142 .220
α 50 .475 .076 .967 -.025 .080 .051

200 .498 .005 1.000 -.002 .005 .005

10 .982 .255 .621 -.018 .256 .018
β0 50 .989 .415 .653 -.011 .415 .011

200 .997 .055 .976 -.003 .055 .003

10 1.996 .824 .463 -.004 .824 .002
β1 50 2.009 .459 .486 .009 .459 .005

200 2.003 .109 .933 .003 .109 .002

10 -.134 .978 < .001 .536 1.115 .800
γ 50 -.383 .910 < .001 .287 .954 .428

200 -.555 .277 .750 .115 .300 .171

Table 2. Results of simulation study (PRC) - γ = 0.

Parameter n Mean SD CP Bias RMSE AVRB

10 .645 .066 .398 .145 .159 .290
α 50 .477 .072 .973 -.023 .075 .045

200 .498 .002 1.000 -.002 .003 .005

10 .987 .439 .557 -.013 .439 .013
β0 50 1.002 .273 .622 .002 .273 .002

200 .998 .059 .973 -.002 .059 .002

10 2.040 .864 .455 .040 .865 .020
β1 50 1.991 .504 .427 -.009 .504 .005

200 2.003 .117 .954 .003 .117 .002

10 -.016 .987 < .001 -.016 .988 -
γ 50 .002 .988 < .001 .002 .988 -

200 .004 .153 .961 .004 .153 -

Table 3. Results of simulation study (PRC) - γ = .45.

Parameter n Mean SD CP Bias RMSE AVRB

10 .629 .075 .496 .129 .149 .258
α 50 0.475 .076 .969 -.025 .080 .051

200 0.498 .003 1.000 -.002 .004 .005

10 1.013 .432 .545 .013 .432 .013
β0 50 .995 .267 .634 -.005 .267 .005

200 1.002 .057 .976 .002 .057 .002

10 1.987 .848 .450 -.013 .848 .006
β1 50 2.003 .488 .439 .003 .488 .002

200 1.999 .114 .945 -.001 .114 .001

10 .041 .987 < .001 -.409 1.068 .908
γ 50 .328 .932 .001 -.122 .940 .272

200 .332 .244 .672 -.118 .271 .262

when γ = 0. The third and the fourth models correspond
to model (5) using, in Equation (3), instead of a centred
SN distribution, a Student-t and a skew Student-t distribu-
tion, with ν = 4 degrees of freedom and asymmetry param-
eter γ = .67, respectively. For each simulated data set we
fit a log-SNBS regression model and calculate the residuals
presented in (8). Four plots were built for each situation,
including an simulated envelope for the residuals, which are

Figure 5. Residual plots for the observations generated from
a log-SNBS regression model.

Figure 6. Residual plots for the observations generated from
a log-BS regression model.

Figure 7. Residual plots for the observations generated from
a log-BS-t model.
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Figure 8. Residual plots for the observations generated from
a log-StBS model.

presented in Figures 5, 6, 7 and 8. To simulate from the skew
Student-t distribution we used the function rst from the R
package sn.

We can notice that, when the log-SNBS regression model
(or its particular case, the log-BS regression model) is the
underlying one, the residuals present a symmetric behav-
ior, resembling a standard normal distribution, with all re-
spective values within the simulated envelope, with no sys-
tematic behavior. On the other hand, when the underlying
model is the log-BS-t, we observe some outliers and many
observations lying outside the simulated envelope, which,
in its turn, presents a behavior compatible with a heavy
tailed distribution. Finally, when the underlying model is
the log-StBS, we observe some outliers, a skewed behavior
of the residuals, with many observations lying outside the
simulated envelope, which, in its turn, presents a behav-
ior compatible with a skewed heavy tailed distribution. In
conclusion, we can say that the proposed residuals are ap-
propriate to detect whether or not the model fit properly to
the data, concerning the true underlying distribution, iden-
tifying, when it is the case, how this distribution differs from
the SN (the generating distribution).

6.3 Statistics of model comparison

In order to verify the performance of the statistics of
model comparison, we conducted a simulation study consid-
ering four different scenarios. In the first two, we simulated
R = 100 replicas (observations) of the log-SNBS regression
model with α = .5, β = (1, 2)�, γ = .67, considering two
samples sizes (n = 50, n = 200), fitting two competing mod-
els, the log-SNBS and log-BS regression ones. The last two
scenarios are equivalent to the two first, but the replicas
were simulated from the log-BS regression model. Table 4
presents the averaged criteria and the number of times (in
percentage) that the underlying model was selected (within
parenthesis) for the four scenarios. It can be seen that the

true underlying model is chosen, with a high probability, in
any situation, even under a small sample size.

Table 4. Averaged criteria and the number of times (in
percentage) that the underlying model was selected for the

simulation study (SMC).

True underlying model: log-SNBS

Model n AIC BIC

log-SNBS 50 69.481 (97%) 77.129 (95%)
200 270.105 (98%) 283.299 (98%)

log-BS 50 73.389 79.125
200 282.964 292.859

True underlying model: log-BS

Model n AIC BIC

log-SNBS 50 74.930 82.578
200 287.320 300.514

log-BS 50 73.945 (97%) 79.681 (99%)
200 284.139 (100%) 294.034 (100%)

7. REAL DATA ANALYSIS

We considered the data set analyzed by [20], which is
related to football matches of the UEFA Champions League
(Union of European Football Associations). These football
matches are such that: (i) there was at least one goal scored
by the home team, and (ii) there was at least one goal scored
by either team from the penalty spot, lack of kick, or any
other direct bid. Let T1 be the time in minutes that the first
goal was scored by either team and let T2 be the time in
minutes that the first goal of any sort, was scored by the
home team. The objective is to predict the time in minutes
for the first goal be scored by the home team based on the
time in minutes the first goal scored by either team. From
Figure 9 it can be seen that a linear model can be suitable
to link the natural logarithm of these two variables.

Figure 9. Scatter plot between the natural logarithm of the
T1 and T2.

We assume that the response variable, in its original scale,
can be modeled by a SN distribution. Therefore, the corre-
spondent natural logarithm can be modeled by a SSN dis-
tribution.
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The first proposed model is the log-SNBS model:

Yi = β0 + β1xi + εi, εi ∼ SSN(α,x�
i β, σ = 2, γ),

i = 1, . . . , 37,

where Yi = log(T2i), xi = log(T1i), Tji, j = 1, 2, is the value

of the variable j for the team i, εi
i.i.d.∼ SSN(α, 0, σ = 2, γ).

The second model is the log-BS model (i.e., considering
γ = 0). Figures 10 and 11 present the residual analysis for
both models. We can see that the log-SNBS model provides
a better fit than the log-BS model. Indeed, from the simu-
lated envelope shown in Figure 11(d), we can notice that the
observations appear to form a slight downward-facing. Also,
there are observations lying outside the simulated envelope
for the log-BS model. However, the simulated envelope in
Figure 10(d) indicates that the log-SNBS model offers an
excellent fit to the data, since most of the observations are
completely within the bands, without show any systematic
behavior.

Figure 10. Residual analysis for the log-SNBS model.

Figure 11. Residual analysis for the log-BS model.

Table 5 presents the estimates of the parameters, stan-
dard error (SE) and the 95% equi-tailed confidence intervals
for both models. We have indications that the asymmetry
parameter is different from zero, since such does not be-
long to the confidence interval. Also the larger is the time
to the first goal be scored by either team, the higher is the
time to a goal of any sort be scored. Moreover, both in-
formation criteria selected the log-SNBS model. Also, since
the log-BS model did not fit properly to the data, we can
conclude that the the respective SE are not well estimated,
which could lead to wrong conclusions, if we would choose
it. Also, the estimates of the regression parameters, between
the two models, indicate that the respective true values are
not equal. Therefore, different conclusions could be drawn
from the two models.

Table 5. Estimates, standard error, 95% confidence intervals
for the parameters of the the log-SNBS and log-BS models

and model selection criteria.

Parameter log-SNBS

Estimate SE CI95%
α .877 .113 [.841; .914]
β0 1.468 .863 [1.189; 1.746]
β1 .462 .238 [.385; .538]
γ -.748 .211 [-.816; -.680]

AIC 92.839
BIC 99.282

Parameter log-BS

Estimate SE CI95%
α .900 .105 [.866; .933]
β0 1.060 .724 [.827; 1.293]
β1 .568 .200 [.503; .632]

AIC 97.468
BIC 102.301

8. CONCLUDING REMARKS

In this paper we introduce a new regression model suit-
able to analyze data where the log response can be wither
symmetric or (left/right) asymmetric. Frequentist inference
is performed by a suitable ECM algorithm and tools for
model fit assessment are proposed. The simulation stud-
ies indicated that the proposed methodologies perform very
well. Some advantages of our proposal, over that based on
the direct parameterization of the skew normal distribution,
are illustrated. In the real data analysis, it is clear that: the
log transformation did not lead to a symmetric behavior of
the response variable and that our model is more appropri-
ate than the usual log BS. As future research we suggest
to consider other distributions to generate a more general
class of Birnbaum-Saunders type distribution, as the skew
student t. Also, nonlinear regression structures can be con-
sidered. In addition, instead of modeling the log response,
the modeling of the original response, in terms of its mean,
can be considered as in [29].
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APPENDIX A. THE ECM ALGORITHM

The following result is used in the proof of Theorem 1
(which are helpful to obtain the conditional expectations in
the EM algorithm).

Lemma 1. Let X ∼ N(η, τ2), thus ∀a ∈ R

E(X|X > a) =

∫ ∞

a

xf(x|x > a)dx

=
1

P (X < a)

∫ ∞

a

xf(x)dx

=
1

Φ
(
a−η
τ

) {
η

[
1− Φ

(
a− η

τ

)]
+ τφ

(
a− η

τ

)}
= η +

φ
(
a−η
τ

)
1− Φ

(
a−η
τ

)τ.

E(X2|X > a) =

∫ ∞

a

x2f(x|x > a)dx

=
1

P (X < a)

∫ ∞

a

x2f(x)dx

=
1

Φ
(
a−η
τ

) {
η2

[
1− Φ

(
a− η

τ

)]
+ τ2

+ ητφ

(
a− η

τ

)
+ aτφ

(
a− η

τ

)}
= η2 + τ2 +

φ
(
a−η
τ

)
1− Φ

(
a−η
τ

) (η + a)τ.

Proof of Theorem 1. i) Let Y ∼ SSN(α, ρ, σ = 2, γ) as in
(3). Then,

FY |H(y) = P

{
ρ+ 2arcsinh

(
α[δH +

√
1− δ2X − μz ]

2σz

)
≤ y

}
= P

[
X ≤ − μz + δh√

1− δ2
+

ασz

2
√
1− δ2

sinh

(
y − ρ

2

)]
= Φ[X ≤ νh + ξ2(y;αδ, ρ)]

Deriving FY |H(y|h) with respect to y, we obtain

fY |H(y) =
1

2
φ [νh + ξ2(y;αδ, ρ)] ξ1(y;αδ, ρ), y ∈ R,

where αδ = α
√
1−δ2

σz
and νh = − μz+δh√

1−δ2
. Thus, the proof

is concluded.
ii) The density of H|(Y = y) can be obtained through

the following relation fH|T (h) =
fY |H(y)fH(h)

fY (y) , where

fH(h) = 2φ(h|0, 1), h > 0, fY |H(y) was defined in (4),
and fY (y) was defined in (1). After some algebra, we

obtain that

fH|Y (h) =
Φ (λ(γ) ξ2y;μ,σ)

φ
[
h
∣∣∣δ ξ2y;μ,σ; 1− δ2

] , h > 0,

where φ(·|μ, σ2). The conditional expectations are ob-
tained from

E
[
Hk|Y

]
=

1

Φ (λ(γ) ξ2y;μ,σ)

∫ ∞

0

hkφ
[
h
∣∣∣δ ξ2y;μ,σ;

1− δ2
]
dh

= E(Hk|H > 0).

Now, using the conditional expectations for truncated
distributions presented in Lemma 1, we obtain

E(H|Y = y) = ηy +WΦ

(ηy
τ

)
τ,

E(H2|Y = y) = η2y + τ2 +WΦ

(ηy
τ

)
(ηyτ)

where ηy = δ σz

(
ξ2y +

μz

σz

)
, τ =

√
1− δ2 and

WΦ

(ηy
τ

)
=

φ

( ηy
τ

)
Φ

( ηy
τ

) . The proof is concluded.

APPENDIX B. THE OBSERVED FISHER
INFORMATION MATRIX

∂2�i(θ)

∂θ1∂θ
�
2

= ξ2i;μ,σ

(
∂2ξ2i;μ,σ

∂θ1∂θ
�
2

)
+

(
∂ξ2i;μ,σ

∂θ1

) (
∂ξ2i;μ,σ

∂θ2

)

+λ(γ)

[
WΦ(λ(γ)ξ2i;μ,σ)

(
∂2ξ2i;μ,σ

∂θ1∂θ
�
2

)

+ λ(γ)W
′
Φ(λ(γ)ξ2i;μ,σ)

(
∂ξ2i;μ,σ

∂θ1

) (
∂ξ2i;μ,σ

∂θ2

)]
+

1

ξ21i;σ

[
ξ1i;σ

(
∂2ξ1i;σ

∂θ1∂θ
�
2

)
−

(
∂ξ1i;σ

∂θ1

) (
∂ξ1i;σ

∂θ2

)]
;

θ1,θ2 = α,β,

∂2�i(θ)

∂θ3∂γ

= ξ2i;μ,σ

(
∂2ξ2i;μ,σ

∂θ3∂γ

)
+

(
∂ξ2i;μ,σ

∂θ3

) (
∂ξ2i;μ,σ

∂γ

)
+λ(γ)WΦ(λ(γ)ξ2i;μ,σ)

(
∂2ξ2i;μ,σ

∂θ3∂γ

)
+

(
∂ξ2i;μ,σ

∂θ3

)
×

{
λ(γ)W

′
Φ(λ(γ)ξ2i;μ,σ)

[
λ(γ)

(
∂ξ2i;μ,σ

∂γ

)
+ ξ2i;μ,σ

×
(
∂λ(γ)

∂γ

)
+WΦ(λ(γ)ξ2i;μ,σ)

(
∂λ(γ)

∂γ

) ]}
+

1

ξ21i;σ

[
ξ1i;σ

(
∂2ξ1i;σ

∂θ3∂γ

)
−

(
∂ξ1i;σ

∂θ3

) (
∂ξ1i;σ

∂γ

) ]
;
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θ3 = α,β,

∂2�i(θ)

∂γ2

= ξ2i;μ,σ

(
∂2ξ2i;μ,σ

∂γ2

)
+

(
∂ξ2i;μ,σ

∂γ

)2

+WΦ(λ(γ)ξ2i;μ,σ)

×
[
λ(γ)

(
∂2ξ2i;μ,σ

∂γ2

)
+

(
∂ξ2i;μ,σ

∂γ

) (
∂λ(γ)

∂γ

)
+ ξ2i;μ,σ

(
∂2λ(γ)

∂γ2

)
+

(
∂λ

∂γ

) (
∂ξ2i;μ,σ

∂γ

) ]
+W

′
Φ(λξ2i;μ,σ)

[
λ

(
∂ξ2i;μ,σ

∂γ

)
+ ξ2i;μ,σ

(
∂λ

∂γ

)]2

+
1

ξ21i;σ

[
ξ1i;σ

(
∂2ξ2i;μ,σ

∂γ2

)
−

(
∂ξ2i;μ,σ

∂γ

)2
]
,

where W
′

Φ(x) = −WΦ(x)[x + WΦ(x)] is the derivative of
WΦ(x) with respect to x, see [34], and the other quantities
are as before defined.
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