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A sequential näıve Bayes method for music genre
classification based on transitional information
from pitch and beat
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Due to the rapid development of digital music market,
online music websites are widely available in our daily life.
There is a practical need to develop automatic music genre
classification algorithms to manage a huge amount of mu-
sic. In this regard, the transitional information contained in
pitches and beats should be very useful. Particularly, the
transition in pitches produces a melody, and the transition
in beats produces a rhythm. They both decide the music
genre. To take these valuable information into consideration,
we propose here a sequential näıve Bayes method for music
genre classification. This method can be viewed as an novel
extension of the classical näıve Bayes classifier, but takes the
transitional information between pitches and beats into con-
sideration. To reduce the number of estimated parameters,
we propose a BIC-type criterion and develop a computa-
tionally efficient algorithm for model selection. The selection
consistency of the BIC method is theoretically proved and
numerically investigated. The finite sample performance of
the proposed methods are assessed through both simulations
and a real music dataset.

Keywords and phrases: BIC, Music genre classifica-
tion, Pitch and beat, Selection consistency, Sequential näıve
Bayes.

1. INTRODUCTION

Information technology makes digital music widely avail-
able over the Internet [12, 2]. Under the flourishment of dig-
ital music market, many online music websites and applica-
tions emerge. They focus on providing digital music services
to users, such as downloading, subscription streaming, and
so on [26]. For example, iTunes Store, a software-based on-
line digital media store operated by Apple Inc. has offered
about 40 million songs available for download [30]. QQ Mu-
sic, one of the top music service providers in China, has the
copyrights of 17 million songs and reaches over 700 million
users by 2017. How to manage such a huge amount of music
files becomes a great challenge.

To handle this challenge, music files are often divided
into various classes to annotate its characteristics [19, 21].
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For example, the rock song Beat It has been classified into
classes Michael Jackson for its artist and English for its
language. The Beethoven’s famous light music Dance of the
Little Swans has been classified into the class Piano for its
played instrument. Such classes are easy to identify, since
their classification standards are relatively objective. How-
ever, many other classes, especially the music genres, have
no clear classification standards. In practice, the correspond-
ing classification work mainly relies on human efforts, which
is labor intensive, time consuming, and error prone [19, 17].
Hence, it is of great need to develop an automatic algorithm
for music genre classification.

To this end, various information sources (e.g., lyrics, au-
dio files, and music scores) have been considered. Classifica-
tion using lyrics is essentially a text classification problem.
Therefore, various classification methods developed for texts
can be readily applied for music [16, 14, 13]. However, there
are a lot of music without lyrics, such as the classical piano
music. This fact limits the application of lyrics-based classi-
fication methods. Since the audio files contain all the audio
signals of music, classification based on audio files becomes
very useful. In this regard, various features should be ex-
tracted from audio files and standard classification methods
can be applied [12, 7, 11, 18]. In practice, however, there also
exist scenarios, where both audio files and lyrics are inacces-
sible. See for examples the Musescore (https://musescore.
com) and Chinese Score (http://www.qupu123.com) web-
sites, which are online communities for music score creation
and online sharing. In this case, only music scores (usually
formatted inMusicXML) are available for music genre clas-
sification. Therefore, how to extract high-quality symbolic
features from music scores to well represent music content
becomes important.

A variety of symbolic features have been taken into con-
sideration, covering dimensions of music, such as timbre,
pitch, harmony and rhythm [21, 5, 3, 4, 24, 1, 15]. See [6]
for an overview. The symbolic features can provide high-
level music representations, since they are extracted from
the basic elements of music (e.g., note) and present music in
a way supposed for performers. The combination of audio-
based features and symbolic features are also adopted in
music genre classification to gain benefits from both repre-
sentations. One notable work is [5], in which the authors
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extracted symbolic and audio features from Midi data and
found the use of both types of features can improve the clas-
sification accuracy.

In this work, we focus on the situation where only music
scores are available and try to develop genre classification
methods based on the transitional information of pitches
and beats only. It is generally believed that the transition
in pitches produces a melody, and the transition in beats
produces a rhythm [9]. Music in different genre classes usu-
ally have different styles of melody and rhythm, and thus
exhibit different transitional patterns of pitch and beat. For
example, Figure 1 shows two examples of music scores for
a piece of folk music and a piece of classical music, respec-
tively. It is obvious that the transitional patterns of pitches
and beats for the folk music are more mild than those for
the classic music. In addition, compared to audio files, the
pitch and beat information extracted from music score is
smaller in storage and easier to process. It is also free from
influences caused by instrument change. Therefore, it is of
great interest to take advantages of transitional information
of pitches and beats to address the problem of music genre
classification.

Figure 1. Examples of music scores for a piece of folk music
(the top) and a piece of classical music (the bottom).

To this end, we propose a sequential näıve Bayes method
for music genre classification by making use of the tran-
sitional information of pitches and beats only. Under as-
sumptions that the pitch sequence and beat sequence are
independent and follow the Markov property, we model the
transitions of pitches and beats in a sequential manner. Our
method can be viewed as an novel extension of the classical
näıve Bayes classifier, but takes the transitional information
of pitches and beats into consideration. Practically, we of-
ten have a large pitch space, which results in a large set of
pitch transitional probabilities to be estimated. To reduce
the number of parameters, a BIC-type criterion is proposed
for model selection. For a practical implementation, a com-
putationally efficient algorithm is also developed.

The rest of this paper is organised as follows. Section 2
introduces the sequential näıve Bayes method and the BIC

method. Section 3 demonstrates the finite sample perfor-
mance of our method through simulation studies. Section 4

conducts real data analysis. Section 5 concludes the paper

with a brief discussion.

2. THE METHODOLOGY

2.1 Model and notations

We consider a total of n music score files, denoted by
Si (i = 1, · · · , n). There are two pieces of information con-

tained in Si, i.e., the pitch sequence and beat sequence, re-

spectively. Thus, we can write Si = {(Xit, Bit) : 1 ≤ t ≤ Ti},
where Xit represents the pitch, Bit represents the beat, and
Ti is the total number of pitches and beats contained in

Si. We further define X and B as the state space of pitch

and beat, respectively. Each state in X corresponds to one

key position on a piano keyboard. In this work, we con-

sider a standard piano keyboard with 88 keys, plus the rest.
As a result, a total of 88 + 1 = 89 states are contained

in X . As for B, we consider six typical beats, i.e., B =

{whole, half, quarter, 8th, 16th, 32nd}. Figure 2 illustrates

all the states in X and B. Lastly, let Yi ∈ Y = {1, ...,K}
represent the class label of Si.

Figure 2. Illustration of the state space of pitch (the top) and
beat (the bottom).

To model the relationship between Si and Yi, we pro-

pose the following sequential näıve Bayesian (SNB) model.

Assume each Yi is independently generated according to

πk = P (Yi = k) > 0 and
∑

k∈Y πk = 1. Given Yi, the
music score Si = {(Xit, Bit) : 1 ≤ t ≤ Ti} is generated in a

sequential manner. Specifically, for t = 1, the first pitch Xi1

and beat Bi1 are generated according to

P (Xi1 = x|Yi = k) = px,k,

P (Bi1 = b|Yi = k) = qb,k,

where x ∈ X , b ∈ B, px,k and qb,k are probabilities satisfying∑
x∈X px,k = 1 and

∑
b∈B qb,k = 1. For any 1 < t ≤ Ti,

denote Fit to be the σ-field generated by {(Xis, Bis) : s ≤
t}. We first assume the sequences of pitch and beat follow
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the Markov property. That is, P (Xit, Bit|Fit−1, Yi = k) =

P (Xit, Bit|Xit−1, Bit−1, Yi = k). In addition, we assume the

pitch sequence and beat sequence are independent from each

other. Therefore, the pitch Xit and beat Bit are generated

according to

P (Xit|Xit−1, Bit−1, Yi = k)

= P (Xit = x2|Xit−1 = x1, Yi = k) = ωx1x2,k,

and

P (Bit|Xit−1, Bit−1, Yi = k)

= P (Bit = b2|Bit−1 = b1, Yi = k) = τb1b2,k,

where x1, x2 ∈ X , b1, b2 ∈ B, ωx1x2,k and τb1b2,k are

transitional probabilities satisfying
∑

x2∈X ωx1x2,k = 1 and∑
b2∈B τb1b2,k = 1. Then the conditional probability of Si

given Yi = k can be derived as

P (Si|Yi = k) = P (Xi1, Bi1|Yi = k)

×
Ti∏
t=2

P (Xit, Bit|Xit−1, Bit−1, Yi = k)

= (pXi1,k)(qBi1,k)

{
Ti∏
t=2

(ωXitXit−1,k)(τBitBit−1,k)

}
=

( ∏
x∈X

p
I(Xi1=x)
x,k

)( ∏
b∈B

q
I(Bi1=b)
b,k

)

×
Ti∏
t=2

( ∏
x1,x2∈X

ω
I(Xit−1=x1,Xit=x2)
x1x2,k

)

×
Ti∏
t=2

( ∏
b1,b2∈B

τ
I(Bit−1=b1,Bit=b2)
b1b2,k

)
,

(2.1)

where I(·) denotes the indicator function. In the fourth line

of (2.1), we rewrite the probabilities pXi1,k and qBi1,k using

all possible pitch values and beat values; while in the fifth

and sixth lines, we rewrite the probabilities ωXitXit−1,k and

τBitBit−1,k using all possible pitch pairs and beat pairs, re-

spectively. Given P (Si|Yi = k), we discuss how to conduct

music genre classification in the next section.

2.2 Music genre classification

To conduct music genre classification, we first derive

P (Yi = k|Si) according to the Bayes’ theorem as

(2.2)

P (Yi = k|Si) =
P (Yi = k)P (Si|Yi = k)∑
y∈Y P (Yi = y)P (Si|Yi = y)

= πk

( ∏
x∈X

p
I(Xi1=x)
x,k

)( ∏
b∈B

q
I(Bi1=b)
b,k

)

×
Ti∏
t=2

( ∏
x1,x2∈X

ω
I(Xit−1=x1,Xit=x2)
x1x2,k

)

×
Ti∏
t=2

( ∏
b1,b2∈B

τ
I(Bit−1=b1,Bit=b2)
b1b2,k

)
×

[ ∑
y∈Y

πy

{ ∏
x∈X

pI(Xi1=x)
x,y

∏
b∈B

q
I(Bi1=b)
b,y

×
Ti∏
t=2

( ∏
x1,x2∈X

ωI(Xit−1=x1,Xit=x2)
x1x2,y

)

×
Ti∏
t=2

( ∏
b1,b2∈B

τ
I(Bit−1=b1,Bit=b2)
b1b2,y

)}]−1

.

If all the probabilities (e.g., πk, px,k, qb,k, ωx1x2,k, τb1b2,k) in

(2.2) are known, then we can predict the class label of Si

according to the maximum posterior probability. However,

since these probabilities are unknown, we need to estimate

them first and thus regard them as unknown parameters.

Let θ = {πk, px,k, qb,k, ωx1x2,k, τb1b2,k : k ∈ Y , x, x1, x2 ∈
X , b, b1, b2 ∈ B} be the full parameter set. To estimate θ, we

derive the log-likelihood function as follows,

�(θ) = log
{ n∏

i=1

P (Si, Yi)
}
=

n∑
i=1

log {P (Yi)P (Si|Yi)}

=
n∑

i=1

∑
k∈Y

I(Yi = k) log {P (Yi = k)P (Si|Yi = k)}

=

n∑
i=1

∑
k∈Y

I(Yi = k)
{
log(πk) +

∑
x∈X

I(Xi1 = x)

× log(px,k) +
∑
b∈B

I(Bi1 = b) log(qb,k)

+

Ti∑
t=2

∑
x1,x2∈X

I(Xit−1 = x1, Xit = x2) log(ωx1x2,k)

+

Ti∑
t=2

∑
b1,b2∈B

I(Bit−1 = b1, Bit = b2) log(τb1b2,k)
}
.

(2.3)

In addition, these unknown probabilities should satisfy some

constraints. They are,
∑K

k=1 πk = 1,
∑

x∈X px,k = 1,∑
b∈B qb,k = 1,

∑
x2∈X ωx1x2,k = 1, and

∑
b2∈B ωb1b2,k = 1

for any k. Thus, by maximizing (2.3) under these con-
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straints, we can obtain the maximum likelihood estimator:

π̂k = n−1
n∑

i=1

I(Yi = k),

p̂x,k =

∑n
i=1 I(Yi = k,Xi1 = x)∑n

i=1 I(Yi = k)
,

q̂b,k =

∑n
i=1 I(Yi = k,Bi1 = b)∑n

i=1 I(Yi = k)
,

ω̂x1x2,k =
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Xit−1 = x1, Xit = x2)
}

×
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Xit−1 = x1)
}−1

,

τ̂b1b2,k =
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Bit−1 = b1, Bit = b2)
}

×
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Bit−1 = b1)
}−1

.

(2.4)

It is notable that, the maximum likelihood estimates in (2.4)
happen to be equal to the empirical estimates using his-
togram statistics. By substituting these estimates into (2.2),

we can get the estimated likelihood function P̂ (Yi = k|Si).

Then, we can make prediction by ŷi = argmaxk∈Y P̂ (Yi =
k|Si).

2.3 A BIC criterion

In SNB, the number of parameters to be estimated is
K × (1 + M1 + M2 + M2

1 + M2
2 ), where M1 and M2 are

the number of states in X and B, respectively. In practice,
the states space of pitch (i.e., X ) is relatively large. For
example, we have M1 = 89 states in X in this work. As
a result, the number of parameters to be estimated would
be large. A sufficient number of parameters can make the
model more flexible, but also unstable [27, 10]. Thus, it is
of great importance to reduce the number of parameters
without sacrificing the classification accuracy.

Note that the large parameter set is mainly resulted from
the pitch transitional probabilities, i.e., Ω = {ωx1x2,k :
k ∈ Y , x1, x2 ∈ X}, which has KM2

1 parameters in to-
tal. Thus, we focus on Ω to conduct feature selection. Let
CF = {(x1, x2) : x1, x2 ∈ X} be the set of all pitch pairs,
C0 = {(x1, x2) : ωx1x2,k1 �= ωx1x2,k2 , for some k1 �= k2} be
the set of pitch pairs that can distinguish between classes,
and C0 = {(x1, x2) : ωx1x2,k1 = ωx1x2,k2 , for any k} be the
set of pitch pairs having no distinguishing power. As a re-
sults, we have CF = C0

⋃
C0. Since the pitch pairs in C0 are

class-independent, the transitional probabilities associated
with C0 can be simplified as Ω0 = {ωx1x2 : (x1, x2) ∈ C0}.
We can remove Ω0 from the calculation of (2.2) and (2.3),
since they are not helpful for classification. This can make

the full parameter set largely reduced and the associated
computation easier.

To find C0 from CF , we propose a BIC-type selection
criterion [22, 23]. Specifically, assume all pitch pairs in C∗

are class-dependent, and those in C∗
= CF \ C∗ are class-

independent. The BIC criterion given C∗ is written as

BIC(C∗) = n−1{−2�(C∗)}+ df × log(n)/n,

where �(C∗) is the log-likelihood function, and df is the num-
ber of parameters involved in �(C∗). To calculate BIC(C∗),
we need to calculate �(C∗) first. Note that, �(C∗) is the sim-
plified version of (2.3) by partitioning all pitch paries into

C∗ and C∗
, i.e.,

�(C∗) =
n∑

i=1

∑
k∈Y

I(Yi = k)
{
log(πk)

+
∑
x∈X

I(Xi1 = x) log(px,k) +
∑
b∈B

I(Bi1 = b) log(qb,k)

+

Ti∑
t=2

∑
b1,b2∈B

I(Bit−1 = b1, Bit = b2) log(τb1b2,k)

+

Ti∑
t=2

∑
(x1,x2)∈C∗

I(Xit−1 = x1, Xit = x2) log(ωx1x2,k)

+

Ti∑
t=2

∑
(x1,x2)∈C∗

I(Xit−1 = x1, Xit = x2) log(ωx1x2)
}
.

Then, a new set of maximum likelihood estimates can
be obtained; see equations in (2.5). By comparing (2.4) and
(2.5), we find that π̃k = π̂k, p̃x,k = p̂x,k, q̃b,k = q̂b,k, and
τ̃b1b2,k = τ̂b1b2,k. For any (x1, x2) ∈ C∗, ω̃x1x2,k = ω̂x1x2,k.

However, for any (x1, x2) ∈ C∗
, ω̃x1x2 �= ω̂x1x2,k. In sum-

mary, when using a simplified version of log-likelihood func-
tion, only the transitional probabilities for class-dependent
pitch pairs have different estimates. In contrast, the class-
independent pitch pairs should have the same estimates.

By substituting (2.5) into �(C∗), we can compute
BIC(C∗). The final selected set of class-dependent pitch

pairs can be obtained by Ĉ = argminC∗ BIC(C∗). Before
investigating the asymptotic property of the proposed BIC

method, the following condition is needed.

(C1) For any C and its corresponding parameter space ΩC=
{ωx1x2,k : (x1, x2) ∈ C} ∪ {ωx1x2 : (x1, x2) ∈ C}, as-
sume there exists two finite constants δmin and δmax,
satisfying 0 < δmin ≤ min(ΩC) ≤ max(ΩC) ≤ δmax <
1.

Based on condition (C1), the following theorem confirms the
selection consistency [23] of the BICmethod, whose detailed
proof is left to Appendix A.

Theorem 2.1. Under the condition (C1), we have P (Ĉ =
C0) → 1, as n → ∞.
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(2.5)

π̃k = n−1
n∑

i=1

I(Yi = k),

p̃x,k =

∑n
i=1 I(Yi = k,Xi1 = x)∑n

i=1 I(Yi = k)
,

q̃b,k =

∑n
i=1 I(Yi = k,Bi1 = b)∑n

i=1 I(Yi = k)
,

τ̃b1b2,k =
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Bit−1 = b1, Bit = b2)
}

×
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Bit−1 = b1)
}−1

,

ω̃x1x2,k =
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Xit−1 = x1, Xit = x2)
}

×
{ n∑

i=1

Ti∑
t=2

I(Yi = k)I(Xit−1 = x1)
}−1

, for (x1, x2) ∈ C∗,

ω̃x1x2 =
{ n∑

i=1

Ti∑
t=2

I(Xit−1 = x1, Xit = x2)
}

×
{ n∑

i=1

Ti∑
t=2

I(Xit−1 = x1)
}−1

, for (x1, x2) ∈ C∗
.

2.4 Fast computation of the BIC criterion

Since CF contains M2
1 pitch pairs, we have a total of 2M

2
1

candidate models in consideration. Note that M1 is usually

a large number in practice, e.g., M1 = 89 in this work.

Computing the BIC criterion for every possible candidate

model is computationally infeasible. This motivates us to

develop an efficient computation algorithm to find Ĉ. To

this end, let C∗ be an arbitrary candidate model. For any

(x1, x2) ∈ C∗, let C∗
−x1x2

= C∗ \ {(x1, x2)}. Then we have

BIC(C∗)− BIC(C∗
−x1x2

)

=− 2n−1
{
�(C∗)− �(C∗

−x1x2
)
}
+K log(n)/n

=− 2n−1
n∑

i=1

∑
k∈Y

[
I(Yi = k)

Ti∑
t=2

I(Xit−1 = x1, Xit = x2)

×
{
log(ωx1x2,k)− log(ωx1x2)

}]
+K log(n)/n.

(2.6)

Surprisingly, we find (2.6) is independent of C∗, but only

depends on the pitch pair (x1, x2). This enables us to write

BIC(C∗) − BIC(C∗
−x1x2

) as Δ(x1, x2). We can verify that

(x1, x2) ∈ Ĉ if and only if Δ(x1, x2) < 0; see Theorem 2.2.

The detailed proof can be found in Appendix B.

Theorem 2.2. Define C̃ = {(x1, x2) : Δ(x1, x2) < 0}, then
P (C̃ = C0) → 1, as n → ∞.

This theorem suggests that the selected model can be
computed by comparing Δ(x1, x2) against zero for all pitch
pairs in CF . It results in a total of M2

1 calculations, making
this algorithm computationally feasible.

3. SIMULATION STUDIES

3.1 Data generation

To examine the finite sample performance of the pro-
posed BIC method, we present here a number of simulation
studies. For a fixed sample size n, assume there are two
classes of music, i.e., Yi ∈ {0, 1} for 1 ≤ i ≤ n. Further
assume P (Yi = 1) = P (Yi = 0) = 0.5. For simplicity, we
only consider the pitch information in music score files. As-
sume a pitch state space X = {j : 1 ≤ j ≤ 30}. For each
music score file Si, its initial pitch Xi1 = j ∈ X is gen-
erated according to pj,Y=1 = pj,Y=0 = 1/30. Then, for a
fixed number of pitches T , we generate the pitch sequence
{Xit : 2 ≤ t ≤ T} in a sequential manner, according to a
pitch transitional probabilities ΩYi .

We design ΩYi as follows. Based on X , the set of all
pitch pairs is CF = {(j1, j2) : j1, j2 ∈ X}. First, we gen-
erate a basic pitch transitional probabilities Ω∗ = (ω∗

j1j2
)

with each row generated from a homogeous Dirichlet dis-
tribution with parameter α = 10. Next, based on Ω∗, we
compute the pitch transitional probabilities Ω1 = (ωj1j2,1)
and Ω0 = (ωj1j2,0) for score files associated with class
label equal to 1 and 0, respectively. Specifically, define
C0 = {(j1, j2) : 1 ≤ j1, j2 ≤ 20} as the true model. For any
(j1, j2) ∈ C0 and j2 is odd, define ωj1j2,1 = ω∗

j1j2
+0.9ω∗

j1j2+1

and ωj1j2+1,1 = 0.1ω∗
j1j2+1. Also, define ωj1j2,0 = 0.1ω∗

j1j2
and ωj1j2+1,0 = 0.9ω∗

j1j2
+ ω∗

j1j2+1. One can verify that
ωj1j2,1 − ωj1j2,0 = 0.9(ω∗

j1j2
+ ω∗

j1j2+1) �= 0 and ωj1j2+1,1 −
ωj1j2+1,0 = −0.9(ω∗

j1j2
+ ω∗

j1j2+1) �= 0. Therefore, when the
pair (j1, j2) ∈ C0, it can help distinguish between classes.
For any pitch pair (j1, j2) �∈ C0, let ωj1j2,1 = ωj1j2,0 = ω∗

j1j2
.

Therefore, the pitch pair (j1, j2) �∈ C0 is class-independent.
After generating Yi and Si = {Xit, 1 ≤ t ≤ T} for

1 ≤ i ≤ n, we apply the SNB method with the BIC cri-
terion for classification. We consider different settings of T ,
i.e., T = 500, 800, 1000. Under each setting, different sam-
ple sizes (i.e., n = 100, 200, 500) are evaluated, and the
experiment is replicated for M = 500 times.

3.2 Performance measurement and
simulation results

Let Ĉ(m) (1 ≤ m ≤ M) be the BIC model obtained
in the m-th replication. To demonstrate the finite sam-
ple performance of the BIC model, the following mea-
sures are defined. First, we calculate the percentages of
underfit (Underfit) and overfit (Overfit) [25] as follows,

Underfit = (M)−1
∑M

m=1 I
(
C0 \ Ĉ(m) �= ∅

)
and Overfit =
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Table 1. Simulation results of the BIC method under different sample sizes and number of pitches. The measures Underfit,
Overfit, Correct-Fit, RMS, Correct-Zeros and Incorrect-Zeros are reported for each experiment setting.

T n Underfit Overfit Correct-Fit RMS Correct-Zeros Incorrect-Zeros

500

100 0.726 0.186 0.088 0.999 498.946 1.364

200 0.002 0.390 0.608 1.001 499.502 0.002

500 0.000 0.168 0.832 1.001 499.820 0.000

800

100 0.036 0.606 0.358 1.002 498.976 0.036

200 0.000 0.388 0.612 1.001 499.510 0.000

500 0.000 0.160 0.840 1.000 499.832 0.000

1000

100 0.002 0.666 0.332 1.003 498.918 0.002

200 0.000 0.362 0.638 1.001 499.536 0.000

500 0.000 0.144 0.856 1.000 499.840 0.000

(M)−1
∑M

m=1 I
(
C0 ⊂ Ĉ(m)

)
× I

(
Ĉ(m) �= C0

)
. To measure

whether the selected model could perfectly recover the true
model, we calculate the percentage of correctly fit (Correct-

Fit) as Correct-Fit = (M)−1
∑M

m=1 I
(
Ĉ(m) = C0

)
.

To compare the sizes of the BIC model versus the
true model, we calculate the relative model size (RMS),

i.e., RMS = M−1
∑M

m=1

(
|Ĉ(m)|/|C0|

)
. It is remark-

able that, under the Theorem 2.1, RMS should be
close to 1 when n is sufficiently large. Lastly, to fur-
ther examine the performance of the BIC model, we
calculate the number of correct zeros (Correct-Zeros)
and incorrect zeros (Incorrect-Zeros), from the perspec-
tive of model size [29]. Specifically, Correct-Zeros =

(M)−1
∑M

m=1

∑
(j1,j2)

I
(
(j1, j2) �∈ C0

)
× I

(
(j1, j2) �∈ Ĉ(m)

)
,

and Incorrect-Zeros = (M)−1
∑M

m=1

∑
(j1,j2)

I
(
(j1, j2) ∈

C0
)
× I

(
(j1, j2) �∈ Ĉ(m)

)
.

The simulation results are summarized in Table 1. As the
sample size n increases, both Underfit and Overfit decrease,
but Correct-Fit approaches to 1. This finding verifies the
selection consistency of the BIC method, which is in accor-
dance with Theorem 2.2. As for model sizes, Correct-Zeros
are close to its true value 500, while Incorrect-Zeros are close
to 0. Accordingly, RMS are all close to 1. These findings
demonstrate that the BIC method could help to select the
right pitch pairs.

4. REAL DATA ANALYSIS

4.1 Data description

To further demonstrate the performance of our proposed
SNB model, we present here a real music score dataset. It
contains three different genre classes, i.e., Classic, Jazz and
Folk. The corresponding sample sizes for each class are 198,
210 and 199, respectively. The original music scores are in
the Midi storage format. We first transferred each music

into MusicXML format using the software PDFtoMusic

Pro [8]. Then we extracted the pitch sequence and beat se-
quence from the MusicXML format of each music. The mu-
sic data and corresponding computational codes are avail-
able on https://github.com/rtngsm/SequenceMusicScore.

To have a better understanding of music scores, we pro-
vide some descriptive analysis results related to pitches. We
first calculate the occurring frequency of each pitch or pitch
pair in the dataset. Then we take the top ten pitches or
pitch pairs for illustration and compare their occurring fre-
quencies in different classes. As shown in Figure 3, music in
different genre classes have different habits of using pitches
and pitch pairs. However, pitch pairs change more dramat-
ically than pitches across the three classes, which suggests
the transitional information of pitch pairs could be more
helpful in music genre classification.

4.2 Music genre classification using the
SNB model

We then apply the SNB method for music genre classifi-
cation. We use “SNB+FULL” to represent the model based
on the full parameter set, and “SNB+BIC” to represent
the selected model using the BIC criterion. For comparison,
we consider 4 × 2 = 8 benchmark methods. They are con-
structed as follows. First, we consider 4 most popularly used
classification methods. They are, respectively, näıve Bayes
(NB) classifier, decision tree (DT), support vector machine
(SVM) and neural network (NN). The näıve Bayes classi-
fier uses the Gaussian assumption. The decision tree uses
the entropy splitting criterion. The SVM uses the polyno-
mial kernel. The neural network has three hidden layers, in
which the number of neurons are 20, 20 and 10, respectively.
All the four classifiers are implemented using the sklearn

library [20] in Python. Next, we consider two different types
of features. The first type of features contains the marginal
probabilities of pitch pairs and beat pairs calculated by their
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Figure 3. Occurring frequencies of the top ten pitches (top panel) and pitch pairs (bottom panel) in Classic, Jazz and Folk
music.

occurring frequencies. The second type contains audio fea-
tures extracted directly from the Midi files following the
method of [28]. To summarize, a total of 4 classification
methods and 2 different types of features are considered. It
is notable that each classification method is regarded as a
multivariate model, in which all features of a particular type
are considered together for classification.

Except for the 8 benchmark methods, we also make com-
parisons with the classification method in [5], which has
shown good classification performance using symbolic and
audio features extracted from MIDI. In particular, to get
audio features, the MIDI data was transferred into audio
files (in the wav format) using different combinations of
sample rates and sample sizes. After feature extraction, two
classifiers, i.e., linear discriminant classifier (LDC) and k-
nearest neighbor (KNN) were used on different feature sets
for music genre classification. Finally, with a pool of clas-
sifiers, we applied two voting strategies, i.e., the constant
weight (CW) and proportional weight (PW), on all classi-
fiers to achieve better accuracy.

For validation purpose, we randomly split the data into
a training dataset (with 304 observations) and a testing
dataset (with 303 observations). The partition of data is
repeated for 1000 times. Table 2 presents the detailed clas-
sification accuracy on testing datasets for our proposed
SNB methods and different benchmark methods. For each
method, the main descriptive statistics of out-sample clas-
sification accuracy on 1000 data partitions are reported. As

shown in Table 2, the SNB methods have achieved better

classification performance than all benchmark methods. For

example, the mean value of classification accuracy obtained

by SNB+BIC is 87.00%, while the best among all bench-

mark methods is only 85.72%.

In addition, based on the 1000 accuracies obtained

by each method, we test whether the SNB methods

have achieved significantly better performance than the

benchmark methods. Specifically, let qA denote the clas-

sification accuracy achieved by the SNB methods (i.e.,

A=SNB+FULL, SNB+BIC). Let qB denote the classifica-

tion accuracy achieved by each benchmark method. Then

let dAB = qA − qB denote the difference. We then test the

null hypothesis H0 : dAB = 0 versus H1 : dAB > 0 using

the paired t-test. The test results are shown in Table 2, in

which all tests have p.values smaller than 0.01. The test re-

sults suggest that, SNB+FULL and SNB+BIC have both

achieved significantly higher classification accuracies than

all benchmark methods. It is notable that, the outstanding

performance of SNB results largely from its strength in bet-

ter describing the natural generation process of music. That

is, the pitches and beats are generated one by one under

certain transitional probabilities. Therefore, the transitional

information of pitches and beats are important features to

music genres; see Figure 3 for an illustration. Accordingly,

the SNB model taking advantage of these transitional infor-

mation is helpful to music genre classification.
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Table 2. The detailed classification accuracy on testing datasets for different classification methods. We report the main
descriptive statistics (i.e., min, median, mean, max and standard deviation) of out-sample classification accuracy on 1000 data

partitions. In addition, the significance of paired t-test by comparing SNB methods with benchmark methods are also
reported, where ** and *** indicate p.values smaller than 0.01 and 0.001, respectively.

Feature Type/Method Min Median Mean Max SD
Test with SNB

FULL BIC

SNB
FULL 77.63% 86.51% 86.31% 93.42% 2.11%

− −
BIC 78.62% 87.17% 87.00% 93.75% 1.99%

Marginal

NB 63.49% 75.99% 75.55% 84.54% 3.07% *** ***

DT 66.78% 78.95% 78.97% 85.86% 2.44% *** ***

SVM 55.26% 78.29% 77.78% 82.57% 3.20% *** ***

NN 33.88% 87.50% 85.72% 95.39% 7.33% ** ***

Audio

NB 67.43% 75.99% 75.85% 83.22% 2.36% *** ***

DT 73.03% 82.89% 82.85% 89.80% 2.33% *** ***

SVM 71.05% 78.95% 78.90% 85.86% 2.49% *** ***

NN 16.78% 67.43% 61.38% 82.24% 14.32% *** ***

Voting
CW 73.89% 79.93% 80.10% 86.62% 1.91% *** ***

PW 73.89% 79.94% 80.12% 87.58% 1.97% *** ***

5. CONCLUDING REMARKS

In this work, we develop a sequential näıve Bayes model

using transitional information of pitches and beats for music
genre classification. To reduce the number of parameters to

be estimated, we propose a BIC-type criterion, along with

a computationally efficient algorithm for model selection.
The selection consistency of the BICmethod is theoretically

proved. The finite sample performance of the methods are

elaborated by both simulation studies and a real data exam-
ple. To conclude this work, we consider several directions for

future study. First, more pitch and beat information, such

as the chord, can be considered for genre classification. Sec-
ond, the transitional information of pitches and beats can

be modeled dynamically, not fixed. Last, the Markov prop-

erty of pitch sequence and beat sequence can be generalized
to allow more complex situations.

APPENDIX A. PROOF OF THEOREM 2.1

To prove this theorem, we consider two cases, according

to whether C ⊂ CF is an overfitted or underfitted model.

(Case 1. Overfitted Model) Let C be an overfit-

ted model, i.e., C ∈ Q+ = {C : C0 ⊂ C, C0 �= C}.
Then we have n {BIC(C)− BIC(C0)} = 2

{
�̃(C0)− �̃(C)

}
+

{|C| − |C0|} log(n), where �̃(C0) and �̃(C) are the maximum

values of the corresponding log-likelihood functions, i.e.,

�̃(C0)− �̃(C)

=

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

{ ∑
(x1,x2)∈C0

I(Xit−1 = x1,

Xit = x2) log(ω̃x1x2,k)

+
∑

(x1,x2)∈C0

I(Xit−1 = x1, Xit = x2) log(ω̃x1x2)

−
∑

(x1,x2)∈C
I(Xit−1 = x1, Xit = x2) log(ω̃x1x2,k)

−
∑

(x1,x2)∈C

I(Xit−1 = x1, Xit = x2) log(ω̃x1x2)
}]

=

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C\C0

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2

ω̃x1x2,k
)
]
.

When (x1, x2) ∈ C \ C0, we have ωx1x2,k =

ωx1x2 , for any k ∈ Y . According to the consistency property

of MLE, we have ω̃x1x2 − ωx1x2 = Op(1/
√
n). Then under

the condition (C1) and the Slusky Theorem, one can verify
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that log(ω̃x1x2/ω̃x1x2,k) = Op(1/
√
n). Furthermore, define

Wi =
∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C\C0

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2

ω̃x1x2,k
)
]
,

and W =
∑n

i=1 Wi. One can verify that {Wi : i =
1, · · · , n} are independent and Wi = Op(1/

√
n). This leads

to var(W ) =
∑n

i=1 var(Wi) = O(1), which implies that
W = Op(1). Hence, we have

n
{
BIC(C)− BIC(C0)

}
= 2

{
�̃(C0)− �̃(C)

}
+ (|C| − |C0|) logn

≥ Op(1) + logn → ∞.

Furthermore, since |CF | = M2
1 < ∞, we have

P
{

inf
C∈Q+

BIC(C) > BIC(C0)
}
→ 1.

(Case 2. Underfitted Model) Let C be an under-
fitted model, i.e., C ∈ Q− = {C : C0 �⊂ C}. Simi-

larly, we have n {BIC(C)− BIC(C0)} = 2
{
�̃(C0)− �̃(C)

}
+

{|C| − |C0|} log(n). In this case, we have

�̃(C0)− �̃(C)

=

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C\C0

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2

ω̃x1x2,k
)
]

+

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C0\C

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2,k

ω̃x1x2

)
]

=L1 + L2.

By proof of Case 1, we have

L1 =

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C\C0

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2

ω̃x1x2,k
)
]

= Op(1).

Then we focus on

L2 =

n∑
i=1

∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C0\C

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2,k

ω̃x1x2

)
]
.

Further define

Ri =
∑
k∈Y

I(Yi = k)
[ Ti∑

t=2

∑
(x1,x2)∈C0\C

I(Xit−1 = x1, Xit = x2) log(
ω̃x1x2,k

ω̃x1x2

)
]

=
∑
k∈Y

∑
(x1,x2)∈C0\C

I(Yi = k)
[ Ti∑

t=2

I(Xit−1 = x1, Xit = x2) log(ω̃x1x2,k)
]

−
∑
k∈Y

∑
(x1,x2)∈C0\C

I(Yi = k)
[ Ti∑

t=2

(Xit−1 = x1, Xit = x2) log(ω̃x1x2)
]

=
∑
k∈Y

∑
(x1,x2)∈C0\C

Ti∑
t=2

I(Yi = k,Xit−1 = x1, Xit = x2) log(ω̃x1x2,k)

−
∑
k∈Y

∑
(x1,x2)∈C0\C

Ti∑
t=2

I(Yi = k,Xit−1 = x1, Xit = x2) log(ω̃x1x2).

Accordingly, we have L2 =
∑n

i=1 Ri. When (x1, x2) ∈
C0 \ C, we have ωx1x2,k �= ωx1x2 , for some k ∈ Y . This
leads to ω̃x1x2,k �= ω̃x1x2 as n → ∞. According to
the property of MLE, it is obvious that Ri > 0. Let
cmin = min(Ri), which is a positive number. Then, we have
BIC(C)− BIC(C0) ≥ 2cmin+op(1), which is a positive num-
ber with probability tending to one. Consequently, we have
P

{
infC∈Q− BIC(C) > BIC(C0)

}
→ 1. Based on the results

of Case 1 and Case 2, we have P
{
infC∈Q−∪Q+ BIC(C) >

BIC(C0)
}
= P

{
Ĉ = C0

}
→ 1, which completes the entire

proof.

APPENDIX B. PROOF OF THEOREM 2.2

To prove this theorem, we only need to verify that
when C̃ =

{
(x1, x2) : Δ(x1, x2) < 0

}
, we have

BIC(C̃) = minC⊂CF BIC(C). We use the counter-evidence
method to demonstrate the above conclusion. Assume C∗ =
minC⊂CF

BIC(C), and there exists (x∗
1, x

∗
2) ∈ C∗, such that

Δ(x∗
1, x

∗
2) ≥ 0. Then we have C∗

−(x1,x2)
= C∗\{(x∗

1, x
∗
2)}, and

now we have BIC(C∗) − BIC(C∗
−(x1,x2)

) = Δ(x∗
1, x

∗
2) ≥ 0.

This leads to contradiction. Then by Theorem 2.1, we have
P (C̃ = C0) → 1 as n → ∞.
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