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Semiparametric accelerated failure time modeling
for multivariate failure times under multivariate
outcome-dependent sampling designs
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Researchers working on large cohort studies are always
seeking for cost-effective designs due to a limited budget.
An outcome-dependent sampling (ODS) design, a retrospec-
tive sampling scheme where one observes covariates with a
probability depending on the outcome and selects supple-
mental samples from more informative segments, improves
the study efficiency while effectively controlling for the bud-
get. To take the advantage of the ODS scheme when mul-
tivariate failure times are main response variables, relevant
study designs and inference procedures need to be studied.

In this paper, we consider a general multivariate-ODS
design for multivariate failure times under the framework
of a semiparametric accelerated failure time model. We de-
velop a weighted estimating equations approach, based on
the induced smoothing method, for parameter estimation.
Extensive simulation studies show that our proposed de-
sign and estimator are more efficient than other competing
estimators based on simple random samples. The proposed
method is illustrated with a real data set from the Busselton
Health Study.

Keywords and phrases: Biased sampling, Induced
smoothing, Rank-based estimation, Resampling, Weighted
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1. INTRODUCTION

In some modern biomedical and epidemiological cohort
studies, major sources of high costs can be attributed to
a long follow-up period and acquirement of expensive co-
variate measurements. Investigators have always been in-
terested in seeking alternative cost-effective study designs
to reduce the cost while retaining the study power. An
outcome-dependent sampling (ODS) design is a retrospec-
tive sampling scheme where one selects an overall random
sample from the underlying study cohort and some addi-
tional supplemental samples through some probability sam-
pling schemes, depending on the level of the outcome vari-
able [7, 14, 33, 35, 39, 40, 41, 42]. The principal idea is to
take a biased sampling by concentrating resources on the
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segments having the greatest amount of information. By al-
lowing the probability of each individual to be selected into
the sample via an ODS design to depend on the observed
value of the outcome, researchers can enhance the study effi-
ciency while reducing the overall cost of the study, especially
in large-scale cohort studies. Recent studies have discussed
such generalized ODS designs with continuous outcome vari-
ables.

For failure time data, the case-cohort study design [30]
is the most widely used biased-sampling scheme for a rare
disease situation. When diseases are not rare, the gener-
alized case-cohort study design along with its various es-
timating procedures have been proposed for a single dis-
ease outcome. A stratified case-cohort design further im-
proves the study efficiency by dividing the cohort into some
mutually exclusive strata based on a discrete random vari-
able. Statistical inferences for case-cohort data under failure
time models have been developed and discussed in most lit-
eratures, such as the commonly-used proportional hazards
model [3, 4, 6, 7, 9, 31, 37], the additive hazards model
[26, 34], the accelerated failure time (AFT) model [23] and
others.

Recently, Ding et al. [16] considered a general failure-time
ODS design for right-censored data, where a simple random
sample is selected from the underlying cohort and some ad-
ditional supplemental samples are drawn from the strata of
interest which are mutually-exclusively partitioned from the
range of observed time of all the cases. They proposed max-
imum semiparametric empirical likelihood estimation under
the framework of the Cox proportional hazards model. Yu et
al. [37] further developed a weighted pseudo-score estimator
for fitting additive hazards models under the ODS scheme.
Work above mentioned has focused on analyzing univariate
failure time data with a single disease outcome under the
ODS design.

In practice, multivariate data have increasingly been en-
countered in many contexts. It might be of interest to con-
sider several disease outcomes or several subtypes of a dis-
ease simultaneously. One could deal with multiple disease
outcomes by analyzing each disease separately. Without con-
sidering the induced correlation among outcomes, however,
this could lead to less efficient or erroneous results. For ex-
ample, in the Busselton Health Study [13], it was of interest
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to explore the potential risk factors on the coronary heart
disease and stroke events. It is desirable to model times to
coronary heart disease and stroke events in a multivariate
framework since the two endpoints were observed from the
same subject and hence correlated. As a result, the corre-
lated nature of failure times has to be taken into considera-
tion when analyzing such data.

Literature for inferences on multivariate failure-time data
under biased sampling schemes is mostly limited on the case-
cohort study design with clustered failure times [23, 28, 38].
For multivariate data under the ODS design (multivarite-
ODS), Lu, Longnecker, and Zhou [29] proposed an empiri-
cal likelihood inference procedures for based on the contin-
uous responses within a cluster. To the best of our knowl-
edge, multivariate-ODS designs for multivariate failure time
data and relevant inference procedures have not yet been
explored.

In this paper, we propose a statistical inference procedure
for fitting multivariate failure time data from multivariate-
ODS designs. As the underlying model for failure times,
we consider a semiparametric AFT model, which directly
links the failure time to covariates through a log function
without specifying the error distribution. For estimation,
we consider a computationally efficient induced smoothing
method for rank-based estimating equations [4]. We take a
marginal model approach to handle the correlated feature
among failure times. We incorporate the inverse of sampling
probability weights to cover the biased sampling feature of
the multivariate-ODS design. The remainder of the paper is
organized as follows. In Section 2, we present the notation
and the data structure under the multivariate-ODS design
with multivariate failure time data. The estimation proce-
dure based on the induced smoothing for semiparametric
AFT models under the multivariate-ODS scheme is devel-
oped. In Section 3, we conduct simulation studies to evaluate
finite sample performances of our proposed estimators. We
apply the proposed methods to analyze the Busselton Health
Study data in Section 4. Discussion and final remarks are
given in Section 5.

2. DESIGN AND ESTIMATING APPROACH

2.1 Multivariate AFT model

Suppose that there are N independent subjects in a co-
hort study with K disease outcomes of interest. Let Ti =
(Ti1, . . . , TiK)� be the log-transformed independent failure
time response vector and Ci = (Ci1, . . . , CiK)� denote the
corresponding log-transformed censoring time vector, where
i = 1, . . . , N and k = 1, . . . ,K. The observed time is
Xik = min(Tik, Cik) and the corresponding observed time
vector is Xi = (Xi1, . . . , XiK)�. Let �ik = I(Tik ≤ Cik)
denote an indicator for failure, where I(·) is an indicator
function. The corresponding failure time indicator vector is
then Δi = (�i1, . . . ,�iK)�. Let Yik(t) = I(Xik ≥ t) denote
the at-risk process and Nik(t) = I(Xik ≤ t,�ik = 1) denote

the counting process for outcome k of subject i. Let Zik be
a p-dimensional covariate vector corresponding to the kth
disease outcome for subject i. We assume that Tik and Cik

are independent conditional on Zik. Let τ be the study end
time. Then the marginal semiparametric AFT model [9, 10]
is

(1) Tik = Z�
ikβ + εik, i = 1, . . . , N ; k = 1, . . . ,K,

where β is a p-dimensional vector of fixed and unknown pa-
rameters of interest and the error terms, εi = {εi1, . . . , εiK},
are independently and identically distributed for each sub-
ject i. A subject may experience all, only some, or even
none of the K disease outcomes. One may also incorporate
disease-specific effects in the model.

2.2 Multivariate-ODS designs

Under a multivariate-ODS design, the sampling proce-
dure is conducted in two steps. In the first step, a simple
random sample (SRS) without replacement is drawn from
the underlying study cohort. In the second step, supplemen-
tal samples from certain segments of the cohort are selected.
In specific, suppose that M domains in the observed times,
Am, m = 1, . . . ,M , are defined and subsequent samplings
from Ams are followed. Typical ODS designs are withM = 2
to capture the responses with large and small values [29, 37]
and we assume this. Let ξi and ηim denote the indicators
for the SRS of size n0 and the supplemental sample from
Am of size nm, respectively. Let ζim denote the indicator
for Xi to be included in Am, i.e., I(Xi ∈ Am) where ζi =∑M

m=1 ζim. Then, for example, Ams can be defined as A1 =
{Xi1 > a1, . . . , XiK > aK ,Δik = 1 for some or all k} and
A2 = {Xi1 < b1, . . . , XiK < bK ,Δik = 1 for some or all k},
k = 1, . . . ,K, respectively. Here, a = {ak, k = 1, . . . ,K}
and b = {bk, k = 1, . . . ,K} are known constants vectors
used as cutpoints satisfying {ak > bk, ∀k}. In this way, the
domains of interest in the observed times are defined to large
and small observed failure times. Supplemental samples are
randomly drawn from each of these two domains with sizes
n1 and n2, respectively. When K = 1, this reduces to the
definition of the supplemental components in the ODS de-
sign for univariate failure time data [37]. Without loss of
generality, we consider the case when K = 2, i.e., each sub-
ject will have at most two endpoints. The cutpoints are then
set to be a1, a2, b1 and b2.

Without censoring, the supplemental components can be
defined in the same way as those in the multivariate-ODS
design for continuous responses [29]. Due to censoring, how-
ever, exact failure times might not be observable; that is,
the clusters might include censored failure times or might
not include any failure times. Thus, the supplemental com-
ponents are restricted to clusters having at least one failure
time. In particular, we consider two sampling designs to se-
lect the supplemental samples:
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• MODS Design 1 (All Failures Design) - every observed
time in a cluster is a failure and all in a cluster satisfy
the criteria set by the cutpoints to be sampled in the
supplemental samples: either all failure times greater
than the designated cutpoints or all lower than the des-
ignated cutpoints.

• MODS Design 2 (At-least-one Failure Design) - we do
not require all the observed times in a cluster to be fail-
ure times as in MODS Design 1. In other words, as long
as there exists at least one failure in a cluster satisfies
the criteria set by cutpoints, that cluster is eligible to
be selected into the supplemental samples.

As one can expect, the sizes of supplemental components
for MODS Design 1 would be smaller than those for MODS
Design 2 due to the restriction that all the elements in a
cluster need to be failures. For both designs, the resulting
sample is composed of three components:

(i) MODS Design 1 (All Failure Design):

(a) SRS Component (ξi = 1) :
{Xi,Δi,Zi}, i = 1, · · · , n0;

(b) Supplemental component 1 (ζi1 = 1, ηi1 = 1):
{Xi,Δi,Zi | Xik > ak and Δik = 1} ,
i = 1, . . . , n1 and k = 1, . . . ,K;

(c) Supplemental component 2 (ζi2 = 1, ηi2 = 1):
{Xi,Δi,Zi | Xik < bk and Δik = 1} ,
i = 1, . . . , n2 and k = 1, . . . ,K;

(ii) MODS Design 2 (At-least-one Failure Design):

(a) SRS Component (ξi = 1):

{Xi,Δi,Zi}, i = 1, · · · , n0;

(b) Supplemental component 1 (ζi1 = 1, ηi1 = 1):
{Xi,Δi,Zi | Xik >ak and for some k,Δik =1},
i = 1, . . . , n1 and k = 1, . . . ,K;

(c) Supplemental component 2 (ζi2 = 1, ηi2 = 1):
{Xi,Δi,Zi | Xik <bk and for some k,Δik =1},
i = 1, . . . , n2 and k = 1, . . . ,K.

Note that covariate information is collected only for the
sampled subjects. The samples from above components con-
sist of the observed sample and the total sample size is
n = n0 + n1 + n2.

2.3 Estimation of model parameters

Let eik(β) = Xik − Z�
ikβ be the residual for disease out-

come k in subject i. For full cohort data, rank-based esti-
mating equations with a Gehan type weight are defined as
follows [21]

U(β) =
N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

Δik(Zik −Zjl)I{ejl(β) ≥ eik(β)}

(2)

An induced smoothed version of (2) is Ũ(β) = EW {U(β +
N−1/2Γ−1/2W )} [22] where

Ũ(β) =

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

Δik(Zik −Zjl)Φ

{
ejl(β)− eik(β)

rijkl

}
,

(3)

W ∼ N (0, Ip), r2ijkl = N−1(Zik − Zjl)
�Γ−1(Zik − Zjl),

Φ(·) denotes the standard normal cumulative distribution
function, EW {·} denotes an expectation with respect to W ,
and Γ is typically set to Ip, a p-dimensional identity matrix.

For the data under an ODS scheme, Ziks are available
only for the ODS sample. Thus, (3) cannot be evaluated. To
overcome this, we propose a weighted estimating equations
approach where the weights are the inverse of the sampling
probabilities. Since supplemental components are sampled
at the subject level, our proposed weight is also constructed
at the subject level. Let pm = nm/N be the SRS portion
(m = 0) and supplemental portions (m = 1 and 2) in the
underlying study cohort. Sampling probabilities for the SRS
and supplemental components are p0 and rm = nm/(Nm −
n0,m),m = 1 and 2, respectively, where Nm and n0,m are
the sizes of the full cohort and SRS sample in Am. Then,

wi = ξi

K∏
k=1

(1−Δik) p
−1
0 + ξi

{
1−

K∏
k=1

(1−Δik)

}
(1− ζi)p

−1
0

(4)

+ ξi

{
1−

K∏
k=1

(1−Δik)

}
ζi

+ (1− ξi)

{
1−

K∏
k=1

(1−Δik)

}
M∑

m=1

ζimηimr−1
m .

The weighted version of Ũ(β) incorporating wi defined in
(4) is

Ũc(β) =

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

wiwjΔik(5)

×(Zik −Zjl)Φ

{
ejl(β)− eik(β)

rijkl

}
.

The proposed estimation procedures are in the similar spirit
as those in Chiou, Kang, and Yan [9, 10] in which clustered
failure times from stratified case-cohort designs were con-
sidered. The proposed weight functions and associated es-
timating functions, however, reflect the novel multivariate-
ODS design that contains the case-cohort design as a special
case - M = 1 and ak = 0 for all k = 1, . . . ,K. The estimator
of β, β̂ is defined as the solution to Ũc(β) = 0. Then, us-
ing the argument in Appendix of Chiou, Kang and Yan [10]

and Chapter 3 of Yu et al. [37], β̂ can be shown to be con-
sistent and asymptotically normal. The detailed derivation
is provided in Appendix A.
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2.4 Variance estimation

For estimation of the variance of β̂, we propose a robust
sandwich estimator aided by a resampling method. This
type of variance estimation has been previously employed
in rank-based estimation with the induced smoothing for
fitting semiparametric AFT models [9, 10]. Here we esti-

mate the asymptotic variance-covariance function of β̂ by
A−1(β̂)V (β̂)A−1(β̂). We obtain A(·) and V (·) separately.
A(·) can be directly calculated by taking the first derivative
of (5). Specifically,

A(β) = n−1 ∂

∂β� Ũc(β).

To calculate V (·), we use a multiplier resampling approach.
We generate N independent and identically distributed mul-
tipliers us from a positive random variable having both mean
and variance one. Given the realized values of us, we can cal-
culate one bootstrap replicate Ũ∗

c (β̂) where

Ũ∗
c (β) =

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

uiujwiwjΔik

×(Zik −Zjl)Φ

{
ejl(β)− eik(β)

rijkl

}
.

By independently repeating this process of generating us
and evaluating Ũ∗

c (β̂) B times, we obtain B bootstrap repli-

cates of Ũ∗
c (β̂)s. Then, V (β̂) can be obtained by the sample

variance of B Ũ∗
c (β̂)s. Although this is a resampling proce-

dure requiring evaluations of Ũ∗
c (β̂)s many times to obtain a

variance estimate, the computational load is not heavy since
we only need evaluations of Ũ∗

c (β̂)s.

3. SIMULATION STUDIES

We assess the performance of the estimates under our pro-
posed MODS Designs 1 and 2 for finite samples by conduct-
ing extensive simulation experiments. As mentioned earlier,
we consider K = 2 and generate bivariate failure times,
Ti = (Ti1, Ti2) for each subject i in a full cohort, from

(6) Tik = β0 + β1Z1ik + β2Z2ik + β3Z3ik + εik, k = 1, 2,

where Z1ik follows Bernoulli(0.5), Z2ik, Z3ik ∼ N (0, 1), and
εik either follows the standard normal distribution or the
Gumbel distribution. We consider a common error distri-
bution with both being the standard normal distributions
or distinct error distributions with one following the stan-
dard normal distribution (k = 1) while the other one fol-
lowing the Gumbel distribution (k = 2). We set β0 = 1 and
β1 = β2 = β3 = 0.5. The censoring times are generated from
the uniform distribution [0, c] with c being chosen to have
the censoring rate of approximately 80%. All the cases are
partitioned into three strata by the cutpoints (q1, q3) quan-
tiles of failure times, for which we investigate two pairs,

(10%, 90%) and (30%, 70%). We first randomly select the
SRS of size n0, set to be either 100 or 200. We then sam-
ple the supplemental components of n1 and n2 from those
remaining in the low stratum (10% or 30%) and the high
stratum (70% or 90%), respectively, with different supple-
mental sampling fractions. Note that the cutpoints for each
setting are chosen on the basis of a large population (40,000)
and fixed throughout the simulation studies.

For each configuration, we set the full cohort size to be
1,000 and obtain n0, n1 and n2 following MODS Designs 1
and 2. We compare our proposed estimator (β̂MODS), with
two competing estimators in our simulation study: the esti-
mator based on the SRS portion of the sample from MODS
Designs (β̂SRS0) and the estimator from a random sample

of the same size as the sample from MODS Designs (β̂SRS1).
The mean of the parameter estimates (Means), the sample
standard deviations (SDs), the mean of the estimated stan-
dard errors (ESEs) and the efficiencies relative to the MODS
(REFF) defined as the ratio of the standard error estimates

for β̂SRS0 to that of β̂MODS or β̂SRS1 to that of β̂MODS are
obtained from 2,000 generated data sets.

The simulation results under the different SRS sizes and
supplemental sampling fractions for our proposed MODS
Designs 1 and 2 are summarized in Tables 1 and 2, re-
spectively. The results in Table 1 suggest that all of the
coefficient estimates are approximately unbiased under all
the scenarios considered. Our proposed variance estimator
seems to provide a good estimate of the true variability. We
note that the proposed estimator, β̂MODS , is the most effi-
cient among all the estimators in most of the circumstances.
The fact that β̂MODS is more efficient than β̂SRS1 indicated
that our MODS Design 1 is favored over the SRS of the
same sample size, even when the cutpoints are further out
from (0.3, 0.7) to (0.1, 0.9) and therefore, fewer cases are in-
cluded. As expected, when the SRS size increases to 200 with
other settings being held fixed, the standard errors estimates
decrease. We also calculated the REFFs and observed that
most of the REFFs are greater than 1, again suggesting that
β̂MODS is more efficient among three estimators. Table 2
provides the simulation results when using MODS Design 2
to select the supplemental samples. Note that the sizes of
the supplemental samples,(n1, n2), increased substantially
under MODS Design 2. Overall findings are similar to those
in Table 1: estimates for the regression coefficients are virtu-
ally unbiased. The standard errors estimates under the three
designs considered are in good agreement with the sam-
ple standard deviations. Most importantly, MODS Design
2 produce more efficient estimators than an SRS with the
same size does. Finally, among all greater-than-one REFFs,
we observed more efficiency gains when n0 = 100, the cut-
points = (0.3, 0.7) and the supplemental proportion = 0.5.
This implies that a small sample with a smaller fraction of
the remaining subjects satisfying the criteria can produce
good performance.
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Table 1. Simulation results for MODS Design 1 (All Failures Design) with the full cohort size N = 1000 and censoring rate
= 80%, based on the model Tik = β0 + β1Z1ik + β2Z2ik + β3Z3ik + εik, k = 1, 2, where Z1ik ∼ Bernoulli(0.5),

Z2ik, Z3ik ∼ N (0, 1), and εik ∼ N (0, 1)

Cutpoints Mean SD(ESE) REFF

β1 β2 β3 β1 β2 β3 β1 β2 β3

(0.3, 0.7) - n0 = 100, supplemental proportion = (0.8, 0.8), (n1, n2) = (9.29, 16.36)

β̂SRS0 0.507 0.513 0.513 0.238(0.242) 0.133(0.126) 0.132(0.127) 1.19 1.18 1.19

β̂SRS1 0.507 0.511 0.512 0.216(0.214) 0.121(0.112) 0.115(0.113) 1.08 1.08 1.05

β̂MODS 0.510 0.513 0.515 0.201(0.202) 0.113(0.106) 0.110(0.105) 1 1 1

- n0 = 100, supplemental proportion = (0.5, 0.5), (n1, n2) = (5.95, 10.15)

β̂SRS0 0.528 0.523 0.520 0.238(0.240) 0.132(0.126) 0.129(0.126) 1.14 1.19 1.20

β̂SRS1 0.519 0.530 0.521 0.216(0.225) 0.128(0.119) 0.123(0.119) 1.03 1.16 1.15

β̂MODS 0.521 0.519 0.518 0.208(0.202) 0.110(0.106) 0.107(0.107) 1 1 1

- n0 = 200, supplemental proportion = (0.8, 0.8), (n1, n2) = (8.45, 14.49)

β̂SRS0 0.498 0.511 0.508 0.171(0.167) 0.092(0.090) 0.093(0.089) 1.15 1.19 1.19

β̂SRS1 0.502 0.508 0.510 0.156(0.157) 0.085(0.083) 0.084(0.083) 1.05 1.11 1.08

β̂MODS 0.504 0.509 0.510 0.149(0.144) 0.077(0.076) 0.078(0.076) 1 1 1

- n0 = 200, supplemental proportion = (0.5, 0.5), (n1, n2) = (5.27, 9.20)

β̂SRS0 0.508 0.510 0.511 0.167(0.166) 0.090(0.089) 0.089(0.089) 1.10 1.14 1.12

β̂SRS1 0.517 0.510 0.510 0.159(0.169) 0.087(0.086) 0.088(0.086) 1.05 1.10 1.11

β̂MODS 0.510 0.512 0.511 0.151(0.149) 0.080(0.078) 0.079(0.079) 1 1 1

(0.1, 0.9) - n0 = 100, supplemental proportion = (0.8, 0.8), (n1, n2) = (1.96, 4.14)

β̂SRS0 0.518 0.515 0.517 0.232(0.237) 0.127(0.126) 0.126(0.125) 1.04 1.05 1.07

β̂SRS1 0.521 0.519 0.516 0.237(0.235) 0.131(0.125) 0.127(0.124) 1.06 1.09 1.08

β̂MODS 0.518 0.514 0.517 0.223(0.225) 0.121(0.118) 0.117(0.118) 1 1 1

- n0 = 100, supplemental proportion = (0.5, 0.5), (n1, n2) = (1.26, 2.68)

β̂SRS0 0.517 0.517 0.521 0.248(0.244) 0.133(0.129) 0.139(0.128) 1.05 1.06 1.09

β̂SRS1 0.507 0.511 0.512 0.235(0.239) 0.128(0.125) 0.127(0.126) 1.00 1.02 1.00

β̂MODS 0.518 0.517 0.521 0.236(0.231) 0.125(0.121) 0.127(0.119) 1 1 1

- n0 = 200, supplemental proportion = (0.8, 0.8), (n1, n2) = (1.73, 3.85)

β̂SRS0 0.511 0.514 0.512 0.169(0.168) 0.090(0.089) 0.092(0.090) 1.04 1.06 1.05

β̂SRS1 0.503 0.508 0.506 0.166(0.164) 0.089(0.087) 0.089(0.087) 1.01 1.06 1.02

β̂MODS 0.508 0.513 0.511 0.163(0.160) 0.084(0.083) 0.087(0.084) 1 1 1

- n0 = 200, supplemental proportion = (0.5, 0.5), (n1, n2) = (1.08, 2.38)

β̂SRS0 0.507 0.512 0.507 0.166(0.168) 0.091(0.089) 0.087(0.090) 1.04 1.07 1.06

β̂SRS1 0.506 0.506 0.503 0.162(0.167) 0.089(0.088) 0.092(0.088) 1.01 1.05 1.12

β̂MODS 0.507 0.512 0.507 0.160(0.161) 0.085(0.085) 0.082(0.085) 1 1 1

SD: standard deviation of the parameter estimates; ESE: the mean of the standard error of the estimator; REFF: relative efficiency over
MODS; β̂MODS denotes the proposed estimator based on our proposed MODS design; β̂SRS0 and β̂SRS1 are the standard estimators based
on the SRS sample from MODS and the SRS sample with the same size as MODS design, respectively.

Table 3 provides additional simulation results for consid-

ering different error distributions, unequal censoring rates

and unbalanced supplemental sampling proportions to fur-

ther examine the robust property of our proposed estimator.

We investigated the performance of β̂MODS when the two

failure-time distributions εi1 and εi2 are chosen to follow the

standard normal distribution and the Gumbel distribution

(0, 1), respectively. In addition to equal supplemental sam-

pling fractions, we consider unequal proportions of two sup-

plemental samples, (0.5, 0.8) and (0.8, 0.5). We also assign

different censoring rates, 85% and 75%, to k = 1 and k = 2,

respectively. The results in Table 3 indicate that β̂MODS is
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Table 2. Simulation results for MODS Design 2 (At-least-one Failure Design) with the full cohort size N = 1000 and
censoring rate = 80%, based on the model Tik = β0 + β1Z1ik + β2Z2ik + β3Z3ik + εik, k = 1, 2, where

Z1ik ∼ Bernoulli(0.5), Z2ik, Z3ik ∼ N (0, 1), and εik ∼ N (0, 1)

Cutpoints Mean SD(ESE) REFF

β1 β2 β3 β1 β2 β3 β1 β2 β3

(0.3, 0.7) - n0 = 100, supplemental proportion = (0.8, 0.8), (n1, n2) = (70.3, 44.6)

β̂SRS0 0.513 0.513 0.510 0.247(0.242) 0.132(0.129) 0.129(0.128) 1.67 1.68 1.63

β̂SRS1 0.502 0.511 0.510 0.156(0.161) 0.086(0.085) 0.086(0.086) 1.06 1.10 1.08

β̂MODS 0.506 0.511 0.506 0.148(0.148) 0.078(0.077) 0.079(0.077) 1 1 1

- n0 = 100, supplemental proportion = (0.5, 0.5), (n1, n2) = (44.2, 44.4)

β̂SRS0 0.515 0.517 0.530 0.238(0.235) 0.132(0.124) 0.129(0.125) 1.69 1.73 1.65

β̂SRS1 0.508 0.514 0.513 0.174(0.172) 0.097(0.093) 0.098(0.092) 1.17 1.24 1.24

β̂MODS 0.502 0.507 0.513 0.149(0.150) 0.078(0.077) 0.079(0.078) 1 1 1

(0.1, 0.9) - n0 = 200, supplemental proportion = (0.8, 0.8), (n1, n2) = (24.4, 22.5)

β̂SRS0 0.502 0.506 0.506 0.171(0.166) 0.091(0.090) 0.092(0.089) 1.23 1.23 1.23

β̂SRS1 0.507 0.506 0.500 0.153(0.150) 0.082(0.079) 0.082(0.079) 1.10 1.11 1.10

β̂MODS 0.502 0.506 0.505 0.139(0.140) 0.074(0.073) 0.075(0.072) 1 1 1

- n0 = 200, supplemental proportion = (0.5, 0.5), (n1, n2) = (15.3, 14.2)

β̂SRS0 0.518 0.508 0.512 0.168(0.170) 0.089(0.089) 0.090(0.092) 1.14 1.19 1.23

β̂SRS1 0.512 0.503 0.509 0.160(0.155) 0.084(0.082) 0.088(0.083) 1.07 1.12 1.17

β̂MODS 0.514 0.509 0.510 0.149(0.145) 0.075(0.075) 0.075(0.076) 1 1 1

SD: standard deviation of the parameter estimates; ESE: the mean of the standard error of the estimator; REFF: relative efficiency over
MODS; β̂MODS denotes the proposed estimator based on our proposed MODS design; β̂SRS0 and β̂SRS1 are the standard estimators based
on the SRS sample from MODS and the SRS sample with the same size as MODS design, respectively.

in consistent performance with those in Tables 1 and 2. This
suggests that our proposed method is robust and produces
reliable and efficient results when applying to the situation
with distinct error distributions within a subject or the un-
balanced assignment of supplemental samples and various
censoring rates.

4. ANALYSIS OF THE BUSSELTON
HEALTH STUDY DATA

The Busselton Health Study is a prospective cohort study
conducted in Western Australia over the 17-year period,
1981-1998, with comprehensive surveys in cardiovascular
risk factors and disease data along with other experimen-
tal collection. The main goal was to examine the associa-
tion between serum ferritin levels and cardiovascular dis-
ease. The study cohort consists of 1,612 men and women
aged 40-89 years old who participated in the 1981 Busselton
Health Survey and had not previously diagnosed coronary
heart disease or ischemic stroke at that time. The partic-
ipants then were asked to complete a health and lifestyle
questionnaire, followed by various measurements and tests.
The outcomes of interest were times to first coronary heart
disease event and first stroke event, following up from the
1981 survey. Those who left the study or were followed
up until December 31, 1988 were considered as censored.

Among the 1,612 subjects in the cohort, 285 and 159 ex-
perienced coronary heart disease and stroke, respectively.
Previous studies [11, 13, 24] have focused on the analyses
under case-cohort study designs originally implemented. In
order to illustrate our proposed MODS Designs and estima-
tion methods while taking the advantage of this rich data
set, we considered triglycerides and systolic blood pressure
(SBP) available for the full cohort as the main risks fac-
tors. We implemented the following designs as described
in the simulation studies: (1) MODS Design 1 (All Fail-
ure Design): n0 = 200, supplemental proportion = 80%
and cutpoints = (0.3, 0.7); (2) MODS Design 2 (At-least-
one Failure Design): n0 = 200, supplemental proportions
= (n1, n2) = (80%, 50%) and cutpoints = (0.3, 0.7). Here
we allow different supplemental proportions for MODS De-
sign 2 to illustrate the robustness of our method. The re-
sults of fitting the Busselton Health Study Data using two
MODS Designs based on 1,000 repetitions are listed in Ta-
ble 4.

First, as we have observed in the simulation studies, the
resulting supplemental sample sizes are much smaller under
MODS Design 1 due to the more restrictive criteria. We also
note that the effect of triglycerides level was found to be sig-
nificantly negative at the α = 0.05 level, which was agreed
by the three estimators in MODS Design 2 - the correspond-
ing 95% confidence interval did not include 0. Under MODS
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Table 3. Simulation results with the full cohort size N = 1000 and the cutpoints = (30%, 70%), based on the model
Tik = β0 + β1Z1ik + β2Z2ik + β3Z3ik + εik, k = 1, 2, where Z1ik ∼ Bernoulli(0.5), Z2ik, Z3ik ∼ N (0, 1), εi1 ∼ N (0, 1) and

εi2 ∼ Gumbel(0, 1)

Censoring
proportion

Mean SD(ESE) REFF

β1 β2 β3 β1 β2 β3 β1 β2 β3

MODS Design 1

(0.8, 0.8) - n0 = 100, supplemental proportion = (0.8, 0.8), (n1, n2) = (6.55, 10.9)

β̂SRS0 0.528 0.518 0.524 0.248(0.253) 0.131(0.137) 0.132(0.135) 1.14 1.13 1.16

β̂SRS1 0.517 0.522 0.521 0.228(0.234) 0.121(0.125) 0.122(0.124) 1.05 1.04 1.07

β̂MODS 0.526 0.517 0.522 0.217(0.222) 0.114(0.121) 0.115(0.116) 1 1 1

- n0 = 100, supplemental proportion = (0.8, 0.5), (n1, n2) = (6.67, 6.77)

β̂SRS0 0.510 0.526 0.523 0.250(0.253) 0.133(0.142) 0.132(0.136) 1.12 1.14 1.13

β̂SRS1 0.523 0.515 0.522 0.233(0.253) 0.123(0.128) 0.123(0.128) 1.06 1.03 1.06

β̂MODS 0.506 0.522 0.523 0.223(0.225) 0.117(0.124) 0.117(0.121) 1 1 1

- n0 = 100, supplemental proportion = (0.5, 0.8), (n1, n2) = (4.20, 10.7)

β̂SRS0 0.528 0.525 0.524 0.247(0.252) 0.132(0.142) 0.133(0.134) 1.12 1.15 1.18

β̂SRS1 0.521 0.516 0.513 0.231(0.236) 0.122(0.128) 0.122(0.130) 1.05 1.04 1.14

β̂MODS 0.525 0.523 0.521 0.217(0.225) 0.115(0.123) 0.116(0.114) 1 1 1

(0.85, 0.75) - n0 = 100, supplemental proportion = (0.8, 0.5), (n1, n2) = (3.93, 7.39)

β̂SRS0 0.542 0.547 0.544 0.236(0.242) 0.123(0.128) 0.123(0.128) 1.08 1.12 1.13

β̂SRS1 0.543 0.544 0.545 0.226(0.226) 0.118(0.116) 0.118(0.117) 1.01 1.02 1.03

β̂MODS 0.539 0.546 0.544 0.214(0.224) 0.110(0.114) 0.110(0.113) 1 1 1

MODS Design 2

(0.8, 0.8) - n0 = 100, supplemental proportion = (0.8, 0.8), (n1, n2) = (56.7, 63.5)

β̂SRS0 0.526 0.521 0.523 0.248(0.252) 0.131(0.136) 0.131(0.136) 1.77 1.84 1.84

β̂SRS1 0.511 0.508 0.510 0.164(0.165) 0.088(0.090) 0.088(0.088) 1.15 1.22 1.19

β̂MODS 0.513 0.510 0.510 0.144(0.143) 0.074(0.074) 0.074(0.074) 1 1 1

- n0 = 100, supplemental proportion = (0.8, 0.5), (n1, n2) = (57.2, 39.8)

β̂SRS0 0.521 0.528 0.517 0.247(0.253) 0.132(0.141) 0.130(0.137) 1.60 1.71 1.76

β̂SRS1 0.511 0.511 0.511 0.174(0.172) 0.093(0.094) 0.093(0.097) 1.09 1.14 1.25

β̂MODS 0.505 0.514 0.510 0.152(0.158) 0.078(0.082) 0.079(0.078) 1 1 1

- n0 = 100, supplemental proportion = (0.5, 0.8), (n1, n2) = (36.4, 63.2)

β̂SRS0 0.520 0.516 0.520 0.246(0.248) 0.131(0.140) 0.132(0.140) 1.64 1.82 1.79

β̂SRS1 0.505 0.512 0.509 0.172(0.176) 0.092(0.094) 0.092(0.094) 1.16 1.22 1.20

β̂MODS 0.508 0.510 0.511 0.146(0.152) 0.076(0.077) 0.076(0.078) 1 1 1

(0.85, 0.75) - n0 = 100, supplemental proportion = (0.5, 0.5),(n1, n2) = (48.1, 46.0)

β̂SRS0 0.546 0.546 0.546 0.240(0.246) 0.124(0.125) 0.124(0.129) 1.54 1.62 1.62

β̂SRS1 0.534 0.536 0.537 0.169(0.170) 0.088(0.088) 0.088(0.090) 1.06 1.13 1.13

β̂MODS 0.535 0.539 0.537 0.157(0.159) 0.079(0.077) 0.079(0.080) 1 1 1

Design 1, however, the significance of triglycerides was de-

tected only by the proposed estimator, not in the other com-

peting estimators. On the other hand, the SBP effect was

not statistically significant under both designs and for all

three methods. We also note that our proposed estimator is

the most efficient one in both MODS Designs 1 and 2 and

produced the narrowest confidence intervals among three.

Clearly, β̂MODS yielded relatively smaller standard error es-
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Table 4. Analysis of the Busselton Health Study

Estimates SE (95% CI)

MODS Design SBP Triglycerides SBP Triglycerides

1 - n0 = 200, supplemental proportion = (0.8, 0.8), (n1, n2) = (6.87, 5.19)

β̂SRS0 −0.087 −0.388 0.147 (−0.375, 0.202) 0.200 (−0.780, 0.004)

β̂SRS1 −0.075 −0.401 0.129 (−0.328, 0.179) 0.298 (−0.985, 0.183)

β̂MODS −0.072 −0.396 0.124 (−0.314, 0.171) 0.179 (−0.747, −0.044)

2 - n0 = 200, supplemental proportion = (0.8, 0.5), (n1, n2) = (83.9, 55.4)

β̂SRS0 −0.086 −0.393 0.147 (−0.373, 0.202) 0.194 (−0.772, −0.013)

β̂SRS1 −0.060 −0.350 0.110 (−0.277, 0.156) 0.122 (−0.589, −0.110)

β̂MODS −0.044 −0.364 0.069 (−0.180, 0.092) 0.105 (−0.570, −0.158)

Cutpoints: (0.3, 0.7); CI: confidence interval.

timates in both risk factors and designs than β̂SRS1 did.
Moreover, we considered different supplemental sampling
portions for n1 and n2 under MODS Design 2. Although the
standard error estimates are substantially smaller in MODS
Design 2 compared with those in MODS Design 1 due to the
larger sample sizes in supplemental portions, the estimates
for the effect of triglycerides do not differ much. This indi-
cates that our proposed estimators are robust to the designs
and unbalanced supplemental sampling proportions.

5. DISCUSSION

We proposed a general multivariate-ODS design for the
multiple disease outcomes and clustered survival failure-
time data under the framework of the semiparametric AFT
model and answered a much needed call for cost-efficient
studies. By taking advantages of a multivariate-ODS scheme
[29] and recent advances in computing the estimators us-
ing the generalized estimating procedures with the induced
smoothing approach and the sandwich variance estimator
[9, 10], we established new statistical inference procedures.
The main advantage of our proposed general failure-time
MODS Designs is that researchers can select not only a sim-
ple random sample but also different supplemental samples
with various criteria to further improve the study efficiency,
especially when the disease rate is low. Moreover, the pro-
posed MODS Designs 1 and 2 (All Failures v.s. At-least-one
Failure) offer a flexibility for researchers in implementing
multivariate-ODS designs in practice.

The proposed estimators are shown to be consistent and
asymptotically normal. In the simulation studies, the results
suggested that both MODS Designs 1 and 2 worked well.
Our proposed estimator is more efficient than the estimator
based only on the SRS portion of the sample from MODS
Designs and the estimator based on an SRS of the same size
as the sample from MODS Designs.

In general, the clusters composed only of failures would
be most informative. So we recommend using such clusters

as supplemental components (MODS Design 1). As the cen-
soring rate gets higher, however, sizes of such clusters get
smaller. They would get even smaller with a larger number
of members in a cluster. Due to this low sample size, gains in
efficiency from using the proposed MODS Design 1 could be
challenging as not many clusters are likely to be selected into
the supplemental samples. In these cases, we recommend us-
ing clusters containing at least one failure as supplemental
components (MODS Design 2). Such clusters might not be
as informative as those containing only failures but it is rel-
atively much easier to identify such clusters. Moreover, our
simulation studies demonstrated that our proposed estima-
tor based on such MODS Designs still leads to a substan-
tial improvement in efficiency. Study designs having a sim-
ilar spirit are not uncommon. A case-control-family study
[17, 19] is an example; cases and controls, known as the
probands, are sampled followed by subsequent samplings of
relatives for each case and control with an ascertainment of
information on covariates and outcomes. This design can be
viewed as one of our proposed MODS Designs in which a
cluster is formed by a case or control proband and his/her
relatives. Clusters containing case probands comprise sup-
plemental components where a cluster contains at least one
failure - case proband - but does not necessarily contain
failures only.

Extended development of multivariate failure time data
via a multivariate-ODS scheme under additive hazards
model or other survival models will be possible directions
for future studies. Another important topic for future stud-
ies is to develop model-checking and goodness-of-fit proce-
dures for data from a multivariate failure-time ODS design
under a particular survival model.

APPENDIX A. APPENDIX SECTION

In this section, we provide proofs of the consistency and
asymptotic normality of the proposed estimator β̂. We as-
sume the following conditions:
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1. The parameter space B containing β0 is a compact set
of Rp.

2.
∑K

k=1 ‖Zik‖+K is bounded almost surely by a nonran-
dom constant (i = 1, . . . , N).

3. Var(ε11) < ∞.
4. The matrix Ã(β0) = limN→∞ ∂U(β0)/∂β

�
0 is nonsin-

gular.
5. Let f0(·) denote the marginal density associated with

model error term ε11. Then, f0(·) and f ′
0(·) are bounded

functions on R with∫
R

{
f ′
0(t)

f0(t)

}2

f0(t)dt < ∞

6. The marginal distribution of Cik is absolutely con-
tinuous and has a bounded density gik(·) on R for
i = 1, . . . , N and k = 1, . . . ,K).

7. As N → ∞, pm → p̃m(0 < p̃m < 1) and rm =
nm/(Nm − n0,m) → r̃m(0 < r̃m < 1) for m = 0, 1, 2.

Conditions 1 - 6 are identical to those imposed by Chiou,
Kang and Yan [10]. Condition 7 is added to ensure the de-
sired asymptotic convergence of the ODS samples.

We first provide a proof of the consistency of β̂. Let φ(·)
denote the density function of the standard normal random
variable. The convex objective functions of Ũ(β) and Ũc(β),
L̃(β) and L̃c(β), respectively, are then

L̃(β) =
1

N(N − 1)

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

Δik

[
{ejl(β)− eik(β)}

× Φ
{√

Nκijkl(β)
}
+

rikjl√
N

φ
{√

Nκijkl(β)
}]

,

L̃c(β) =
1

N(N − 1)

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

wiwjΔik

×
[
{ejl(β)− eik(β)}Φ

{√
Nκijkl(β)

}
+
rikjl√
N

φ
{√

Nκijkl(β)
}]

,

where κijkl(β) =
ejl(β)− eik(β)

rijkl
.

By applying Lemma 2 in Johnson and Strawdermann
[22], limN→∞ supβ∈B

|L̃(β) − L0(β)| = 0 where L0(β) is
strictly convex for β ∈ B. It can also be shown that
limN→∞ supβ∈B

|L̃c(β) − L̃(β)| = 0 by the strong law of
large numbers for U -statistics [32], asymptotic convergence
results on finite population sampling [18], and Lemma 1 in
Kong, Cai and Sen [25]. Combining these two results and
by applying the triangle inequality, limN→∞ supβ∈B

|L̃c(β)−
L0(β)| = 0. Condition 4 ensures that L0(β) is strictly convex
at β0, a unique minimizer of L0(β). Then, the unique mini-

mizer of Lc(β), β̂, converges to β0 almost surely [1, Corollary
II.2].

To establish the asymptotic normality of β̂, we first show
the asymptotic normality of β̃, solution to Uc(β) = 0 where
Uc(β) is the weighted version of U(β) and

Uc(β) =

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

wiwjΔik(Zik −Zjl)

× I {ejl(β) ≥ eik(β)} .

Then, we show the asymptotic equivalence between the dis-
tributions of

√
N(β̃ − β0) and

√
N(β̂ − β0).

Let Mik(β; t) = Nik(β; t) −
∫ t

−∞ I {eik(β) ≥ u}λ0(u)du
where λ0(·) is the common hazard function for εiks. De-

fine S(d)(β; t) = N−1
∑N

i=1

∑K
k=1 Z

⊗d
ik I {eik(β) ≥ t} and

S
(d)
c (β; t) = N−1

∑N
i=1

∑K
k=1 wiZ

⊗d
ik I {eik(β) ≥ t} (d =

0, 1). Further, define Z̄(β; t) = S(1)(β; t)/S(0)(β; t) and

Z̄c(β; t) = S
(1)
c (β; t)/S

(0)
c (β; t). The limiting quantities

of S(d)(β; t) and Z̄(β; t) are s(d)(β; t) and z̄(β; t) =
s(1)(β; t)/s(0)(β; t), respectively.

By applying Lemma 1 of Yu et al. [37] and
Lemma 1 of Jin, Lin and Ying [21] to the
stochastic integral representation of Uc(β) =∑N

i=1

∑K
k=1

∫∞
−∞ wiS

(0)
c (β; t)

{
Zik − Z̄c(β; t)

}
dNik(β; t), it

can be shown that

Uc(β0) =

N∑
i=1

K∑
k=1

uik(β0) +

N∑
i=1

K∑
k=1

(wi − 1)uik(β0)(7)

+ op(
√
N)

where uik(β) =
∫∞
−∞ s(0)(β; t) {Zik − z̄(β; t)} dMik(β; t).

Since

wi − 1 =

K∏
k=1

(1−Δik)

(
ξi
p0

− 1

)

+ (1− ζi)

{
1−

K∏
k=1

(1−Δik)

}(
ξi
p0

− 1

)

+ (1− ξi)

{
1−

K∏
k=1

(1−Δik)

}
M∑

m=1

ζim

(
ηim
rm

− 1

)
,

the second term in (7) is decomposed into

N∑
i=1

K∑
k=1

K∏
k=1

(1−Δik)

(
ξi
p0

− 1

)
uik(β0) +

N∑
i=1

K∑
k=1

(1− ζi)

×
{
1−

K∏
k=1

(1−Δik)

}(
ξi
p0

− 1

)
uik(β0) +

N∑
i=1

K∑
k=1

(1− ξi)

×
{
1−

K∏
k=1

(1−Δik)

}
M∑

m=1

ζim

(
ηim
rm

− 1

)
uik(β0).

These three terms are asymptotically uncorrelated. More-
over, the first term in (7) and these three terms are asymp-
totically uncorrelated. Thus, by applying Lemma 3 in the
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supplementary materials of Kang and Cai [23] and the
multivariate central limit theorem, we have the desired

asymptotic normality of
√
N

−1
Uc(β0) whose mean is 0

and asymptotic covariance function is ΣF (β0) + ΣS(β0)

where ΣF (β0) = E
[∑K

k=1 uik(β0)
]⊗2

and ΣS(β0) =

1−p̃0

p̃0
Var

[∏K
l=1(1−Δ1l)

∑K
k=1 u1k(β0)

]
+ 1−p̃0

p̃0
Var

[{
1−

∏K
l=1(1−Δ1l)

}
(1− ζi)

∑K
k=1 u1k(β0)

]
+

∑M
m=1(1− p̃0)

1−r̃m
r̃m

×
Var

[{
1−

∏K
l=1(1−Δ1l)

}
ζ1

∑K
k=1 u1k(β0)

]
. The consis-

tency of β̃ to β0 follows from the similar arguments of
showing the consistency of β̂. Using this with the argu-
ments in Theorem 2 of Ying [36], it can be shown that√
N(β̃ − β0) = −Ã−1(β0)

√
N

−1
Uc(β0) + op(1 +

√
N‖β̃ −

β0‖). Then, by incorporating the asymptotic normality

of
√
N

−1
Uc(β0),

√
N

−1
(β̃ − β0) is asymptotically nor-

mally distributed with mean 0 and covariance function
Ã−1(β0) {ΣF (β0) + ΣS(β0)} Ã−1(β0),

To establish the equivalence of the distributions of√
N(β̃ − β0) and

√
N(β̂ − β0) asymptotically, it is suf-

ficient to show that, as N → ∞, (i) ∂Ũc(β)/∂β
� con-

verges to Ã(β) in probability uniformly in β ∈ B, and

(ii)
√
N

−1
{
Ũc(β)− Uc(β)

}
converges to Ã(β) in proba-

bility uniformly in β ∈ B. To show (i), we decompose

∂Ũc(β)/∂β
� − Ã(β) into

{
∂Ũc(β)/∂β

� − ∂Ũ(β)/∂β�
}
+{

∂Ũ(β)/∂β� − Ã(β)
}
. The second term converges to 0 in

probability uniformly in β ∈ B by Lemma 3 in Johnson and
Strawdermann [22]. The first term can also be shown to con-
verge to 0 in probability uniformly in β ∈ B by applying the
strong law of large numbers for U -statistics [32], Lemma 1
in Kong, Cai and Sen [25], and the asymptotic convergence
results on finite sampling [18]. Combining these two and by
applying the triangle inequality, we have the desired result.

For (ii),

√
N

−1
{
Ũc(β)− Uc(β)

}
=

1

N(N − 1)

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

wiwjΔik(Zik −Zjl)
1

κijkl(β)

×
√
Nκijkl(β)

[
Φ
{√

Nκijkl(β)
}
− I(κijkl(β) ≥ 0)

]
=

1

N(N − 1)

N∑
i=1

K∑
k=1

N∑
j=1

K∑
l=1

wiwjΔik(Zik −Zjl)
1

κijkl(β)

√
Nκijkl(β)Φ

{
−
√
Nκijkl(β)

}
.

Note that, for u ∈ R,
∣∣∣u{Φ(√Nu)− I(u ≥ 0)

}∣∣∣ =

sign(u)
{
uΦ(

√
N

−1|u|)
}

where sign(u) = 2I(u ≥
0) − 1. Since Φ(−u) ≤ (

√
2πu)−1 exp(−u2/2),

limN→∞ supu∈R

∣∣∣u{Φ(√Nu)− I(u ≥ 0)
}∣∣∣ = 0. Then,

(ii) follows from this result and by applying the strong law
of large numbers for U -statistics [32], Lemma 1 in Kong,
Cai and Sen [25], and the asymptotic convergence results
on finite sampling [18].
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[18] Hájek, J. (1960), Limiting Distributions in Simple Random Sam-
pling from a Finite Population. Pub. Math. Inst. Hungar. Acad.
Sci., 5, 361–374. MR0125612

[19] Hsu, L., Chen, L., Gorfine, M. and Malone, K. (2004). Semi-
parametric estimation of marginal hazard function from case–
control family studies. Biometrics, 60, 936–944. MR2133546

[20] Jin, Z., Lin, D. Y., Wei, L. J. and Ying, Z. (2003). Rank-based
inference for the accelerated failure time model. Biometrika, 90,
341–353. MR1986651

[21] Jin, Z., Lin, D. Y., and Ying, Z. (2006). Rank regression analysis
of multivariate failure time data based on marginal linear models.
Scandinavian Journal of Statistic, 33, 1–23. MR2255106

[22] Johnson, L. M. and Strawderman, R. L. (2009). Induced
smoothing for the semiparametric accelerated failure time model:
asymptotic and extensions to clustered data. Biometrika, 90, 341–
327. MR2538758

[23] Kang, S. and Cai, J. (2009). Marginal hazards model for case-
cohort studies with multiple disease outcomes. Biometrika, 96,
887–901. MR2767277

[24] Knuiman, M. W., Divitini, M. L., Olynyk, J. K., Cullen, D.

J. and Bartholomew, H. C. (2003). Serum ferritin and cardio-
vascular disease: A 17-year-follow-up study in Busselton, West-
ern Australia. American Journal Statistical of Epidemiology, 158,
144–149.

[25] Kong, L., Cai, J., and Sen, P. K. (2006). Asymptotic results
for fitting semiparametric transformation models to failure fime
data from case-cohort studies. Statistica Sinica, 16, 155–151.
MR2256083

[26] Kulich, M. and Lin, D. (2004). Improving the efficiency of
relative-risk estimation in case-cohort studies. Journal of the
American Statistical Association, 99, 832–844. MR2090916

[27] Lin, D. Y. and Ying, Z. (1993). Cox regression with incomplete
covariate measurements. Journal of the American Statistical As-
sociation, 88, 1341–1349. MR1245368

[28] Lu, S. and Shih, J. H. (2006). Case-cohort designs and anal-
ysis for clustered failure time data. Biometrics, 62, 1138–1148.
MR2307439

[29] Lu, T. S., Longnecker, M. and Zhou, H. (2017). Statisti-
cal inferences for data from studies conducted with an aggre-
gated multivariate outcome-dependent sample design. Statistics
in Medicine, 36, 985–997. MR3606658

[30] Prentice, R. L. (1986). A case-cohort design for epidemiologic
studies and disease prevention trials. Biometrika, 73, 1–11.

[31] Self, S. G. and Prentice, R. L. (1988). Asymptotic distribution
theory and efficiency results for case-cohort studies. The Annals
of Statistics, 16, 64–81. MR0924857

[32] Serfling, R. (2009). Approximation Theorems of Mathematical
Statistics, (Vol. 162). John Wiley & Sons. MR0595165

[33] Song, R., Zhou, H. and Kosorok, M. R. (2009). On semi-
parametric efficient inference for two-stage outcome dependent
sampling with a continuous outcome. Biometrics, 96, 221–228.
MR2482147

[34] Sun, J., Sun, L. and Flournoy, N. (2004). Additive hazards
model for competing risks analysis of the case-cohort design. Com-
munications in Statistics - Theory and Methods, 33, 351–366.
MR2045320

[35] Weaver, M. A. and Zhou, H. (2005). An estimated likelihood
method for continuous outcome regression models with outcome-

dependent sampling. Journal of the American Statistical Associ-
ation, 100, 459–469. MR2160550

[36] Ying, Z. (1993). A large sample study of rank estimation for
censored regression data. The Annals of Statistics, 21, 76–99.
MR1212167

[37] Yu, J., Liu, Y., Sandler, D. P. and Zhou, H. (2015). Statis-
tical inference for the additive hazards model under outcome-
dependent sampling. The Canadian Journal of Statistics, 43,
436–453. MR3388326

[38] Zhang, H., Schaubel, D. E. and Kalbfleisch, J. D. (2011).
Proportional hazards regression for the analysis of clustered
survival data from case-cohort studies. Biometrics, 67, 18–28.
MR2898813

[39] Zhou, H. and Weaver, M. (2001). Outcome-dependent selection
models. Encyclopedia of Environmetrics, v3, 1499–1502.

[40] Zhou, H., Weaver, M. A., Qin, J., Longnecker, M., and

Wang, M. C. (2002). A semiparametric empirical likelihood
method for data from an outcome-dependent sampling scheme
with a continuous outcome. Biometrics, 58, 413–421. MR1908182

[41] Zhou, H., Chen, W., Rissanen T., Korrick, S., Hu, H., Salo-

nen, J., and Longnecker, M. (2007). Outcome-dependent sam-
pling: An efficient sampling and inference procedure for studies
with a continuous outcome. Epidemiology, 18, 461–468.

[42] Zhou, H., Song, R. and Qin, J. (2011). Statistical inference for a
two-stage outcome dependent sampling design with a continuous
outcome. Biometrics, 67, 194–202. MR2898831

Tsui-Shan Lu
Department of Mathematics
National Taiwan Normal University
Taipei, Taiwan
E-mail address: tslu@ntnu.edu.tw

Sangwook Kang
Department of Applied Statistics
Yonsei University
Seoul, Korea
E-mail address: kanggi1@yonsei.ac.kr

Haibo Zhou
Department of Biostatistics
University of North Carolina at Chapel Hill
Chapel Hill, NC 27514
E-mail address: zhou@bios.unc.edu

Semiparametric accelerated failure time modeling under multivariate outcome-dependent samplings 383

http://www.ams.org/mathscinet-getitem?mr=3601684
http://www.ams.org/mathscinet-getitem?mr=3612275
http://www.ams.org/mathscinet-getitem?mr=0125612
http://www.ams.org/mathscinet-getitem?mr=2133546
http://www.ams.org/mathscinet-getitem?mr=1986651
http://www.ams.org/mathscinet-getitem?mr=2255106
http://www.ams.org/mathscinet-getitem?mr=2538758
http://www.ams.org/mathscinet-getitem?mr=2767277
http://www.ams.org/mathscinet-getitem?mr=2256083
http://www.ams.org/mathscinet-getitem?mr=2090916
http://www.ams.org/mathscinet-getitem?mr=1245368
http://www.ams.org/mathscinet-getitem?mr=2307439
http://www.ams.org/mathscinet-getitem?mr=3606658
http://www.ams.org/mathscinet-getitem?mr=0924857
http://www.ams.org/mathscinet-getitem?mr=0595165
http://www.ams.org/mathscinet-getitem?mr=2482147
http://www.ams.org/mathscinet-getitem?mr=2045320
http://www.ams.org/mathscinet-getitem?mr=2160550
http://www.ams.org/mathscinet-getitem?mr=1212167
http://www.ams.org/mathscinet-getitem?mr=3388326
http://www.ams.org/mathscinet-getitem?mr=2898813
http://www.ams.org/mathscinet-getitem?mr=1908182
http://www.ams.org/mathscinet-getitem?mr=2898831
mailto:tslu@ntnu.edu.tw
mailto:kanggi1@yonsei.ac.kr
mailto:zhou@bios.unc.edu

	Introduction
	Design and estimating approach
	Multivariate AFT model
	Multivariate-ODS designs
	Estimation of model parameters
	Variance estimation

	Simulation studies
	Analysis of the Busselton Health Study Data
	Discussion
	Appendix section
	Acknowledgements
	References
	Authors' addresses

