
Statistics and Its Interface Volume 13 (2020) 425–436

On evidence cycles in network meta-analysis∗

Lifeng Lin
†
, Haitao Chu

‡
, and James S. Hodges

As an extension of pairwise meta-analysis of two treat-
ments, network meta-analysis has recently attracted many
researchers in evidence-based medicine because it simulta-
neously synthesizes both direct and indirect evidence from
multiple treatments and thus facilitates better decision mak-
ing. The Bayesian hierarchical model is a popular method
to implement network meta-analysis, and it is generally
considered more powerful than conventional pairwise meta-
analysis, leading to more precise effect estimates with nar-
rower credible intervals. However, the improvement of ef-
fect estimates produced by Bayesian network meta-analysis
has never been studied theoretically. This article shows that
such improvement depends highly on evidence cycles in the
treatment network. When all treatment comparisons are as-
sumed to have different heterogeneity variances, a network
meta-analysis produces posterior distributions identical to
separate pairwise meta-analyses for treatment comparisons
that are not contained in any evidence cycles. However,
this equivalence does not hold under the commonly-used
assumption of a common heterogeneity variance for all com-
parisons. Simulations and a case study are used to illustrate
the equivalence of the Bayesian network and pairwise meta-
analyses in certain networks.
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1. INTRODUCTION

Network meta-analysis of randomized controlled trials in
evidence-based medicine, also known as mixed treatment
comparison, has become an increasingly popular statistical
method to simultaneously compare multiple treatments [40].
Based on an Internet Web search, the prestigious medical
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journals BMJ, JAMA, and Lancet have published more than
100 research articles with the term ‘network meta-analysis’
in their titles since 2010. A variety of methods are available
for performing network meta-analysis [29, 38, 53, 52, 21, 12,
26, 20, 28, 25].

By comparing all treatments at a time, network meta-
analysis can provide a coherent ranking of treatments and
thus guide decision making [18, 41, 39]. More importantly,
by synthesizing both direct and indirect evidence, network
meta-analysis is generally considered more powerful than
conventional pairwise meta-analysis, which compares each
pair of treatments separately and thus can only use direct
evidence [32]. For example, to compare treatments A and
B, trials including both treatments provide direct evidence.
Besides these trials, A and B can also be compared via a
common comparator, say treatment C, and the trials of A
vs. C and B vs. C provide indirect evidence. Such a trio
of treatments forms an evidence cycle (or loop) [30]. For
example, Shape 4 in Figure 1 contains one evidence cy-
cle consisting of treatments 1, 2, and 5. Hence, a network
meta-analysis is expected to produce more accurate effect
estimates with narrower confidence/credible intervals (CI),
compared with pairwise meta-analyses. For example, in a
network meta-analysis of the efficacy of 12 new-generation
antidepressants [5], the pairwise meta-analysis estimated the
odds ratio of escitalopram vs. fluoxetine as 1.23 with 95%
CI (0.87, 1.74), and the network meta-analysis estimated it
as 1.32 with 95% CI (1.12, 1.55), indicating a statistically
significant difference in efficacy between the two antidepres-
sants.

Because of these attractive features, many researchers try
to collect as many treatments as possible to enrich network
meta-analyses, taking for granted the benefit from synthesiz-
ing direct and indirect evidence. Also, so far most method-
ological papers have been devoted to implementation and
reporting of network meta-analyses, while researchers sel-
dom carefully examine what we can gain from conducting
network meta-analyses compared with much simpler pair-
wise meta-analyses [27]. The foregoing illustrative example
of direct and indirect evidence of treatments A, B, and C is
often used to introduce the idea of network meta-analysis.
Based on this, it seems intuitive to conclude that evidence
cycles are necessary for a network meta-analysis to outper-
form pairwise meta-analyses; otherwise, the two types of
analyses must give identical results for treatment compar-
isons that are not in any evidence cycles.
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Figure 1. Artificial treatment networks with four shapes.
Vertices represent treatments; edges represent direct

comparisons. Edge width is proportional to the number of
studies that report the corresponding direct comparison;
vertex size is proportional to the number of studies that

include the corresponding treatment.

However, results in published network meta-analyses are
not always consistent with this intuition. For example, in a
network meta-analysis of blood pressure-lowering agents in
adults with diabetes and kidney disease for all-cause mor-
tality [36], endothelin inhibitor was directly compared with
placebo in two studies, and this comparison was not in any
evidence cycles. A pairwise meta-analysis produced an odds
ratio estimate 1.55 with 95% CI (0.82, 2.89) for this compar-
ison, and a network meta-analysis led to 1.53 with 95% CI
(0.79, 2.97); both results were similar. However, for another
comparison between renin inhibitor and placebo that was
also directly given in two studies and was not in any evi-
dence cycles, pairwise and network meta-analyses estimated
the odds ratio as 0.93 with 95% CI (0.39, 2.24) and 1.05
with 95% CI (0.81, 1.36), respectively. The point estimates
were noticeably different and were in opposite directions,
and their 95% CIs also differed dramatically.

In addition, some tutorials about network meta-analysis
do not remind researchers to examine the differences be-
tween the results produced by pairwise and network meta-
analyses, especially in the absence of evidence cycles. The
National Institute for Health and Care Excellence (NICE)
Decision Support Unit in the UK has provided excellent
technical support documents on evidence synthesis using

network meta-analyses. This series of tutorials has also been
published in Medical Decision Making, and has set a bench-
mark for methods used in other work that NICE has under-
taken [10]. However, in one tutorial (page 622 in Dias et al.
[8]), a star-shaped network was presented as an example to
illustrate network meta-analysis models. A star-shaped net-
work refers to a network meta-analysis consisting of studies
that share a common treatment (such as a placebo or a
well-established standard treatment); see, e.g., Shape 1 in
Figure 1. Moreover, the PRISMA-NMA statement [21] also
provides guidance for reporting systematic reviews compar-
ing multiple treatments using direct and indirect evidence,
and has been widely used to prepare and report network
meta-analyses. Like the NICE tutorials, the PRISMA-NMA
statement uses some networks without evidence cycles to il-
lustrate treatment networks (e.g., Figure 2 in Hutton et al.
[21]). Although the statement correctly acknowledged that
‘closed loops [cycles] are not required to be present for ev-
ery comparison under study’, it did not say what happens
if some comparisons are not in any cycles. Using networks
without evidence cycles in these tutorial papers might over-
state the power of network meta-analyses. Possibly as a re-
sult, many network meta-analyses in the current literature
do not contain cycles or include many comparisons that are
not in cycles; see, e.g., Chatterjee et al. [3], Biondi-Zoccai et
al. [1], Palmer et al. [36], Khera et al. [24], Chen et al. [4],
and Tricco et al. [48]. Among the 186 network meta-analyses
investigated by Nikolakopoulou et al. [35], 35 networks are
star-shaped.

This article carefully explores how evidence cycles play a
critical role in improving effect estimates produced by net-
work meta-analysis compared with separate pairwise meta-
analyses and when the two kinds of analysis give identical re-
sults. We focus on the network meta-analysis method using
the Bayesian hierarchical model proposed by Lu and Ades
[29], because it is currently the most widely used method; in
the survey by Nikolakopoulou et al. [35], 111 out of 186 net-
work meta-analyses used it. By showing the importance of
evidence cycles, we remind researchers to be aware of situa-
tions in which network meta-analysis provides an advantage
compared with separate pairwise meta-analyses. Our results
provide some insight for journal editors and reviewers to
evaluate future network meta-analyses.

This article is organized as follows. We first review the
development of the Bayesian network meta-analysis model
in Section 2. Section 3 shows theoretically that the joint pos-
terior distributions of effect estimates produced by this net-
work meta-analysis and by separate pairwise meta-analyses
are identical for treatment comparisons without evidence
cycles when assuming different heterogeneity variances for
treatment comparisons. The proofs are in the Supplemen-
tary Materials. Simulations and a case study to illustrate
the equivalence relationship are presented in Section 4, and
Section 5 concludes with some remarks.
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2. METHODS FOR GENERAL NETWORK
META-ANALYSIS: A REVIEW

2.1 Bayesian hierarchical model for pairwise
meta-analysis

Before reviewing the model for network meta-analysis,
we begin with the Bayesian hierarchical model for the con-
ventional pairwise meta-analysis proposed by Smith et al.
[45], because it lays the foundation for the popular network
meta-analysis model of Lu and Ades [29]. Suppose that a
pairwise meta-analysis collects N studies and each study
compares the same two treatments, such as an active treat-
ment and a placebo. Let yi1 and yi2 be the observed ag-
gregated outcome measures in study i’s treatment groups
1 and 2, respectively. The overall relative effect comparing
the two treatments is usually of interest. The random-effects
pairwise meta-analysis model [45] can be generalized as fol-
lows to estimate the overall relative effect:

yik ∼ f(y | Δik, ξik), i = 1, . . . , N, k = 1, 2;

g(Δi1) = μi, g(Δi2) = μi + δi;

δi ∼ N(d, σ2).

(1)

Here, μi is commonly called the baseline effect of study i
and the study-specific relative effects δi are assumed to be
exchangeable across studies with mean d, which is inter-
preted as the overall relative effect. The variance parameter
σ2 reflects heterogeneity between studies. The link function
is g(·), and f(· | ·, ·) is the outcome measure’s density func-
tion depending on an unknown location parameter Δik and
a nuisance parameter ξik, which is assumed to be known.
For example, if the outcome is continuous, yik is usually
assumed to be normally distributed with unknown mean
Δik and known standard error ξik, and g(·) is the iden-
tity link. If the outcome is binary, such as the condition of
having a certain event, then yik is the number of events,
which follows a binomial density with unknown event rate
Δik and known sample size ξik. When the logit link function
logit(t) = log[t/(1−t)] is used for binary outcomes, the fixed
effect d represents the overall log odds ratio of treatment 2
compared to treatment 1.

2.2 Bayesian hierarchical model for network
meta-analysis

Lu and Ades [29, 31] extended the pairwise meta-analysis
model to multiple-treatment comparisons. Instead of com-
paring just two treatments, in a network meta-analysis N
studies are included comparing a total of K > 2 treatments.
Specifically, each study compares a subset of the K treat-
ments; denote the treatment subset of study i as Ti. A study
is called a two-arm study if it compares two treatments,
while a multi-arm study investigates more than two treat-
ments. Again, assume that the observed aggregated outcome

measure yik in study i’s treatment group k follows the dis-
tribution f(· | Δik, ξik). To implement the network meta-
analysis model, a baseline treatment bi needs to be specified
for each study i. Different studies can have different base-
line treatments because the treatment subsets Ti need not
intersect. We denote bi simply as b when it does not lead
to confusion. The random-effects model for network meta-
analysis can be specified as follows:

yik ∼ f(y | Δik, ξik), i = 1, . . . , N, k ∈ Ti;
g(Δik) = μi +Xikδibk;

δibk ∼ N(dbk, σ
2
bk), Corr(δibh, δibk) = γbhk, h, k ∈ Ti.

(2)

Here,Xik is a dummy variable;Xik = 0 if k = b andXik = 1
if k ∈ Ti\{b}. For a multi-arm study, the correlation between
the treatment contrasts δibh and δibk is assumed to be γbhk.
Again, μi represents the baseline effect of study i, the study-
specific relative effects δibk are assumed to be exchangeable,
and we focus on estimating the overall relative effects of all
treatment contrasts dhk (1 ≤ h �= k ≤ K).

A critical assumption in network meta-analysis is the con-
sistency equation for an evidence cycle, which consists of a
trio of treatments, under which

(3) dhk = d�k − d�h, for all 1 ≤ h �= k �= � ≤ K.

If a treatment network contains evidence cycles, this equa-
tion permits synthesis of direct and indirect evidence for
the treatment comparisons in the cycles, so that the net-
work meta-analysis borrows more information than a con-
ventional pairwise meta-analysis, which uses only direct ev-
idence. The consistency assumption may not hold in some
cases, and alternative approaches have been proposed to
deal with evidence inconsistency [30, 42, 9, 17, 51, 11].
For example, one can add inconsistency factors w to Equa-
tion (3), that is, dhk = d�k − d�h + whk�. This method
is closely related to the number of independent cycles in
the network, which is quantified by the inconsistency de-
grees of freedom dfIC [30]. If all studies are two-armed, then
dfIC = T −K + 1, where T is the number of all treatment
comparisons, i.e., the edges in the network. However, when
multi-arm studies are present, the definition of inconsistency
degrees of freedom is fairly complex and needs to be consid-
ered case by case.

Besides random-effects models, fixed-effects models are
also often used in meta-analysis. These models assume that
the collected studies are homogeneous, that is, that the rel-
ative effects for each treatment comparison share a com-
mon mean across studies, and their variation is entirely due
to sampling error within studies. To be specific, the fixed-
effects model for pairwise meta-analysis is

yik ∼ f(y | Δik, ξik), i = 1, . . . , N, k = 1, 2;

g(Δi1) = μi, g(Δi2) = μi + d,
(4)

Evidence cycles in network meta-analysis 427



and the fixed-effects model for network meta-analysis is

yik ∼ f(y | Δik, ξik), i = 1, . . . , N, k ∈ Ti;
g(Δik) = μi +Xikdbk.

(5)

Implementation is easier for the fixed-effects model than
the random-effects model because the latter involves com-
plex specification of heterogeneity variances, which will be
detailed in Section 3.4. However, the homogeneity assump-
tion may be unrealistic in many cases [16, 33], and the CIs
produced by the fixed-effects model may have low coverage
probabilities if heterogeneity is present in some treatment
comparisons [34].

3. TREATMENT COMPARISONS WITHOUT
EVIDENCE CYCLES

3.1 Direct and indirect evidence in networks
without cycles

Throughout this article, the treatment network is as-
sumed to be connected; if the network consists of disjoint
sub-networks, then a separate analysis can be applied to
each sub-network. We first consider treatment networks
without cycles; in such networks, all collected studies must
be two-armed because multi-arm studies create evidence cy-
cles. Consequently, we no longer need to account for the
correlations between treatment contrasts within studies in
the random-effects network meta-analysis model in Equa-
tion (2).

To investigate the performance of the network meta-
analysis model for a network without cycles, we explore
the posterior distributions of all treatment contrasts. The
(K − 1)K/2 treatment contrasts are denoted as a vector
e = (dhk; 1 ≤ h < k ≤ K)T . In graph theory, a con-
nected network without cycles is a spanning tree and con-
tains exactly K − 1 edges; denote the set of these edges as
a (K − 1)-dimensional vector eb = (e1, . . . , eK−1)

T , where
ej = dhk for some h < k and each ej provides direct evi-
dence. Thus, the set of all treatment contrasts e can be split
into two subsets: eb, each contrast that is directly compared
in the network, and a (K − 2)(K − 1)/2-dimensional vector
ef = (dhk; dhk /∈ eb)

T that can only be imputed from in-
direct evidence. Using the definition of Lu and Ades [30],
the treatment contrasts in eb are basic parameters, which
involve all K treatments but do not form cycles; those in ef
are referred to as functional parameters because they can be
represented as functions of the basic parameters. Evidence
consistency as defined in Equation (3) cannot be checked for
networks without cycles because evidence inconsistency oc-
curs within cycles. Under the consistency assumption, ef is
entirely determined by eb; that is, we may write ef = Aeb,
where A is a known (K − 2)(K − 1)/2 × (K − 1) transfor-
mation matrix. We have the following proposition regarding
the transformation matrix A.

Proposition 1. The transformation matrix A is unique for
each set of basic parameters, and each entry of A is 0 or ±1.

Proposition 1 holds for any type of connected network,
including those containing cycles, under the consistency as-
sumption. In networks without cycles, there is only one set
of basic parameters eb, so the transformation matrix A is
uniquely defined.

3.2 Equivalence of network meta-analysis
and separate pairwise meta-analyses

In a network without cycles, suppose study i, which must
be two-armed, compares treatments ki vs. hi (hi < ki);
that is, the corresponding treatment contrast is dhiki . For
j = 1, . . . ,K − 1, let Sj = {i : dhiki = ej} be the set of
studies that give the direct treatment comparison ej . Conse-
quently, the N studies S = {1, . . . , N} in the network can be
partitioned into K − 1 subsets according to their treatment
contrasts: S =

⋃K−1
j=1 Sj . Moreover, let Dj = {(yik, ξik); i ∈

Sj , k ∈ Ti} be the data (aggregated outcome measures and
nuisance parameters) provided by the studies in Sj and let

D =
⋃K−1

j=1 Dj be the full data in the whole network. The
pairwise meta-analysis uses the data Dj for each j separately
to estimate the corresponding treatment contrast ej , and we
denote the resulting posterior distribution as p(ej | Dj). The
network meta-analysis uses the full dataD to simultaneously
compare all treatments, and we denote the joint posterior
distribution of the direct treatment contrasts as p(eb | D).
We have the following proposition.

Proposition 2. For a treatment network without evidence
cycles, given the same set of priors, the fixed-effects net-
work meta-analysis model (5) gives posterior distributions
of direct treatment contrasts identical to those from separate
fixed-effects pairwise meta-analysis model (4), that is,

(6) p(eb | D) =

K−1∏

j=1

p(ej | Dj).

This equation also holds for the random-effects pairwise and
network meta-analyses in Equations (1) and (2), if the net-
work meta-analysis model uses different heterogeneity vari-
ances for different treatment contrasts.

Equation (6) implies that the posterior distribution of
ej produced by the network meta-analysis model is only
informed by the data in studies Sj ; thus, the posterior
distributions of the ej ’s are mutually independent.

Note that the decomposition of the joint posterior in
Equation (6) does not hold in treatment networks with ev-
idence cycles that are formed by different two-arm studies,
because the cycles introduce posterior correlations between
the ej ’s. Even if a network contains a cycle that is entirely
produced by a single multi-arm study, this decomposition
may not hold. In that cycle, consider two treatment com-
parisons that share a common treatment arm. Because the
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posteriors of both treatment comparisons use information
from the same multi-arm study, they may be correlated.

Unlike the ej ’s in eb that are directly compared in the
network, the estimates of ef are entirely informed by indirect
evidence. The network meta-analysis seems to be an efficient
approach to simultaneously estimating all treatment con-
trasts, including the indirect ones. However, under the con-
sistency assumption, the following proposition shows that
separate pairwise meta-analysis models also produce poste-
rior distributions of indirect treatment contrasts identical to
those given by the network meta-analysis model.

Proposition 3. Under the model settings in Proposition 2
and the assumption of evidence consistency, the joint poste-
rior distributions of the indirect treatment contrasts ef pro-
duced by the network meta-analysis model and by separate
pairwise meta-analysis models are identical for a network
without evidence cycles.

Propositions 2 and 3 imply that for a network without
cycles, the network meta-analysis does not change the pos-
terior distributions (thus, point estimates and CIs) of any
treatment contrasts produced by separate pairwise meta-
analyses.

3.3 Acyclic treatment comparisons in
general networks

In a general treatment network that may contain evidence
cycles, it commonly occurs that some treatment compar-
isons are not in any cycles [43]; we refer to such treatment
comparisons as acyclic comparisons. Proposition 2 can be
extended to the posterior distributions of acyclic compar-
isons in networks with general shapes. Specifically, suppose
that a network with K treatments contains J acyclic com-
parisons, denoted as ea = (e1, . . . , eJ)

T .

Proposition 4. For a network with K treatments, the num-
ber of acyclic comparisons J does not exceed K − 1.

Studies that report the acyclic comparison ej (j =
1, . . . , J) must be two-armed; otherwise, multi-arm studies
create evidence cycles containing ej , contradicting the defi-
nition of an acyclic comparison. As in Section 3.2, let Sj be
the set of studies that report the acyclic comparison ej , and

S� = S\
⋃J

j=1 Sj be the studies that do not report acyclic
comparisons. The studies in S� form a sub-network with ev-
idence cycles if the set S� is not empty. Suppose that e�b is
a set of basic parameters in the sub-network consisting of
S�; then eb = (eTa , e

�T
b )T is a set of basic parameters for

the full network S. Also, denote the data provided by Sj as
Dj and the data provided by S� as D�. Then we have the
following proposition.

Proposition 5. For acyclic treatment comparisons in a
general network, the network meta-analysis does not im-
prove their posterior distributions compared with separate
pairwise meta-analyses under the model settings in Proposi-
tion 2. Specifically, using the same set of priors in the two
models, the joint posterior distribution of the basic parame-

ters produced by the network meta-analysis model is

(7) p(eb | D) = p(e�b | D�)
J∏

j=1

p(ej | Dj).

Here, p(eb | D) is produced by the network meta-analysis
on the full network S, while p(e�b | D�) is the posterior
based on the sub-network consisting of S�. In a network
without cycles, the study set S� does not exist so that p(e�b |
D�) drops out of Equation (7), which is thus reduced to
Equation (6). Proposition 5 can therefore be viewed as a
generalization of Proposition 2. Note that the sub-network
consisting of S� contains evidence cycles, so the evidence
may be inconsistent; however, Proposition 5 still applies for
this situation.

3.4 The random-effects network
meta-analysis model with equal
heterogeneity variances

We have shown theoretically the equivalence of pairwise
and network meta-analyses for treatment comparisons that
are not in evidence cycles. However, one may wonder why
these analyses produced dramatically different estimates for
the acyclic comparison of renin inhibitor vs. placebo in the
network meta-analysis of blood pressure-lowering agents,
discussed in the introduction section. This happened be-
cause many researchers reduce model complexity by using
a simplified specification of the random-effects model with
a common heterogeneity variance, instead of directly using
the network meta-analysis model specified in Equation (2).

Modeling the heterogeneity variances and covariances is
an important issue in the random-effects network meta-
analysis model (2). The difficulty arises from the fundamen-
tal relationship of the relative effects, δihk = δi�k − δi�h,
so the heterogeneity standard deviations are constrained by
the triangular inequality

(8) |σ�h − σ�k| ≤ σhk ≤ |σ�h + σ�k|.

In the history of network meta-analysis, treatment compar-
isons were originally assumed to share a common hetero-
geneity variance (i.e., σ2

hk = σ2 for all h and k), so that the
triangular inequality (8) trivially holds [19, 32, 29]. Also,
the correlations between the treatment comparisons, i.e.,
γbhk in Equation (2), were assumed to be 0.5 for conceptual
and technical simplicity. In fact, these assumptions were de-
rived under conditions that are fairly unrealistic from an
arm-based viewpoint: in all studies, treatment-specific un-
derlying effects θi1, . . . , θiK are mutually independent with
a common between-study variance τ2; consequently,

Var(δihk) = Var(θik − θih) = 2τ2

and

Corr(δi�k, δi�h) =
Cov(θik − θi�, θih − θi�)√

2τ2 · 2τ2
=

Var(θi�)

2τ2
= 0.5
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for all 1 ≤ h �= k �= � ≤ K. These assumptions have been
widely applied in many applications (e.g., Cipriani et al. [5],
Trelle et al. [47], and Khera et al. [24]), even though they
impose a strong constraint on the treatment comparisons,
which may be unrealistic [2]. Lu and Ades [31] relaxed these
assumptions to allow different heterogeneity variances and
correlations as in Equation (2), but this method has been
seldom used so far because of its complexity.

Under the assumption of equal heterogeneity variances,
the decomposition of the joint posterior distribution pro-
duced by the network meta-analysis in Equations (6) and
(7) is no longer valid. We have the following proposition.

Proposition 6. For a treatment network without evidence
cycles, the random-effects network meta-analysis model (2)
with equal heterogeneity variances σ2

bk = σ2 is equivalent
to simultaneously performing the random-effects pairwise
meta-analyses (1) for studies Sj conditional on the common
heterogeneity variance σ2.

The pairwise meta-analyses in Proposition 6 may not be
deemed separate, because each pairwise meta-analysis uses
the common heterogeneity variance σ2, which is informed by
all studies S instead of the study set Sj for a specific treat-
ment contrast. Although the random-effects network meta-
analysis can therefore produce different results from sepa-
rate random-effects meta-analyses that have no constraints
on the heterogeneity variances σ2

bk, Proposition 6 implies
that these differences are caused entirely by the specification
of heterogeneity variances if the treatment network does not
contain evidence cycles.

4. NUMERICAL STUDIES

4.1 Simulations

We conducted simulations to illustrate the important role
of evidence cycles in network meta-analyses. The outcome
was assumed to be continuous and normally distributed,
and each treatment’s outcome measure yik and its within-
study standard error ξik were observed. The situation of a
binary outcome will be explored in a real data analysis in
Section 4.2. We simulated data containing five treatments
with four network shapes, shown in Figure 1. Shapes 1–3 do
not contain cycles: Shape 1 is a star-shaped network with
its center at treatment 1; Shape 2 is a chain-shaped network
with treatment contrasts from 2 vs. 1 to 5 vs. 4; and Shape 3
is more general than the star and chain shapes. In each of
Shapes 1–3, four treatment contrasts are observed and form
a set of basic parameters eb; these treatment contrasts are
reported in 5, 10, 15, or 20 studies, as described in Figure 1,
so each network contains a total of 50 studies. Compared
with Shape 3, Shape 4 contains 10 further studies of treat-
ment contrast 5 vs. 1, so treatments 1, 2, and 5 form an
evidence cycle.

To simulate the outcome measures, we first generated
samples for all five treatments in each study, and then

omitted certain treatment arms to create networks with
the shapes in Figure 1; the omitted data were assumed
to be missing completely at random. Specifically, the
five treatments’ within-study standard errors were drawn
from ξik ∼ U(0.1, 1) for treatment k in study i. The
observed treatment-specific outcome measure was gener-
ated from yik ∼ N(θik, ξ

2
ik), where θik represents the

underlying true measure of treatment effect. The study-
specific true measures were drawn from (θi1, . . . , θi5)

T ∼
N((θ1, . . . , θ5)

T ,Ψ), where θk represents the overall mean of
treatment k (k = 1, . . . , 5), and Ψ represents the between-
study variance-covariance matrix. Note that although the
data were simulated based on treatment arms, they also
met the assumptions in the meta-analysis models in Equa-
tions (1), (2), (4), and (5), which are contrast-based: the
true relative effect of treatments k vs. h was dhk = θk − θh
and the study-specific baseline effects followed normal dis-
tributions. We set θk = k and Ψ = DRD, where R = (ρhk)
was the correlation matrix with ρkk = 1 and ρhk = 0.4
(1 ≤ h �= k ≤ 5), and the between-study standard devi-
ations D = diag(τ1, . . . , τ5) were sampled in three cases:
(i) all studies were homogeneous with τk = 0; (ii) all
treatments had a common heterogeneity standard devia-
tion τk = τ with τ ∼ U(1, 1.5); and (iii) the five treat-
ments had different heterogeneity standard deviations with
τk ∼ U(0.4k − 0.4, 0.4k) for k = 1, . . . , 5. Finally, certain
treatments in certain studies were randomly omitted to pro-
duce networks with Shapes 1–4. For example, in the network
with Shape 1, treatments 3–5 were omitted in five studies,
so these five studies compared treatments 2 vs. 1.

For each network shape, 1000 replicates of the network
data were generated; for each replicate, the Markov chain
Monte Carlo algorithm was applied to implement the net-
work and pairwise meta-analyses using one chain, which con-
tained a run of 50,000 iterations after a 20,000-update burn-
in period. For both the network and pairwise meta-analyses,
three model settings were considered: a fixed-effects model, a
random-effects model with different heterogeneity variances,
and a random-effects model with a common heterogene-
ity variance. Vague priors were used for the study-specific
baseline effects and the basic parameters; U(0, 10) priors
were used for the heterogeneity standard deviations in the
random-effects models. When the random-effects network
meta-analysis with different heterogeneity variances was ap-
plied to the simulated data with Shape 4, due to the triangu-
lar inequality constraint (8), the prior of the heterogeneity
standard deviation σ15 for the contrast 5 vs. 1 was set to
U(|σ12 − σ25|, σ12 + σ25) as suggested by Lu and Ades [30].
The models’ performance was evaluated according to biases
and mean squared errors of the estimated relative effects
and coverage probabilities of the 95% CIs.

Table 1 presents the results for some treatment contrasts
for Case (iii) of the between-study standard deviations; the
simulation results for Cases (i) and (ii) are in Tables S1 and
S2 in the Supplementary Materials. Of note, the pairwise
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Table 1. Biases (outside brackets), mean squared errors (inside parentheses), and 95% credible interval coverage probabilities
(%, inside square brackets) of some estimated relative effects produced by network and pairwise meta-analyses in simulations.

The data were simulated using different heterogeneity standard deviations for different treatment contrasts

Network Treatment Network meta-analysis Pairwise meta-analysis
shape contrast FE RE1 RE2 FE RE1 RE2

Shape 1 d12 −0.03 −0.03 −0.02 −0.03 −0.03 −0.02
(0.21) (0.20) (0.20) (0.21) (0.20) (0.20)
[81] [99] [100] [81] [99] [100]

d15 0.03 0.03 0.03 0.03 0.03 0.03
(0.35) (0.18) (0.18) (0.35) (0.18) (0.18)
[41] [96] [92] [40] [95] [92]

d23 0.02a 0.02 0.02 0.02a 0.02 NA
(0.43) (0.35) (0.35) (0.43) (0.35)
[73] [99] [100] [73] [99]

d45 0.04a 0.03 0.03 0.04a 0.03 NA
(0.59c) (0.31) (0.31) (0.59c) (0.31)
[44] [97] [95] [44] [97]

Shape 2 d12 −0.02 −0.03 −0.02 −0.03 −0.03 −0.02
(0.21) (0.20) (0.20) (0.21) (0.20) (0.21)
[82] [99] [100] [81] [99] [100]

d13 −0.01a −0.02 −0.01 −0.03a −0.02 NA
(0.42) (0.35) (0.36) (0.42) (0.35)
[76] [99] [100] [75] [99]

d15 −0.01b −0.03a −0.02a −0.03b −0.02a NA

(1.09d) (0.73d) (0.74d) (1.09d) (0.73d)
[63] [99] [98] [62] [99]

d45 0.02 0.02 0.02 0.02 0.02 0.02
(0.37) (0.18) (0.18) (0.37) (0.18) (0.18)
[37] [96] [92] [36] [96] [92]

Shape 3 d12 −0.02 −0.03 −0.03 −0.03 −0.03 −0.02
(0.21) (0.20) (0.21) (0.21) (0.20) (0.21)
[82] [99] [100] [81] [99] [100]

d13 −0.02a −0.02 −0.02 −0.03a −0.02 NA
(0.42) (0.35) (0.37) (0.42) (0.35)
[75] [99] [100] [75] [99]

d15 −0.01a −0.02a −0.02a −0.02a −0.02a NA
(0.63c) (0.44) (0.44) (0.63c) (0.43)
[62] [99] [99] [61] [99]

d45 0.02 0.02 0.02 0.02 0.02 0.02
(0.37) (0.18) (0.18) (0.37) (0.18) (0.18)
[37] [96] [92] [36] [96] [92]

Shape 4 d12 −0.03 −0.01 −0.01 −0.03 −0.03 −0.03
(0.37) (0.16) (0.21) (0.21) (0.20) (0.21)
[51] [97] [98] [81] [99] [100]

d13 −0.03a −0.01 0.00 NA NA NA
(0.56c) (0.31) (0.37)
[58] [97] [98]

d15 −0.01a 0.00 0.00 0.01a 0.01 0.00

(0.41c) (0.21) (0.23) (0.63d) (0.38) (0.38)
[45] [96] [95] [45] [96] [92]

d45 0.02 0.02 0.02 0.02 0.02 0.02
(0.37) (0.18) (0.18) (0.37) (0.18) (0.18)
[36] [96] [93] [36] [96] [93]

FE, fixed-effects model; RE1, random-effects model with different heterogeneity variances for different treatment contrasts; RE2, random-effects model

with a common heterogeneity variance; NA, not applicable; dhk, treatment k compared with h. Monte Carlo standard error of bias: a, 0.02–0.03; b,

0.03–0.04; otherwise, less than 0.02. Monte Carlo standard error of mean squared error: c, 0.02–0.03; d, 0.03–0.05; otherwise, less than 0.02. Monte

Carlo standard errors of all coverage probabilities are less than 2 percentage points.
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random-effects meta-analyses with a common heterogeneity
variance could not use direct comparisons to impute the in-
direct comparisons d23 and d45 in the simulated networks
with Shape 1 and d13 and d15 in those with Shapes 2 and
3, because the common heterogeneity variance introduced
potential correlations between the results of the direct com-
parisons. Also, for the simulated networks with Shape 4,
due to the presence of the evidence cycle consisting of treat-
ments 1, 2, and 5, all three pairwise meta-analyses could not
estimate the indirect comparison d13. Consequently, the re-
sults of these comparisons are not in Table 1 and Tables S1
and S2.

Because the treatments were missing completely at ran-
dom in all cases, each model produced nearly unbiased point
estimates for each treatment contrast. In Case (i), where the
treatment effects were homogeneous across studies, using
either pairwise or network meta-analysis for all four net-
works in Figure 1, both the fixed- and random-effects mod-
els produced estimated relative effects with similar mean
squared errors. Also, the fixed-effects model led to CI cov-
erage probabilities that were fairly close to the nominal
level 95%, while the two random-effects models produced
slightly inflated coverage probabilities, indicating that their
95% CIs were wider than the fixed-effects model. However,
in Cases (ii) and (iii), due to the presence of heterogeneity,
the fixed-effects model led to very poor CI coverage proba-
bilities, while those produced by the random-effects models
were generally satisfactory; the mean squared errors pro-
duced by the fixed-effects model were also larger than those
of the random-effects models. Moreover, in Case (iii), the
true heterogeneity variances τ2k differed across treatments,
while the second random-effects model incorrectly assumed
the τ2k ’s were equal. Interestingly, the results produced by
this random-effects model were fairly similar to those pro-
duced by the correct random-effects model assuming differ-
ent heterogeneity variances, although the incorrect model
had a slightly low CI coverage probability for the treatment
contrast d15 in the network with Shape 1 and d45 in the
networks with Shapes 2–4. Most importantly, for the sim-
ulated networks with Shapes 1–3 without any evidence cy-
cles, the pairwise meta-analysis produced effect estimates
with biases, mean squared errors, and CI coverage proba-
bilities almost identical to those produced by the network
meta-analysis, with some slight differences due to Monte
Carlo error. Therefore, the network meta-analysis did not
improve the effect estimates compared with the pairwise
meta-analysis, consistent with Propositions 2, 3, and 6. For
the simulated networks with Shape 4 that contained one
evidence cycle of treatments 1, 2, and 5, the results of the
treatment contrast 5 vs. 4 (which was not in any evidence
cycle) produced by the network and pairwise meta-analyses
were almost identical, while the results of d12 and d15 (which
were in the evidence cycle) produced by the network and
pairwise meta-analyses were noticeably different. These re-
sults are consistent with Proposition 5.

4.2 Real data analysis

In addition to the simulations, we applied the network
and pairwise meta-analyses to the data collected by Trikali-
nos et al. [49], consisting of 63 studies of four treatments
for non-acute coronary artery disease. All studies were two-
armed. We indexed the treatments as (1) medical therapy;
(2) percutaneous transluminal balloon coronary angioplasty;
(3) bare-metal stents; and (4) drug-eluting stents. The out-
come was the number of deaths due to the disease in each
treatment group, which was assumed to follow a binomial
distribution. The complete data are available in Table S3 in
the Supplementary Materials. We used the logit link func-
tion for the network and pairwise meta-analyses, so the over-
all relative effects produced by these models were log odds
ratios comparing pairs among the four treatments. Also, in
the network meta-analysis, the treatment with the smallest
index in each study was used as the baseline.

Figure 2 presents the treatment network; we refer to this
as the full network. The full network had one evidence cy-
cle, while the treatment comparison 4 vs. 3 was acyclic as
it was not contained in any cycles. To illustrate the per-
formance of the network meta-analysis model in a network
without evidence cycles, we removed the four studies that
directly compared treatments 3 vs. 1 from the complete
data; the remaining studies led to a chain-shaped network
without cycles, which we call the reduced network. Network
and pairwise meta-analyses were applied to both the full
and reduced networks. In the network meta-analysis model,
eb = (d12, d23, d34)

T was chosen as the set of basic param-
eters; thus, ef = (d13, d14, d24)

T was the set of functional
parameters. As in Section 4.1’s simulations, the three model
settings were considered and vague normal priors were as-
signed to the study-specific baseline effects and the basic pa-
rameters. In the random-effects models, U(0, 10) priors were
used for the heterogeneity standard deviations σ12, σ23, and
σ34. When the random-effects network meta-analysis with

Figure 2. Network of four treatments on non-acute coronary
artery disease. Treatment IDs: (1) medical therapy; (2)

percutaneous transluminal balloon coronary angioplasty; (3)
bare-metal stents; and (4) drug-eluting stents.
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Table 2. Log odds ratios (95% credible intervals) comparing the four treatments for non-acute coronary artery disease

Network meta-analysis Pairwise meta-analysis
LOR FE RE1 RE2 FE RE1 RE2

Full network:
d12 −0.07 −0.16 −0.12 −0.21 −0.29 −0.29

(−0.31, 0.17) (−0.65, 0.32) (−0.58, 0.28) (−0.52, 0.09) (−1.06, 0.30) (−0.84, 0.20)
d13 −0.11 −0.24 −0.22 −0.04 0.00 −0.01

(−0.31, 0.08) (−0.91a, 0.25) (−0.73, 0.20) (−0.26, 0.18) (−2.06c, 2.64c) (−0.65, 0.73)
d14 −0.03 −0.22 −0.19 NA NA NA

(−0.49, 0.42) (−1.10a, 0.50a) (−0.98, 0.46)
d23 −0.05 −0.10 −0.10 −0.21 −0.22 −0.21

(−0.29, 0.20) (−0.58, 0.34) (−0.47, 0.25) (−0.53, 0.11) (−0.81, 0.34) (−0.62, 0.19)
d24 0.03 −0.07 −0.07 NA NA NA

(−0.45, 0.52) (−0.83a, 0.60) (−0.75, 0.54)
d34 0.08 0.04 0.03 0.08 0.04 0.03

(−0.33, 0.49) (−0.56a, 0.53) (−0.52, 0.54) (−0.33, 0.50) (−0.55, 0.53) (−0.53, 0.55)

Reduced chain-shaped network:
d12 −0.21 −0.29 −0.31 −0.21 −0.29 −0.30

(−0.51, 0.09) (−1.03b, 0.31a) (−0.91, 0.24) (−0.52, 0.09) (−1.06, 0.30) (−0.91, 0.24)
d13 −0.42 −0.52 −0.52 −0.42 −0.53 −0.51

(−0.86, 0.03) (−1.41b, 0.31a) (−1.26, 0.17) (−0.86, 0.02) (−1.47, 0.30) (−1.26, 0.17)
d14 −0.34 −0.49a −0.51 −0.34 −0.49 −0.50

(−0.95, 0.27) (−1.55b, 0.46a) (−1.48a, 0.36) (−0.95, 0.27) (−1.60, 0.48) (−1.48, 0.35)
d23 −0.21 −0.22 −0.21 −0.21 −0.22 −0.21

(−0.53, 0.11) (−0.80, 0.34) (−0.64, 0.21) (−0.53, 0.11) (−0.81, 0.34) (−0.65, 0.21)
d24 −0.13 −0.19 −0.20 −0.13 −0.18 −0.20

(−0.66, 0.40) (−1.00a, 0.56) (−0.94, 0.49) (−0.66, 0.40) (−1.02, 0.56) (−0.94, 0.48)
d34 0.08 0.04 0.01 0.08 0.04 0.01

(−0.34, 0.50) (−0.55a, 0.53) (−0.58, 0.55) (−0.33, 0.50) (−0.55, 0.53) (−0.58, 0.55)

LOR, log odds ratio; FE, fixed-effects model; RE1, random-effects model with different heterogeneity variances for different treatment contrasts; RE2,

random-effects model with a common heterogeneity variance; NA, not applicable; dhk, treatment k compared with h. Monte Carlo standard error: a,

0.01–0.02; b, 0.02–0.03; c, 0.06–0.07; otherwise, less than 0.01.

different heterogeneity variances was applied to the full net-
work, the prior of σ13 was set to U(|σ12 − σ23|, σ12 + σ23).
Three chains were used to implement the network and pair-
wise meta-analyses via Markov chain Monte Carlo; each
chain contained a run of 100,000 iterations after a 100,000-
update burn-in period.

Table 2 presents the median overall log odds ratios of
all treatment contrasts with their 95% CIs. When pairwise
meta-analysis was applied to the full network, estimation of
the indirect comparisons d14 and d24 was not possible with-
out further assumptions due to unknown correlations be-
tween the separate estimated effects of d12, d13, d23, and d34;
however, this problem was not present in the reduced net-
work without cycles, as shown in Proposition 2. The poten-
tial scale reduction factors [14] of all traced parameters were
much smaller than 1.05, indicating that the Markov chains
had been stabilized; also, the convergence of the chains was
checked using trace plots. In addition, we assessed the Monte
Carlo standard errors of the point and interval estimates
using the R package “mcmcse” [13] for the Markov chains.
Most results had Monte Carlo standard errors much less

than 0.01; those with standard errors greater than 0.01 are
noted in Table 2.

For the reduced chain-shaped network, under each model
setting, the network and pairwise meta-analyses produced
nearly the same estimates of log odds ratios for all six treat-
ment contrasts. Most differences between the two models
were no more than 0.01 in absolute magnitude for point es-
timates and lower/upper bounds of 95% CIs, and they were
due to Monte Carlo errors. These results were consistent
with the propositions in Section 3. When the network meta-
analysis was applied to the full network, Table 2 shows that
the estimated overall log odds ratios of the basic parameters
d12 and d23 differed from those using the reduced network;
thus, d13, d14, and d24, which were functions of the basic
parameters d12 and d23, also differed from their results us-
ing the reduced network. Recall that the reduced network
only removed four studies that compared treatments 3 vs. 1.
However, two of the four studies enrolled more than 1000 pa-
tients in each of their treatment groups, and they were the
largest two among all 63 studies in the full network; see Ta-
ble S3 in the Supplementary Materials. Thus, the removal of
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these large studies caused the large differences noted above.
Nevertheless, since the treatment contrast 4 vs. 3 was not
contained in any evidence cycles, the estimated overall log
odds ratio of d34 was nearly the same when the network
meta-analysis was used for the full and reduced networks
under both the fixed-effects setting and the random-effects
setting with different heterogeneity variances. This is con-
sistent with Proposition 5. When all treatment contrasts
were assumed to have a common heterogeneity variance, the
95% CI of the log odds ratio for d34 using the reduced net-
work slightly differed from that using the full network. This
change arose because the estimate of d34 partly depended on
the estimated heterogeneity variance, which was influenced
by the removal from the full network of the four studies that
compared treatments 3 vs. 1.

5. DISCUSSION

For treatment comparisons that are not in evidence cy-
cles, the equivalence of pairwise and network meta-analyses
is rarely observed in applications, even if the results from
both types of meta-analyses are reported. As we have illus-
trated above, one reason is that most articles implemented
the network meta-analysis model with a common hetero-
geneity variance for all treatment comparisons, while the
separate pairwise meta-analyses used different heterogene-
ity variances for each comparison. Many researchers have
adopted the assumption of a common heterogeneity vari-
ance in applications, but this assumption is seldom exam-
ined. This problem basically involves the tradeoff between
goodness-of-fit and model complexity, which may be as-
sessed using the deviance information criterion [46]. Assum-
ing a common heterogeneity variance for all comparisons
in the network meta-analysis may effectively reduce model
complexity and avoid over-fitting. However, this assumption
may lead to too-narrow 95% CIs with poor coverage, espe-
cially for some comparisons that are supported by only a
few studies. Also, some network meta-analyses (e.g., Chen
et al. [4]) contain many insufficiently-compared treatments;
a comparison may be directly given by only one study and
not be in any cycles. Because such a comparison is entirely
informed by one source of direct evidence from a single
study and there is nothing else to be synthesized, it may
be inappropriate to perform a random-effects meta-analysis
and make the strong assumption of a common heterogeneity
variance.

In addition to the foregoing popular but possibly un-
realistic assumption, using inconsistent analysis methods
can also cause differences between pairwise and network
meta-analyses in the absence of evidence cycles. Instead
of the Bayesian hierarchical model in Equation (1) or (4),
frequentist methods (e.g., the inverse-variance fixed-effect
model, the DerSimonian–Laird random-effects model [7], or
Hartung–Knapp–Sidik–Jonkman method [15, 44, 22, 23])

currently dominate pairwise meta-analyses, possibly be-
cause they can be easily implemented using various statis-
tical software [50, 37]. For example, Cipriani et al. [6] con-
ducted a Bayesian network meta-analysis using WinBUGS,
while performing pairwise meta-analyses using frequentist
methods in Stata. Therefore, when reporting results from
both pairwise and network meta-analyses, researchers are
encouraged to use consistent analysis methods, such as the
Bayesian models in Equations (1) and (2) or frequentist pair-
wise and network meta-analysis methods [38]. By doing so,
the benefit of network meta-analysis can be accurately re-
flected in the differences between the results from pairwise
and network meta-analyses.

This article indicates that evidence cycles are critical for
a network meta-analysis to improve the effect estimates and
outperform separate pairwise meta-analyses. Such improve-
ment depends strongly on the evidence consistency assump-
tion (3) for each cycle, which effectively reduces the degrees
of freedom of the total of (K−1)K/2 treatment comparisons
dhk (1 ≤ h < k ≤ K). However, each cycle potentially suf-
fers from evidence inconsistency [30, 11], which is caused by
a discrepancy among the treatment comparisons within ev-
idence cycles. By using inconsistency factors w for evidence
cycles to deal with this problem, the degrees of freedom of
the treatment contrasts increases, and the power of the net-
work meta-analysis is accordingly reduced. In other words,
researchers must accept a greater risk of evidence inconsis-
tency to gain more power from a network meta-analysis.

In summary, the number of evidence cycles is a critical
factor for journal editors and reviewers to evaluate network
meta-analyses. Although the assumption of a common het-
erogeneity variance has been frequently used in practice,
researchers should carefully examine this assumption be-
cause it may be unrealistic and lead to incorrect conclu-
sions in some cases. Also, when performing a network meta-
analysis using Bayesian methods, researchers should com-
pare its results with those produced by Bayesian pairwise
meta-analyses, instead of using frequentist pairwise meta-
analysis methods.

SUPPLEMENTARY MATERIALS

Proofs of the propositions in Section 3, additional sim-
ulation results, and data for the case study in Section 4.2
are available in the Supplementary Materials (http://
intlpress.com/site/pub/files/ supp/sii/2020/0013/0004/
SII-2020-0013-0004-s001.pdf).

Received 2 November 2018
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