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Small-study effects: current practice and
challenges for future research
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Meta-analyses and systematic reviews are highly valued
as evidence for clinical decision- and policy-making. How-
ever, inference in these settings may be invalid if the studies
do not come from the same underlying distribution. Small
study effects is one form of heterogeneity that can lead to
biased estimates, particularly if it arises due to the selec-
tive publishing of studies, a phenomenon known as publi-
cation bias. In this paper we discuss landmark methods for
diagnosing the presence of small-study effects and correct-
ing for them, as well as the limitations of each method. We
also identify ongoing challenges and key areas in need of
methodological innovation.
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1. INTRODUCTION

Meta-analyses and systematic reviews synthesize results
from individual trials and provide a strong source of evi-
dence for treatment evaluation and clinical decision-making.
A key assumption for valid inference in meta-analysis is that
the component study estimates represent a random sam-
ple from a common, symmetric distribution centered on the
true treatment effect. Random variability about this mean
does not constitute a violation of this assumption, however
heterogeneity that is tied to intrinsic study characteristics
such as patient demographics, experimental design or results
can lead to bias in the summary treatment effect estimate.
The phenomenon whereby estimates from smaller studies in-
cluded in a meta-analysis are on average different, and often
further from the null, compared to those from larger studies
is termed “small-study effects” (SSE) [69].

SSE may arise from a variety of sources. A particularly
concerning and well-known cause of SSE is the selective pub-
lishing of studies based on the significance or favorability of
results, an issue known as ‘publication bias’. This leads to
an incomplete and biased evidence-base for inference and
decision making. Because smaller studies require a larger
treatment effect to achieve statistical significance, publica-
tion bias often manifests as SSE. However, SSE may also be
due to differences in the design and conduct of smaller tri-
als compared to larger studies. For example, smaller studies
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may enroll high-risk populations that are more responsive
to treatment [31]. They may also implement the interven-
tion more carefully than larger, multicenter trials [19], re-
sulting in larger treatment effects. On the other hand, small
trials are more likely to be of lower methodologic quality
(eg. inadequate allocation concealment and blinding) and
produce exaggerated effect estimates [58, 39]. Furthermore,
the choice of effect-measure used may be inherently corre-
lated with precision and therefore study size, inducing SSE
[49]. Understanding the source of SSE in a meta-analysis
is important for knowing how to address it. While some
sources of SSE may be dealt with through transformation
of the outcome variable or subgroup analysis to improve
generalizability of results, publication bias is a missing-not-
at-random problem and therefore requires assumptions re-
garding the missing studies in order to correct for it. Fur-
thermore, distinguishing SSE from other sources of hetero-
geneity or chance variability of studies can be difficult.

In this paper we provide an overview of popular ap-
proaches to handling SSE. A number of methods have been
developed for detecting and correcting for SSE that fall un-
der two predominant categories: graph-based methods (in-
cluding visual inspection, statistical testing and regression
of plotted study estimates) and weighted distribution meth-
ods, also known as selection models. As we will discuss in
this paper, many of the more commonly used graphical ap-
proaches, while having improved the quality and interpreta-
tion of meta-analyses in the last 30 years, can be limited in
their ability to distinguish between sources of SSE, as well as
disentangle SSE from random or explainable heterogeneity.
Selection models overcome some of the limitations of graph-
based approaches but may be more difficult to implement.
An overview of the most well-known methods has previously
been provided by Rücker et al. [53], followed by a chapter in
the educational text Meta-Analysis with R [62]. In addition
to discussing these landmark methods for SSE, we seek to
provide an updated review including recent developments,
particularly in the area of selection models, as well as di-
rections for future work. In Section 1 we give an overview
of select graph-based approaches to SSE, along with a dis-
cussion of their strengths and weaknesses. In Section 2 we
offer a similar review of selection models for publication bias.
Finally, in Section 3 we draw attention to more recent meth-
ods as well as new frontiers and challenges/opportunities for
methods development in SSE.
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Figure 1. Simulated funnel plots with (a) no SSE present and
(b) SSE present.

2. GRAPH-BASED EVALUATION OF SSE

2.1 Graphing of study results

Graph-based methods to detect the presence of SSE in
meta-analyses look for an association between effect size and
precision among the component studies. This is most clearly
illustrated in the funnel plot, which is also one of the most
commonly used visualization methods among investigators.
First introduced by Light and Pillemer [41], the funnel plot
is a scatter plot of individual study estimates against the
inverse of their standard errors. Since larger studies have
greater precision, the estimates at the top of the plot will
scatter more closely around the mean than those at the bot-
tom, leading to an inverted funnel shape. In the absence of
any SSE, the estimates should be scattered symmetrically
about the center of the plot, as in Figure 1(a). However,
when SSE are present we expect to see the smaller studies
scatter around a mean that is different from the larger stud-
ies (see Figure 1(b)), with empty space on one side of the
funnel plot. This leads to an asymmetric pattern trending
away from the mean as precision decreases.

Another graphical tool is Galbraith’s radial plot [21],
which plots standardized treatment effects (z scores) on the
y-axis against the inverse of their standard errors on the x-
axis. In the absence of SSE, the individual estimates should
be scattered randomly above and below a regression line
with zero-intercept and slope equal to the overall effect-size
from a fixed-effect model (see Figure 2(a)). In the presence

Figure 2. Simulated radial plots with (a) no SSE present and
(b) SSE present.

of SSE, the true intercept for the data will be away from
the origin. As Figure 2(b) shows, in the presence of SSE,
the points are no longer scattered symmetrically about this
line, and the true intercept may be closer to z = 1. Fur-
thermore, the estimated treatment effect represented by the
slope is > 0, while the true effect is 0. A regression line with
intercept closer to 1 will have an attenuated slope, reflecting
a treatment effect closer to the truth. Note that the asym-
metry about the zero-intercept line in Figure 2(b))is similar
to the asymmetry about the vertical line in Figure 1(b).

Though certainly useful as visual tools for preliminary
assessment of SSE, these plots are often misinterpreted un-
der subjective evaluation, particularly when fewer than 10
studies are included in a meta-analysis [64]. One empirical
evaluation study found that respondents correctly identified
asymmetry in only 52.5% of simulated funnel plots on av-
erage, as funnel plots could appear asymmetric by chance
even in the absence of publication bias, and the existence
of publication bias may lead to only small levels of asym-
metry [71]. Furthermore, the plots are limited in helping
to distinguish between possible sources of asymmetry [70].
For example, treatment effects based on dichotomous out-
comes, such as odds ratios, are inherently correlated with
measures of precision, since the variance is a function of the
mean. Sterne et al. [69] showed that in such cases, funnel
plot asymmetry may be present even in the absence of pub-
lication bias. Furthermore, subgroup effects are often mis-
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interpreted as asymmetry, when in fact the study estimates
are forming symmetric funnel shapes about different means
[71, 51]. Plotting results within subgroups defined by study-
level covariates can therefore aid in interpretation. Overall
the funnel plot remains a useful and common tool for pre-
liminary evaluation.

2.2 Testing approaches for SSE

Hypothesis tests have been developed to provide greater
objectivity for graphical evaluation, formally assessing the
evidence for asymmetry beyond random chance. Consider
a meta-analysis of K studies seeking to estimate the true
treatment effect θ. Each of theK studies reports an estimate
of θ, denoted as yk, and standard error, sk, k = 1, . . . ,K. If
SSE are present, then we expect there to be an association
between yk and sk. Begg’s rank correlation statistic [2, 3]
formally tests for this through a nonparametric measure of
correlation (based on Kendall’s tau) between the standard-
ized deviates {(yk − ȳ)/s∗k} and {sk} (or equivalently, study
size nk), where ȳ is the weighted average of the treatment

effect estimates and (s∗k)
2 = s2k − (

∑K
j=1 1/s

2
j )

−1. Another,
parametric regression test was proposed by Egger [19]. Hav-
ing similar intuition to the radial plot, it tests for association
through the intercept term in the model

E[yk/sk] = β0 + β11/sk

H0 : β0 = 0 corresponds to a regression line through
the origin of the radial plot. The greater the association be-
tween observed treatment effects and their standard errors,
the farther above or below the origin the line moves. Thus a
rejection of H0 would offer evidence in support of SSE being
present. Egger’s test is the second most widely used assess-
ment tool for SSE, second only to the funnel plot [22, 48].
Both offer an intuitive, user-friendly means of investigating
the quality of meta-analytic samples. However, as with the
funnel plot, its use can be limited or misinterpreted in cer-
tain settings. Egger’s test and Begg’s test have been shown
to have low power to detect publication bias when the num-
ber of studies is small [69, 19, 20]. Furthermore, since these
are tests for the association between treatment effects and
standard errors, they have inflated type 1 error when binary
outcomes are used [69, 59, 50], particularly if the event is
rare and/or the true treatment effect is large.

In light of these limitations, alternative tests have been
proposed for binary outcome data. Macaskill et al. [43] and
Peters et al. [50] presented modifications to Egger’s test,
in which the log odds ratios are either regressed against
the study sample size (nk) or the inverse of the sample size
(1/nk) respectively, with weights equal to the inverse of the
pooled variance. In doing so they avoid the correlation in-
duced by binary outcome measures, therefore having the
appropriate false-positive rates and allowing for some dis-
tinction between SSE due to choice of outcome and other
possible causes. However, Macaskill’s test has been shown to

have lower power compared to Egger’s test [43]. Other mod-
ifications for binary outcome data include Harbord’s score-
based test, where the variance measure depends only on the
marginal totals from a study’s 2x2 table [24], Schwarzer’s
rank-correlation test [60], and Rücker’s tests [54] based on
the variance-stabilizing arcsine transformation. Among the
aforementioned testing methods, Egger’s and Peter’s tests
were found to have the greatest power, while Harbord’s and
Peter’s tests best maintained type 1 error [54]. However, a
more recent study involving over 5,000 meta-analyses from
Cochrane reviews showed substantial loss of power for p-
value based methods (including Egger’s, Harbord’s, Peter’s
and Begg’s tests) when the median number of studies de-
creased from large to moderate [20].

Another consideration is that the tests have inflated type
1 error and decreased power when between-study hetero-
geneity (represented by τ2 in random-effects models) in-
creases. To help address this, Thompson and Sharp ex-
tended Egger’s test [73] and Rücker’s test (for binary out-
comes) to allow for heterogeneity through a multiplicative
overdispersion error term [73, 54, 70]. However, they may
be slightly conservative and lack power to detect SSE if τ2

is in fact small. Attempts have also been made to account
for the explainable portion of heterogeneity and distinguish
it from residual (or unexplained) heterogeneity by including
observed study-level covariates in extended versions of the
regression tests [51]. However, their performance was limited
if both explainable and residual heterogeneity were present.
An alternative approach is to perform tests for SSE within
subgroups, particularly if differential publication bias is sus-
pected, however this would significantly reduce the sample
size used for each test [51].

2.3 Correcting for SSE

In addition to testing procedures, bias correction meth-
ods have been developed in this area. Natural extensions
of the regression-based tests (including Egger’s, Harbord’s
and Peter’s tests) have been proposed to adjust for publica-
tion bias/SSE [46]. By extrapolating the regression lines to
a study of infinite sample size (or zero standard error), ac-
cording to the principle of funnel plot symmetry, this study
will be centered on the true mean adjusting for SSE. The
‘Trim-and-Fill’ method is another approach based on fun-
nel plot symmetry that was proposed by Duval and Tweedie
[16, 17]. This iterative algorithm involves rank-based estima-
tion of the number of missing studies according to asymme-
try patterns about the mean effect, followed by a ‘trimming’
of the most extreme observed studies and replacement with
imputed values to improve symmetry. Though simple and
easy to implement, this nonparametric approach has been
shown to be sensitive to outliers, leading to inflated standard
errors and conservative inference [61].

Both trim-and-fill and Moreno’s adjustment methods are
subject to the same limitations of funnel plots, leading to
spurious adjustment and poor coverage probabilities in the
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presence of between-study heterogeneity [72, 46]. As with
testing, if subgroup effects are suspected that can be ex-
plained through study-level variables, a more appropriate
method for bias correction would be subgroup analysis or, if
the variables are continuous, meta-regression adjusting for
study-level covariates, with studies weighted by the inverse
of their variances. Meta-regression may also include random-
effects to account for residual heterogeneity [73, 68]. How-
ever, this may not be feasible in small samples.

3. PUBLICATION BIAS AS A MISSING
DATA PROBLEM AND SELECTION

MODELS

3.1 p-value based selection models

As an alternative to the more general assessment of SSE
through graph-based approaches, selection models focus on
publication bias by explicitly characterizing the probability
of study selection into meta-analyses as a function of the
significance of study results [75, 9, 8]. Hence they are also
known as ‘weighted distribution’ models. The formulation
typically consists of an outcome model describing the dis-
tribution of effect estimates in all studies ever conducted
(corresponding to a standard meta-analysis of the complete
data), and a second latent model outlining the selection pro-
cess.

Most formulations of selection models relate publication
probability to the p-value of a study and critical value for
significance, α, ranging from a fully deterministic framework
whereby studies are published if and only if p ≤ α [40, 25],
to more gradual weight functions based on how far the p-
value deviates above α [32], to step-weight functions defined
by ranges of p-values [15, 26]. These intuitive approaches are
particularly useful for modeling the ‘thresholding’ effect of
publication decisions, whereby study results just below crit-
ical values are more likely to be published (eg. p = 0.49
when α = 0.05) compared to those above, and these thresh-
olds become points of discontinuity in step-weight functions.
On the other hand, there can be an oversimplicity in asso-
ciating the weight functions with the p-value, which is a
combined measure of effect size and precision. For example,
if publication only depends on study precision and not effect
size, this does not constitute publication bias or SSE. Most
p-value based models also do not account for the direction
of the effect size in publication mechanisms.

More recent iterations of p-value based selection mod-
els include the p-curve [66, 67] and p-uniform methods [74]
for testing and correction of publication bias. Like Hedges’
model [25], these approaches only consider the distribution
of significant, published p-values and assume that all studies
with non-significant p-values are unpublished. p-curve offers
a test for true treatment effect in the presence of publica-
tion bias, which is equivalent to testing for right skewness
of the p-curve, or deviation from a uniform shape (which

corresponds to a null effect). p-uniform instead tests for
publication bias, assuming the distribution of p-values is
uniform conditional on the true effect size. By focusing on
the distribution of significant results as opposed to differ-
ent weight functions, estimation is made easier with these
methods. However, they rely on strong and possibly unten-
able assumptions regarding the unpublished studies, as non-
significant results also get published.

3.2 Copas’ selection model

In a series of papers [10, 9, 11, 12], Copas and colleagues
proposed a more flexible framework, allowing for selection
to depend on both the effect size and precision through sep-
arate parameters. This enables us to both account for di-
rectionality and model processes whereby larger studies are
more likely to be published irrespective of the size estimated
treatment effect. The formulation consists of a standard ran-
dom effects model for all M (M ≥ K) studies conducted in
a particular area, including those not observed in the meta-
analysis,

ym = θm + σmεm,

εm ∼ N(0, 1),

θm ∼ N(θ, τ2),

m = 1, . . . ,M ≥ K

In this formulation, each study’s estimate ym is centered
on the study-specific mean θm, which itself varies randomly
across studies with true mean equal to θ. The parameter τ2

represents the degree of heterogeneity among the studies.
The number of studies conducted will always be greater than
or equal to the number observed in the meta-analysis.

A separate model is given for the latent variable zm,
where study m is published if and only if zm > 0.

zm = a+ b/sm + δm,

δm ∼ N(0, 1),

corr(δm, εm) = ρ

The two models are related through a single correlation pa-
rameter, ρ, between their error terms εm and δm. According
to this model, ρ > 0 suggests a greater probability of selec-
tion for more positive treatment effects among studies with
similar precision, while ρ < 0 indicates selection probability
increases with more negative treatment effects. Thus the K
observed treatment effects follow a conditional distribution,
f(yk|zk > 0), where f(yk|zk > 0) = f(yk) when ρ = 0. The
selection model parameters a and b control the marginal
rate of publication. a represents the mean value of zm for a
study m with infinite variance, while b relates publication
probability to a study’s precision.

A key property is the distinction between the true within-
study variance, σ2

m = var(ym|θm) and the conditional ob-
served within-study variance, s2m, and the inclusion of the
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latter in the selection model but not the mean model. This
avoids any spurious correlation between ym and s2m due to
choice of outcome or clinical heterogeneity, as here they are
only related through the publication bias mechanism (i.e.
when ρ �= 0), unlike the regression models described in Sec-
tion 2.2.

A limitation of most selection models is the lack of data
from unobserved studies to inform estimation of the weights
or selection model parameters, and often a sensitivity anal-
ysis approach is recommended. For example, Copas and Li
[10] proposed sensitivity analysis to assess the robustness
of meta-analysis conclusions to different values of a and b,
reflecting various rates of non-publication. Given fixed val-
ues of a and b, the remaining parameters (θ, τ, ρ) can be
estimated through maximizing the profile likelihood,

La,b(θ) = max
θ,ρ,τ |a,b

L(θ, ρ, τ, a, b).

One can then assess the sensitivity of θ to varying combina-
tions of a and b. In an effort to guide the choice of the selec-
tion model parameters, Copas and Shi [11] propose choosing
a and b to reflect a range of values for the marginal proba-
bility of selection for a study with standard error s, where

P (z > 0|s, a, b) = Φ(a+ b/s)

Though intuitive to some degree, this indirect relation be-
tween probability of publication and the model parameters
can be seen as unnecessarily complex and discourages the
model’s use in practice.

Alternative solutions to sensitivity analysis have included
trading model accuracy to improve identifiability. For in-
stance, instead of stepped-wedge selection models that re-
quire estimation of weights for several ranges of the p-
value, a beta-approximation was proposed that requires
estimation of only two parameters [27, 8]. Bayesian ap-
proaches have also been developed to aid estimation of the
model parameters [23, 65]. Mavridis et al. [45] proposed a
Bayesian framework for an extended Copas model applied
to the network meta-analysis setting, which involves multi-
ple treatment comparisons. In similar fashion to Copas and
Shi’s approach to sensitivity analysis, they place priors on
P (z > 0|slarge, a, b) and P (z > 0|ssmall, a, b), rather than on
a and b directly. These quantities correspond to the proba-
bility of publication for studies with the largest and smallest
standard errors respectively in a meta-analysis. With priors
placed on the remaining model parameters, inference on the
true treatment effect can then be made using Markov Chain
Monte-Carlo (MCMC) draws from the posterior distribu-
tion, as opposed to maximizing the complex likelihood. The
use of prior knowledge in obtaining an adjusted treatment
effect makes the Bayesian approach an attractive alternative
to sensitivity analysis.

In the absence of prior information, a frequentist ap-
proach to data augmentation was proposed by Ning et al.

[47]. By incorporating the symmetry assumption of fun-
nel plots, they impute the missing counterparts to the ob-
served studies through an Expectation Maximization (EM)
algorithm, which converges to a final adjusted estimate of
the treatment effect under Copas’ model. This has shown
promising results for moderately sized meta-analyses. Its
dependence on the Copas model additionally makes it more
robust to outliers than trim-and-fill [61]. However, the incor-
poration of the symmetry assumption may be controversial
if publication bias does not necessarily induce asymmetry
among the observed studies. For example, if b = 0 in Co-
pas’ selection model, then the publication process will be
unrelated to study precision, but may still depend on the
treatment effect. Since Copas’ model also assumes marginal
independence of ym and s2m, this will induce a funnel plot
that is symmetric about a biased estimate treatment effect,
and the EM-algorithm will not lead to adjustment.

Overall, selection models may be preferred over graph-
based approaches for handling publication bias specifically.
However, as they are more sophisticated than graph-based
methods, they are less accessible and therefore not as pop-
ular. Recent developments of statistical packages such as
metasens [63] and selecMeta [55] may serve to increase
their use in practice.

4. FUTURE WORK AND DIRECTION

4.1 Outcome reporting bias (ORB)

Relative to publication bias, less attention has been given
to the selective reporting of outcomes within trials, which
can also give rise to SSE and is no less problematic [38, 29].
Evidence has shown that significant outcomes are more
likely to be fully reported compared to nonsignificant out-
comes [18], while secondary endpoints tend to be underre-
ported compared to primary endpoints [44].

An Outcome Reporting Bias in Trials (ORBIT) study
aimed to estimate the prevalence and impact of ORB on
meta-analyses for benefit outcomes [38] followed by a later
study for harm outcomes [56]. To achieve this the authors
developed a classification tool to assess the risk of ORB
when a trial is excluded from a meta-analysis. Their method
uses the information contained within the published trial re-
port, along with expert opinion, to determine whether the
absence or underreporting of the outcome is at high, low, or
no risk of being due to reporting bias on the part of the inves-
tigators. Such a risk assessment considers the likelihood that
the unreported outcome was measured and/or analyzed, in
which case the failure to report results may be due to bias
against the analyzed outcome. Separate criteria are devel-
oped for benefit and harm outcomes, since trialists are more
likely to suppress a significant harm profile, in contrast to
the preference for significant results for efficacy outcomes.
Through contacting trialists directly, they showed that the
tool had high sensitivity and specificity for detecting bias.
However, their validation assumes no response bias from the
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trialists, which would likely lead to underestimation of sen-
sitivity and overestimation of specificity [38].

Copas et al. [13] proposed a likelihood-based sensitiv-
ity analysis using the ORBIT classification system. It in-
corporates two sensitivity parameters defining the quality
of risk assessment. They include ρ1, the probability that a
measured, non-significant and unreported outcome is clas-
sified correctly as high risk, and ρ2, the probability that an
unmeasured and unreported outcome is correctly identified
as low risk. Under perfect risk assessment, ρ1 = ρ2 = 1.
Inference for θ proceeds by maximizing the profile log-
likelihood given (ρ1, ρ2). More recently they offered a sim-
plified approach under the assumption of perfect risk as-
sessment, using a modified likelihood that includes studies
with missing/underreported outcomes that were identified
as high risk by ORBIT assessment [14]. For efficacy end-
points, the underreported studies are included in the like-
lihood function through the probability that their values
are non-significant. The formulation is easily extended harm
endpoints, where the underreported studies contribute to
the likelihood through the probability that ym > 0 (i.e. the
treatment increases the risk of the adverse event).

A limitation is that the likelihood functions include σm,
the true within-study variance for study m, and this is gen-
erally not observed for unreported outcomes. The authors
propose imputing σm using the total sample size within a
study and a proportionality constant estimated using the
observed studies. This of course assumes that, on average,
the studies with reported and unreported outcomes have
similar designs.

More work is needed in this area, particularly ones that
can jointly model publication and selective reporting pro-
cesses, as these mechanisms each contribute to missingness
of results in meta-analyses.

4.2 SSE in multivariate and network
meta-analysis

Multivariate and network meta-analysis (MMA and
NMA) are more recent extensions of the univariate frame-
work [33]. MMA simultaneously models multiple outcomes,
accounting within-study correlation, and NMA models a
network of treatment comparisons, combining direct and in-
direct effects against common comparators [42, 1, 57]. With
the added complexity involved with modeling MMAs and
NMAs, methods for SSE and publication bias remain un-
derstudied in these settings.

For MMAs, detection of SSE is complicated by the fact
that not only might studies be selectively published, but
outcomes within a study may be differentially impacted.
For example, safety endpoints may be underreported and
the relative risk biased closer to the null, while efficacy esti-
mates tend to be biased away from the null. One should also
account for the correlation between multiple outcomes in a
study in order to increase power in any testing procedure,
as opposed to separately testing for SSE for each outcome.

However, correlation is often unreported in multi-outcome
studies [52, 6]. Simulation studies have shown that when the
outcomes are moderately or strongly correlated, performing
MMA (using a modified model that doesn’t require speci-
fication of within-study correlation) can reduce the impact
of ORB within trials [37, 30]. However, they assume that
at least one outcome is always fully reported, and found
that MMA may slightly increase the bias of the estimated
treatment effect for the fully reported outcome. Fitting a
standard MMA model also does not account for selective
publishing of entire studies.

Hong et al. [28] recently developed a score test to detect
SSE in MMAs. Their approach accounts for the multivariate
nature of MMAs, thereby improving power over univariate
methods. To overcome the underreporting of within-study
correlation, they base inference on the pseudolikelihood, as
proposed by Chen et al. [5]. Since it is a natural extension of
Egger’s test (they are equivalent when the number of out-
comes equals 1), it has similar strengths and limitations. In
particular, type 1 error may be inflated when the outcome
is binary. To reduce the correlation between the treatment
effect and precision for binary data, the authors proposed
a smoothed version of the test, where s2k is replaced by a
smoothed variance (first proposed by Jin et al. [34] for test-
ing for publication bias in meta-analyses of observational
studies). Since the existing methods for MMA are limited
to graph-based approaches, there is room for future work on
selection modeling in the MMA setting.

NMAs are arguably more complex than MMAs, due to
the inclusion of multiple study designs and treatments. Un-
like univariate and multivariate MAs which restrict analysis
to a single treatment comparison, it is difficult to graphically
display a network of direct and indirect contrasts, let alone
provide a reference line from which to assess asymmetry
and thus visually detect SSE. Chaimani et al. [4] proposed
a ‘comparison-adjusted’ funnel plot, where effect estimates
are centered on their comparison-specific means and plotted
against the inverse of their standard errors. However, it re-
quires investigators to first develop a meaningful ordering of
the treatments and make assumptions regarding the direc-
tion of SSE. It also doesn’t visualize indirect effects, which
can form the entire base of evidence for novel treatment com-
parisons. Rather, this strategy offers an overall aggregated
evidence of SSE, equivalent to evaluating separate funnel
plots for each univariate contrast. Further work is needed to
detect and visualize evidence of SSE in the NMA setting.

The difficulty in developing graph-based approaches for
NMAs has led to a focus on selection models for detecting
publication bias. Copas’ model in particular has been ex-
tended to the NMA framework [7], with each study design
having its own selection model and design-specific parame-
ters. An obvious challenge to fitting this model is that model
complexity increases with the size of the network, leading
to identifiability issues even with a large number of stud-
ies. Mavridis et al. [45] proposed a Bayesian approach to
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improve identifiability in this setting, though this relies on
prior knowledge. There remains a need for frequentist al-
ternatives that do not require prior information, but future
developments should also consider more parsimonious mod-
els in the NMA setting. A simulation study can shed light
on whether separate selection models are needed for each
study design, to reflect differential reporting bias, or if they
can be collapsed to reduce the number of model parameters.

4.3 Alternatives to Copas’ selection model

Copas’ model provides greater flexibility in modeling the
selective publishing process compared to earlier formula-
tions. However, this flexibility comes with the added cost
of model complexity. Intractability of the likelihood and
convergence issues are encountered even in the univariate
setting, making extensions to MMA and NMA settings far
less feasible. It is also difficult to build upon this model
to include additional sources of publishing bias. For ex-
ample, industry sponsored trials are less likely to be pub-
lished than investigator-sponsored trials [35, 36]. In NMA’s,
multi-arm trials may have a greater probability of publica-
tion compared to two-arm studies. Mavridis et al. [45] pro-
posed including such variables in the model for zm, however
this would add yet more non-identifiable parameters to the
framework. Bayesian approaches may be flexible enough to
allow for such additions and still enable identifiability, but
more parsimonious models should be considered to increase
ease-of-use among clinicians.

Furthermore, Copas’ model may not be intuitive enough
for investigators. The parameter a in the latent variable
model is interpreted as the marginal publication rate for
a study with infinite variance, which is not a meaningful
quantity in practice. The indirect means of selecting a and
b for sensitivity analysis (through the inverse relation with
P (z > 0|s, a, b)) can also be a barrier to use. A more direct
formulation with meaningful parameters can increase utility.
Another drawback is it postulates a continuous distribution
for the latent variable model, which does not reflect any
sense of thresholding at a critical value, a property seen in
earlier selection models.

Finally, the distinction between σ2
m, the true within-study

variance, and s2m, the observed variance of ym conditional
on the study being published, makes model-based data gen-
eration difficult, as investigators do not condition estimates
on study publication. In fact, existing estimation approaches
require a modification to the outcome model, where σ2

m is
replaced by s2m [47, 45], under the assumption that they are
approximately equal if all the component studies are large.
This also reduces the number of unknown nuisance parame-
ters in the models, since σ2

m is study specific. However, not
only might this approximation be invalid if some studies are
small, but the modification negates a key property of Copas’
model that distinguishes it from graph-based approaches,
which is the independence of ym and s2m apart from pub-
lication bias. Such a modification no longer avoids other

sources of correlation. Therefore, while Copas is presented
as a working model, alternative formulations can improve
both interpretation and tractability for more widespread use
in meta-analyses.

4.4 Distinction between sources of SSE

Much of the existing work has focused on detecting the
presence of SSE and publication bias, with less discussion
surrounding how to proceed with meta-analyses if they ex-
ist. We believe such a discussion should give weight to un-
derstanding the sources of SSE and the relationships be-
tween them. For example, publication bias does not always
give rise to SSE, since studies with similar effect estimates
could have the same probability of censoring regardless of
precision. In such cases symmetry-based approaches for cor-
recting for bias like trim-and-fill and the EM-algorithm for
Copas’ model will not lead to adjusted estimates. Perhaps
sensitivity analysis using Copas’ model could be guided by
visual assessment of funnel plots. If publication bias is sus-
pected but asymmetry is not present, parameter b could be
fixed at 0 in the profile likelihood for sensitivity analysis,
or priors placed on b that are heavily weighted at 0 in a
Bayesian analysis.

Additionally, not all sources of SSE require correction.
If SSE are due to clinical heterogeneity, such as more se-
vere patients being recruited in smaller studies and exhibit-
ing stronger responses to treatment, then a subgroup anal-
ysis by clinical severity is more appropriate than correction.
This also improves the generalizability of results. Similarly,
when SSE are induced by the choice of outcome alone, or
by chance, then the estimate is unbiased and does not need
correction.

A more complex, but common, phenomenon occurs when
publication bias and other sources of SSE simultaneously
impact the results of a meta-analysis. Copas’ model can aid
in correcting for bias due to selective publication alone, but
asymmetry may still remain due to other sources of correla-
tion. Recommendations should be made on how to proceed
in this setting.

5. CONCLUSION

With increasing awareness of the presence and impact of
SSE, significant advances have been made in detecting and
correcting for bias in meta-analyses. Here we have provided
a critical review of the more commonly used methods and
recent developments. Even with decades of methodological
work, this remains an active research area in statistics with
substantial room for improvement and innovation. There is
particularly a need for more intuitive, flexible selection mod-
els that can be readily implemented and extended to more
complex meta-analytic frameworks, as well as more robust
testing procedures.

Alongside efforts to mitigate the effects of SSE (and
especially publication bias) at the analysis stage, empha-
sis should be placed on prevention of selective reporting
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through proper registration and reporting of outcomes at
the trial stage. Since any approach to missing data relies
on untestable assumptions regarding the missing studies, we
gain far more by eliminating the missing-not-at-random pro-
cess altogether than trying to model it. A concerted effort
at both the study-level and meta-analytic level can lead to
valid inference and unbiased recommendations for treatment
decision-making and best practices in the medical commu-
nity.
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