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Effect size can differ as a function of the elapsed time
since treatment or as a function of other key covariates,
such as sex or age. In evidence synthesis, a better under-
standing of the precise conditions under which treatment
does work or does not work well has been highly valued.
With increasingly accessible individual patient or partic-
ipant data (IPD), more precise and informative inference
can be within our reach. However, simultaneously combin-
ing multiple related parameters across heterogeneous studies
is challenging because each parameter from each study has
a specific interpretation within the context of the study and
other covariates in the model. This paper proposes a novel
mapping method to combine study-specific estimates of mul-
tiple related parameters across heterogeneous studies, which
ensures valid inference at all inference levels by combining
sample-dependent functions known as Confidence Distribu-
tions (CD). We describe the “CD-based mapping method”
and provide a data application example for a multivariate
random-effects meta-analysis model. We estimated up to 13
study-specific regression parameters for each of 14 individ-
ual studies using IPD in the first step, and subsequently
combined the study-specific vectors of parameters, yielding
a full vector of hyperparameters in the second step of meta-
analysis. Sensitivity analysis indicated that the CD-based
mapping method is robust to model misspecification. This
novel approach to multi-parameter synthesis provides a rea-
sonable methodological solution when combining complex
evidence using IPD.

Keywords and phrases:Multi-parameter synthesis, Mul-
tivariate random-effects meta-analysis, Mapping matrix,
Combining confidence density functions, Individual patient
data, Individual participant data.

1. INTRODUCTION

Meta-analysis is a well-established statistical procedure
for quantitatively synthesizing evidence from independent
studies [43]. In recent years, meta-analysis has increas-
ingly been discussed as an important research method
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to strengthen statistical inference [25]. Compared to tra-
ditional, standard meta-analysis of aggregate data (AD),
meta-analysis of individual patient or participant data
(IPD) in a one-step or two-step approach [49] or in a one-
step, simultaneous “integrative data analysis” (IDA) of IPD
[8, 24] represents a major innovation, which can expand
the scope of evidence synthesis and produce clinically most
meaningful results. When IPD are available, the same model
can be applied across all studies, ensuring that the com-
bined data have the same interpretation. In addition, it is
possible to address more complex research questions with
more appropriate and sophisticated models. Overall, meta-
analysis of IPD provides unparalleled flexibility for analysts.
At the same time, it is challenging to combine IPD from
heterogeneous trials because they differ in key study fea-
tures, including designs, populations, measures, or settings
[20, 53]. For example, with respect to different measures,
a commonly used screening equipment in medical settings
may not always be available in other locations. Furthermore,
longitudinal clinical trials included in a meta-analysis typi-
cally differ in their study duration and follow-up frequency
and period [32, 57]. It is also not uncommon that binary or
categorical covariates may not have any variability either by
design (e.g., a study of all women) or naturally in a data set
[11, 33]. Any one of these situations can pose significant esti-
mation challenges for an IPD meta-analysis because they es-
sentially represent study-level missing data. Typically, IPD
meta-analysis applications have included a subset of studies
that have all covariates or used a simpler model with a fewer
number of covariates, either of which essentially deletes par-
tially available data (i.e., listwise deletion) and represents an
important loss of information, precision, power, and gener-
alizability.

We propose a new information combination method that
combines confidence distributions, hereon called the “CD-
based approach” [59]. A confidence distribution (CD) is a
sample-dependent distribution function that contains infor-
mation about confidence intervals of a parameter of interest
at all levels. It can be referred to as a confidence density if
presented in a density function form [34]. This new method
has been demonstrated as a powerful inference tool in con-
nection with meta-analysis [6, 34, 60, 62]. The current study
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extends the CD-based approach to a multivariate random-
effects meta-analysis model, which is based on more rea-
sonable assumptions but computationally more challenging,
compared with a multivariate fixed-effects meta-analysis
model [34]. The current work, which explicitly accommo-
dates heterogeneous designs and partial information, also
provides a more general framework than the existing model
[63] for random-effects meta-analysis models.

To implement the CD-based approach, we utilize a “two-
step” IPD meta-analysis approach [54]. We proceed as fol-
lows. First, we identify an underlying “full” model for all
studies included in a meta-analysis and conduct separate
analyses for each study to obtain study-specific parameter
estimates. Second, we identify appropriate connections be-
tween the expectation of study-specific vectors of param-
eters and the hyperparameters of the full model via ap-
propriately identified “mapping” matrices. We subsequently
estimate all hyperparameters of the full model in a multi-
variate random-effects meta-analysis model. Upon obtain-
ing all hyperparameters, we can flexibly derive any relevant
population-level inferences as needed (e.g., different treat-
ment effect sizes for men vs. women).

The rest of this paper has four main sections. Section 2
discusses the data set that motivated the CD-based map-
ping method. Section 3 introduces the method in greater
detail. Section 4 presents the findings, including those from
sensitivity analyses. We conclude this paper with discussion
in Section 5.

2. MOTIVATING DATA

The current study was motivated by Project INTE-
GRATE [37]. Project INTEGRATE obtained de-identified,
item-level IPD from 24 trials through a network of interested
collaborators. All trials tested the efficacy of brief motiva-
tional interventions (BMIs) to reduce excessive alcohol use
and prevent harm among college students. Typical BMIs
are brief, and provide personalized feedback on alcohol use
and alcohol-related problems, as well as general educational
information on alcohol.

2.1 Intervention and control groups

IPD for the current analysis come from 7,996 participants
from 14 trials at baseline after excluding studies featuring
a single intervention (i.e., no comparison group) or unique
interventions, resulting in 10 stand-alone, personalized feed-
back intervention (“PF”) groups; eight in-person motiva-
tional intervention with personalized normative feedback
profile (“MI + PF”) groups; and 13 no-treatment control
(“Control”) groups. Note that studies 13 and 14 were orig-
inally independent trials but were subsequently collapsed
(designated as study 13/14), given their similarities in study
design characteristics and small samples. In addition, no
systematic differences existed across intervention groups at
baseline for studies 13 and 14. Tables 1 and 2, as well as

Figure 1. A diagram of the evidence network (numbers in
parenthesis indicate studies).

Figure 1, provide an overview of all studies and descrip-
tive statistics. With the exception of one study (study 1),
all remaining 13 studies had a control group. Eleven of the
13 studies had an assessment-only control group, and the
remaining two studies (studies 18 and 20) had a control
group who received a single page information sheet contain-
ing very limited, generally-written information about alco-
hol use (e.g., alcohol has no nutritional value; space your
drinks). Based on the quantitative content analysis of all in-
tervention materials across groups, we determined that the
exposure for the latter two groups was essentially the same
as what other 11 control groups received [40, 45].

2.2 Measures

We focus on alcohol-related problems (e.g., neglecting re-
sponsibilities; friends and relatives avoiding you) as the out-
come variable of the current analysis. Because this outcome
variable was assessed differently across studies (i.e., slightly
differently worded items, different referent time frames, and
response options), they could not be directly pooled. There-
fore, we previously utilized a 2-parameter logistic item re-
sponse theory (2-PL IRT) model to derive latent trait scores
(called theta [θ] scores) in a separate hierarchical, multi-
unidimensional IRT analysis using the Markov chain Monte
Carlo algorithms that we specifically developed and val-
idated for Project INTEGRATE [23]. Latent trait scores
from IRT models can be interpreted with direct reference to
item parameters, and are independent of which items that
participants were tested on or who else was tested together
[12]. IRT models are widely used in educational test set-
tings to estimate latent trait (e.g., ability or severity) scores
and increasingly utilized also for psychological and medi-
cal research [18]. The latent trait scores for one’s tendency
to adopt protective behavioral strategies prior to, during,
and after drinking to protect oneself from experiencing neg-
ative consequences from drinking [36], such as setting limits
or alternating drinks, were estimated using a generalized
partial credit IRT model [41] to accommodate polytomous
responses [23, 37, 39]. The latent trait scores are estimated
based on the assumption that the distribution follows a stan-
dard normal (i.e., an expected population mean of 0).
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2.3 Motivating challenges

Example 1. Heterogeneity in study interventions. Figure 1
shows that there are up to three intervention arms in data.
However, only three studies (studies 9, 13/14, and 21) have
all three intervention groups, providing direct comparative
evidence between three pairs of groups. The remaining 11
studies are two-arm trials, of which one did not have a con-
trol (study 1). The challenge that arises is how to draw valid
inference regarding relative effectiveness of two competing
interventions (i.e., “MI + PF” vs. “PF”) from the perspec-
tive of network meta-analysis [35], despite that we have (1)
one missing treatment arm for 11 studies and (2) one study
(i.e., study 1) without a control group. The latter condition
results in several unique study-specific parameters, which
require a “blueprint” directing how they can be related to
study-specific parameters of other studies, and to their cor-
responding hyperparameters of the full model.

Example 2. Heterogeneity in the assessment of covari-
ates. Studies 9, 10.1, 11, and 22 recruited exclusively first-
year students. In these studies, study-specific parameters for
first-year student status (coded 1 = first-year; 0 = other)
are not estimable and cannot be linked directly to their
counterpart from other studies or to the corresponding full
model hyperparameter because the intercept parameters
from these four studies would indicate the mean outcome
level for their first-year students, assuming all study-specific
covariates in the model are held constant (e.g., constrained
to zero) within studies. In contrast, study-specific intercept
parameters from the remaining 10 studies would reflect the
mean outcome level of the students in 2nd year and above
(i.e., referent demographic group) when all other covariates
are held constant within studies. Therefore, the interpre-
tation of the study-specific intercept parameters differs be-
tween studies due to the study design difference. Ignoring
the study design difference would mean that the combined
hyperparameter estimate for the intercept would be biased
and/or not interpretable.

If one were to drop this covariate, the four studies with all
first-year students would be retained in the analysis. How-
ever, first-year college students have higher levels of alcohol-
related problems, compared with students in the second year
and beyond. Due to their high risk status, the studies with
only first-year students may have specific intervention con-
tent and different intervention effect sizes, compared with
other studies that provide the same intervention for stu-
dents across all years in college. If we exclude the studies
that recruited exclusively first-year students, then resulting
inferences would suffer from reduced power. Therefore, ei-
ther option–excluding the covariate or the studies–can result
in non-negligible loss of information and biased inference in
a typical meta-analysis. Clearly, there is a need to properly
separate the effect of interest from potential confounding
effects when simultaneously combining multiple related pa-
rameters from heterogeneous studies.

Table 1. Baseline and follow-up assessment schedule by study

Time in months (0 = baseline)
Study 0 1 2 3 4 5 6 7 8 9 10 11 12

1 X X X

2 X X X

8a X X

8b X X

8c X X

9 X X X

10.1 X X

11 X X X

12 X X X X

13/14 X X X X

18 X X X

20 X X

21 X X X X

22 X X

Notes. “X” indicates that baseline or follow-up outcome data exist at
that time.

Example 3. Availability of follow-up assessments. Some
studies had a single post-intervention follow-up assessment,
whereas others had at least two follow-up assessments within
12 months post intervention (see Table 1). Such between-
study design differences can cause study-level missing data
under certain full models. For example, if a true full model
has a quadratic functional form, then it would require at
least three data points over time to fit linear and quadratic
terms in a longitudinal model. One may choose a simpler
model that does not correctly reflect true change processes.
Alternatively, one may limit the analysis to a subset of stud-
ies with a sufficient number of follow-up assessments. Nei-
ther option is optimal.

Note that the motivating challenges illustrated above
do not represent a missing data problem within individual
studies. However, when data from independently conducted
studies are pooled in a meta-analysis, any between-study
design heterogeneity, including differences in the number of
treatment arms, comparison or control group, and lack of
variability in covariates, can lead to a challenge in estimation
and interpretation. In other words, study-specific parame-
ters need to be made equivalent via “mapping” so that each
study-specific parameter can be validly linked to the corre-
sponding hyperparameter(s) of the full model. A multivari-
ate CD-based approach provides a novel method, which in-
corporates mapping matrices in the estimation, for a multi-
variate fixed-effects or random-effects meta-analysis model.

3. METHODS

3.1 A mapping method with a CD-based
meta-analysis approach

Consider k independent studies each with ni observations
for i = 1, · · · , k. First, we formulate a full model as a gen-
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eralized linear mixed model. We assume a random-intercept
model with a total of p− 1 covariates across k studies:

g(E(yijt |βdi, uij0)) = β0i + β1i x1ijt + β2i x2ijt

+ β3i x3ijt + · · ·+ β(p−1)i x(p−1)ijt + uij0,

where g(·) is the link function, E(·) denotes expectation,
and βi = (β0i, β1i, β2i, . . . , β(p−1)i)

T represents a study-
specific parameter vector. yijt indicates the outcome for par-
ticipant j in study i at time t, and xdijt is value of the dth

covariate for participant j in study i at time t, where βdi in-
dicates the coefficient associated with the dth covariate for
study i with d = 0, · · · , p − 1. The term uij0 indicates a
participant-specific random intercept effect. The link func-
tion is an identity link for a linear model with a continuous
outcome. Other link functions can be specified depending
on the distribution of outcomes [62].

The full model for the motivating example at the partic-
ipant level is:

E(yijt |βdi, uij0) = β0i + β1iManijt + β2iWhiteijt

+ β3iFirst-yearijt + β4iPBSijt + β5iPFijt

+ β6i(MI + PF)ijt + β7iMonthijt + β8iMonth2ijt

+ β9i(PF×Month)ijt + β10i((MI + PF)×Month)ijt

+ β11i(PF×Month2)ijt

+ β12i((MI + PF)×Month2)ijt + uij0,

where the terms Man, White, First-year, PF, and MI + PF
are binary indicator variables; PBS and Month are continu-
ous variables; and the rest of the terms are either interaction
terms between the aforementioned ones and/or a quadratic
form. Table 2 shows the descriptive statistics of all covari-
ates.

Throughout Section 3, we denote bi as the study-specific
estimates of the corresponding Level-1 parameters βi for
study i, E(βi) as the expectation of the study-specific vector
of parameters at Level 1 (with dimension pi, where pi ≤ p),
and β as the full vector of hyperparameters at Level 2 (with
dimension p), respectively. We assume that a study-specific
parameter vector βi follows a multivariate normal distribu-
tion with mean β and covariance matrixΣ for a multivariate
random-effects meta-analysis model, an extension of its uni-
variate counterpart [43]. As long as the the expectation of
study-specific parameters has the same interpretation across
studies, we can directly fit the full model (i.e., without any
mapping) and obtain the full vector of hyperparameter es-
timates β and its covariance matrix Σ as follows:

Level 1 : bi | βi,Si ∼ MVNpi (βi,Si)

Level 2 : βi | β,Σ ∼ MVNpi (β,Σ) ,

where MVNpi stands for the multivariate normal distribu-
tion with dimension pi, Si is the observed covariance ma-
trix for study i, and Σ is the unknown between-study co-
variance matrix that needs to be estimated. With a set of

Table 2. Means, standard deviations in parentheses, and
percentages of the variables by study

Variable
Study Man White First-year PBS AlcProb

1 60% 73% 62% 1.06(0.79) 0.21(0.72)

2 71% 69% 63% 1.01(0.84) −0.60(0.72)

8a 33% 87% 50% 0.55(0.85) −0.08(0.97)

8b 41% 62% 47% 0.57(0.89) −0.11(1.00)

8c 38% 83% 36% 0.46(0.91) 0.02(0.94)

9 38% 73% 100% 0.42(0.77) 0.75(0.71)

10.1 46% 84% 100% – 1.03(0.76)

11 59% 64% 100% – −0.82(0.95)

12 47% 93% 3% −0.46(0.92) 0.39(0.60)

13/14 38% 95% 26% – 1.08(0.51)

18 25% 89% 33% 0.49(0.88) −0.17(0.96)

20 52% 84% 78% – 0.62(0.83)

21 36% 85% 42% 0.36(0.92) 0.89(0.77)

22 43% 87% 100% 0.38(0.89) −0.18(0.90)

Notes. Man (coded 1; 0 = woman), White (coded 1; non-White = 0),
First-year (coded 1; 0 = non first-year). PBS = Estimated latent
trait (θ) scores at baseline for utilizing protective behavioral strate-
gies. AlcProb = Estimated latent trait scores at baseline for alcohol-
related problems. “–” indicate that the variable was not assessed. The
presented descriptive statistics were obtained from the entire study
sample.

heterogeneous studies (study i = 1, 2, · · · , k) and covariate
d = 1, 2, · · · , p − 1, we additionally identify and adopt an
appropriate study-specific mapping matrix M i for study i
where M i is a pi × p matrix, and obtain the full model as
follows:

Level 1 : bi | βi, Si ∼ MVNpi (βi, Si)

Level 2 : βi | β, Σ ∼ MVNpi

(
M iβ, M iΣMT

i

)
.

We first obtain bi for study-specific parameters βi for
study i in the first step. Next, we identify an appropriate
mapping matrix M i for study i and link all study-specific
parameters to their corresponding hyperparameters of the
full model in the second step. Let M i be the mapping func-
tion for study i that links βi to β: E(βi) ≡ M i (β). In a
linear model, the relationship E(βi) ≡ M i (β) can typically
be simplified to the following linear equation: E(βi) ≡ M iβ,
where M i is a pi × p matrix.

3.2 Mapping matrix to connect
study-specific parameters to
hyperparameters

As an illustration, we show how to determine an appropri-
ate mapping matrix connecting the study-specific parameter
vector βi to the hyperparameter vector β. Let us assume
that we have a model of a continuous response variable y
with two continuous covariates x1 and x2:

E(yij |βi) = β0i + β1ix1ij + β2ix2ij ,
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Table 3. Mapping matrix pattern. The pattern indices here correspond to the numbers shown in the last column in Table 4.
Underlined elements indicate how the identity matrix was modified to link study-level parameters to hyperparameters

Covariate 0 1 2 3 4 5 6 7 8 9 10 11 12

Pattern 1 (Study 1)

0. Intercept1 1 0 0 0 0 1 0 0 0 0 0 0 0
1. Man (= 1 vs. woman = 0) 0 1 0 0 0 0 0 0 0 0 0 0 0
2. White (= 1 vs. nonwhite = 0) 0 0 1 0 0 0 0 0 0 0 0 0 0
3. First-year (= 1 vs. other = 0) 0 0 0 1 0 0 0 0 0 0 0 0 0
4. PBS at Baseline 0 0 0 0 1 0 0 0 0 0 0 0 0
5. PF1(= 1 vs. control = 0) 0 0 0 0 0 0 0 0 0 0 0 0 0
6. MI + PF1(= 1 vs. control = 0) 0 0 0 0 0 −1 1 0 0 0 0 0 0
7. LS 0 0 0 0 0 0 0 1 0 0 0 0 0
8. QS 0 0 0 0 0 0 0 0 1 0 0 0 0
9. LS × PF1 0 0 0 0 0 0 0 0 0 0 0 0 0
10. LS × (MI + PF)1 0 0 0 0 0 0 0 0 0 −1 1 0 0
11. QS × PF1 0 0 0 0 0 0 0 0 0 0 0 0 0
12. QS × (MI + PF)1 0 0 0 0 0 0 0 0 0 0 0 −1 1

Pattern 5 (Study 11)

0. Intercept 1 0 0 1 0 0 0 0 0 0 0 0 0
1. Man (= 1 vs. woman = 0) 0 1 0 0 0 0 0 0 0 0 0 0 0
2. White (= 1 vs. nonwhite = 0) 0 0 1 0 0 0 0 0 0 0 0 0 0
3. First-year (= 1 vs. other = 0) 0 0 0 0 0 0 0 0 0 0 0 0 0
4. PBS at Baseline 0 0 0 0 0 0 0 0 0 0 0 0 0
5. PF (= 1 vs. control = 0) 0 0 0 0 0 1 0 0 0 0 0 0 0
6. MI + PF (= 1 vs. control = 0) 0 0 0 0 0 0 0 0 0 0 0 0 0
7. LS 0 0 0 0 0 0 0 1 0 0 0 0 0
8. QS 0 0 0 0 0 0 0 0 1 0 0 0 0
9. LS × PF 0 0 0 0 0 0 0 0 0 1 0 0 0
10. LS × (MI + PF) 0 0 0 0 0 0 0 0 0 0 0 0 0
11. QS × PF 0 0 0 0 0 0 0 0 0 0 0 1 0
12. QS × (MI + PF) 0 0 0 0 0 0 0 0 0 0 0 0 0

Note. 1indicate that study 1 had two treatment groups.

where subscripts i and j index study and participant, re-
spectively. If study i has all the covariates required, then

M i =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ .

In this case, study-specific parameters can be linked to the
population hyperparameter vector directly in a standard
multivariate random-effects meta-analysis model [26, 28].
However, consider a situation where β2i cannot be estimated
for study i because x2i was not assessed by design. If we can
assume that x2 has an expected zero mean, then its aver-
age influence on the outcome would be zero, which can be
reflected in the following mapping matrix:

M i =

[
1 0 0
0 1 0

]
.

Consequently, the resulting reduced vector of estimable pa-
rameters in this situation for study i (Level-1 parameters)
would be E(βi) = M iβ = (β0, β1)

T .
If x2 is a binary variable with a constant value (e.g.,

x2i = 1) for study i, then β2i cannot be estimated because

there is no variability for that covariate. In this situation,
a proper mapping matrix is

M i =

[
1 0 1
0 1 0

]
and

E(βi)=M iβ = (β0 + β2, β1)
T
.

The first term on the right side of the equation above in-
dicates that the expectation of the intercept parameter β0i

cannot be directly linked to the corresponding hyperparam-
eter β0 of the full model. Rather, the expectation of β0i, in
the context of the full model, is linked to the sum of hyper-
parameters β0 and β2. In contrast, β1i can be linked directly
to its corresponding hyperparameter β1. Since no variability
exists for x2 for study i, there is no β2i.

Table 3 shows two mapping matrices for two different
studies from the motivating data example. Table 4 shows co-
variate availability by study for the entire motivating data.
Most studies have reduced sets of covariates, requiring map-
ping matrices. Let us consider a few specific mapping cases
in the current study. The first motivating challenge exam-
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ple in Section 2.3 can be illustrated in this specific case (i.e.,
Mapping Pattern 1 in Table 3). Study 1 tested the efficacy
of two BMIs (i.e., “MI + PF” and “PF”) without a no-
treatment control group, whereas all other trials were two-
arm or three-arm trials with a control group (see Figure 1).

In the context of a network meta-analysis [5, 29], the rel-
ative intervention benefit between two BMIs – “MI + PF”
and “PF” – can be seen as follows: “MI + PF” vs. “PF” =
((MI + PF) − control) − (PF − control) = ((MI + PF) −
PF). Therefore, the study-specific parameter of the relative
intervention effect from study 1 can provide valuable infor-
mation as long as its expectation can properly be aligned to
match up with the hyperparameters for intervention effects.

To include data from study 1 in our meta-analysis and
draw valid inference, we need to identify an appropriate
mapping matrix to link E(βi) to β. A mapping matrix for
study 1 can be identified as follows. First, change the diag-
onal 1s from a 13 × 13 identity matrix into 0s in the 6th,
10th, and 12th rows (numbered as covariates 5, 9, and 11 in
Table 3). These three rows correspond to the three hyper-
parameters comparing PF with control (i.e., PF vs. control;
[PF vs. control]× linear growth slope; and [PF vs. control]×
quadratic growth slope, respectively). These rows are then
removed. Second, change the first row to indicate that the in-
tercept parameter from study 1 describes the study-specific
average outcome response of PF, rather than control, in the
context of the full model. Therefore, the expectation of the
intercept parameter β0i from study 1 corresponds to the sum
of hyperparameters β0 and β5 at Level 2 and contributes to
their estimation for the full model. Third, change the 8th

and 9th rows (covariates 7 and 8 in Table 3) to indicate that
the linear and quadratic slope parameters from study 1 rep-
resents the slope parameters for PF. Finally, contrast “MI
+ PF” against “PF” when applicable. The study-specific
vector of Level-1 parameters for study 1 can be seen as

(β0i, β1i, β2i, β3i, β4i, β6i, β7i, β8i, β10i, β12i)
T
,

whose expectation can be linked to the full vector of hyper-
parameters β at Level 2 as follows:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0 + β5

β1

β2

β3

β4

−β5 + β6

β7 + β9

β8 + β11

−β9 + β10

−β11 + β12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To provide another motivating challenge example (Exam-
ple 2 in Section 2.3 & Mapping Pattern 5 in Table 3), study
11 exclusively recruited first-year students, did not assess
protective behavioral strategies at baseline, and tested the
efficacy of PF against a control in a two-arm trial. There-

fore, to map the expectation of estimable parameters from
study 11 into the full hyperparameter vector, the rows of
an identify matrix corresponding to these variables should
be modified (Table 3). The first row of the mapping matrix
are modified to indicate that the expectation of the intercept
parameter from study 11 is the average outcome of first-year
students in the context of the full model. The row for PBS
can be removed because the estimated PBS trait scores fol-
lows a standard normal distribution with an expected pop-
ulation mean of 0. We expect that the omission of this row
for missing PBS does not influence the mean model part
of the full model, although the variation surrounding the
mean may influence the error part of the model. The result-
ing vector of study-specific parameters for study 11 and its
expectation E(βi) can be linked to β as follows:

(β0 + β3, β1, β2, β5, β7, β8, β9, β11)
T
.

A reduced model is analyzed separately and sequentially
for each study. At this step, we save study-specific regression
parameter estimates, bi and their covariance matrix, Si. For
studies with partial information, one can obtain estimates
of the pi length parameter vector βi for study i with pi ≤ p.
All of the study-specific parameters are then linked to the
full vector of hyperparameters β of the underlying full model
via M i.

3.3 Estimation of a multivariate
random-effects meta-analysis model
with mapping matrices

Once we obtain all study-specific parameter estimates
and identify their appropriate mapping patterns to the full
model, we need to estimate the full vector of hyperparame-
ters, β ≡ (β0, β1, β2, · · · , βp−1)

T
. We denote bi as the study-

specific estimates of the corresponding parameters βi for
study i.

To estimate the hyperparameter vector β, one needs to
estimate the between-study covariance matrix Σ. In the
current study, we used the restricted maximum likelihood
(REML) method while using the estimates from the method
of moments [3] for starting values to achieve faster conver-
gence. The estimation of Σ can be done by modifying the
formula given by Jennrich and Schluchter [30] to incorporate
mapping matrices:

Σ̂REML = argmax
Σ

{
−1

2

k∑
i=1

log
∣∣∣Si +M i ΣMT

i

∣∣∣
− 1

2
log

∣∣∣∣∣
k∑

i=1

MT
i

(
Si +M i ΣMT

i

)−1

M i

∣∣∣∣∣
− 1

2

k∑
i=1

(
bi −M i β̂

)T (
Si +M i ΣMT

i

)−1

×
(
bi −M i β̂

)}
,
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where

β̂ =

(
k∑

i=1

MT
i

(
Si +M i ΣMT

i

)−1

M i

)−1

×
(

k∑
i=1

MT
i

(
Si +M i ΣMT

i

)−1

M i M
+
i bi

)

and M+
i is the Moore-Penrose generalized inverse of M i.

Once Σ̂REML is estimated, β can be estimated from a com-
bined multivariate normal CD as follows.

First, to accommodate the multivariate nature of β (see
[59] for the CD approach for univariate applications), we
construct a multivariate normal CD function for β [55]. By
definition, H (·) is a multivariate normal CD function for a
p×1 vector β, if the projected distribution Hλ (·) on a p×1
vector λ, for any given λ ∈ Rp, is a univariate normal CD
for λTβ.

Second, at the individual study level, assuming that Si

and Σ are known,

Hi (θi) = Φpi

((
Si + M i ΣMT

i

)−1/2(
θi − bi

))
is a corresponding multivariate CD function for study i,
where θi = E(βi) = M iβ and Φu(·) is the cumulative
distribution function for the standard multivariate normal
distribution with u dimension, where u is any dimension.
On the conditions that M i is positive and semidefinite,
and that all parameters can be linked via appropriate map-
ping matrices, a combined multivariate CD function for the
population-level hyperparameter vector β has been shown
as

H(c) (β) = Φp

(
Σ−1/2

c

(
β − β̂

(c)
))

,

assuming that Σ is known (see Yang et al. [62] for a formal
definition). Here, in this definition, because Si and Σ are

known β̂
(c)

=
(∑k

i=1 W i

)−1 (∑k
i=1 W i M

+
i bi

)
and its

covariance matrix Σc =
(∑k

i=1 W i

)−1
, where W i =

MT
i

(
Si + M i ΣMT

i

)−1

M i.

If we plug in the consistent estimator of the variance ma-
trixΣ, then β can be directly estimated from the asymptotic
combined multivariate normal CD. In other words, from
H(c) (β):

β̂
(c)

=

(∑k

i=1
Ŵ i

)−1 (∑k

i=1
Ŵ i M

+
i bi

)
for the estimated mean vector and

Σ̂c =

(∑k

i=1
Ŵ i

)−1

for its covariance matrix, where Ŵ i is defined as

Ŵ i = MT
i

(
Si + M i Σ̂REML MT

i

)−1

M i.

Therefore, β̂
(c)

and Σ̂c are CD estimators of β and Σc,
respectively. Note that we use the sample covariance esti-
mators Si and Σ̂REML because the combined CD function
H(c) (β) would be an asymptotic multivariate normal CD
as long as these estimators are consistent. The CD-based
approach yields estimates with several desirable properties
(e.g., asymptotically efficient and robust against model mis-
specification). See the Appendix for more details.

Finally, upon obtaining all estimates of the full model,
flexible inference can be made using the combined full
model. For example, to interpret decaying intervention ef-
fects over time, one can compare estimated outcomes at a
given time across intervention groups. To estimate outcomes
at specific values of the covariates, the estimated hyperpa-

rameters β̂
(c)

from the full model can be used to construct
the estimated full model. We can then use the full model to
obtain model-based mean ŷ0 and its variance by plugging
in a set of in-sample covariate values x0 using the following
formula:

ŷ0 = xT
0 β̂

(c)

and

var (ŷ0) = xT
0 Cov

(
β̂
(c))

x0.

4. DATA EXAMPLE

4.1 Underlying full model specification

Alcohol use trajectories among college students after var-
ious interventions typically show a sharp immediate decline,
followed by a slow rebound to levels on par with or above
the pre-intervention level over time [2, 58] because alcohol
use and alcohol-related problems tend to peak during ages
18-24. Therefore, we chose a quadratic growth model and
tested it using IPD from several individual studies sepa-
rately, which supported the appropriateness of the model.
We visually examined all available data, tested uncondi-
tional growth models, compared their fit indices (e.g., AIC,
BIC), and examined growth coefficients and residual plots.
To test intervention effects over time, we included interac-
tion terms between time and intervention groups. We in-
cluded gender, first-year student status, and race (white or
otherwise) as demographic covariates. In addition, we con-
ducted a separate analysis within individual studies to see
if attrition at follow-ups could be explained by participant-
level covariates. Based on this attrition analysis, we discov-
ered that the tendency to use protective behavioral strate-
gies prior to and while drinking, such as setting drinking lim-
its, was related to greater chances for participants to drop
out at follow-ups in some of the studies. We subsequently
added this covariate to the full model.

All analyses were performed using R (version 3.4.4). The
“nlme” R package [44] was used to fit a random-intercept
growth model. We developed R codes to identify patterns
of estimable covariates and to construct mapping matrices
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Table 4. Estimable covariates for the underlying full model by study and by mapping matrix pattern

Study N Covariate position in the full model
Mapping matrix pattern

0 1 2 3 4 5 6 7 8 9 10 11 12

1+ 348 X X X X X - X X X - X - X 1

2 230 X X X X X X - X - X - - -

2
8a 1486 X X X X X X - X - X - - -
8b 2155 X X X X X X - X - X - - -
8c 600 X X X X X X - X - X - - -

9 302 X X X - X X X X X X X X X 3

10.1 348 X X X - - - X X - - X - - 4

11 383 X X X - - X - X X X - X - 5

12 167 X X X X X - X X X - X - X 6

13/14 109 X X X X - X X X X X X - X 7

18 215 X X X X X X - X X X - X - 8

20 928 X X X X - - X X - - X - - 9

21 216 X X X X X X X X X X X X X 10

22 509 X X X - X - X X - - X - - 11

Notes. “X” indicates estimable parameters whereas “-” indicates inestimable parameters. Covariate in the full model are (0) Intercept; (1) Man
(= 1 vs. woman = 0); (2) White (= 1 vs. non-white = 0); (3) First-year (= 1 vs. other = 0); (4) PBS (Estimated latent trait (θ) scores for
utilizing protective behavioral strategies) at Baseline; (5) PF (stand-alone personalized feedback intervention) (= 1 vs. control = 0); (6) MI +
PF (in-person motivational intervention with personalized normative feedback profile) (= 1 vs. control = 0); (7) LS (Linear slope of time in
month); (8) QS (Quadratic slope of time in month); (9) LS × PF (vs. control); (10) LS × (MI + PF) (vs. control); (11) QS × PF (vs. control);
(12) QS × (MI + PF) (vs. control). N represents sample size at baseline. += Study 1 did not have a control group, thus, PF served as a
comparison group.

and used the “optimx” package [42] to obtain the REML
estimates of the between-study covariance matrix.

4.2 Partial information and mapping
matrices

Table 4 shows all 13 coefficients included in the current
analysis and their availability by study. Some coefficients
could not be estimated because (1) variables were not as-
sessed by study design (e.g., PBS; studies 10.1, 11, 13/14,
and 20); (2) the entire sample consisted of only first-year
students (studies 9, 10.1, 11, and 22); (3) not all interven-
tion groups were included in original studies (studies 1, 2,
8a, 8b, 8c, 10.1, 11, 12, 18, 20, and 22; see also Figure 1); and
(4) only one follow-up assessment was available (i.e., only a
linear slope term could be estimated; studies 2, 8a, 8b, 8c,
10.1, 20, and 22; see Table 1). A total of just three covariate
coefficients were estimable across all studies (i.e., man vs.
woman, white vs. non-white, and a linear slope of time), and
only one study (study 21) had the necessary data to estimate
all coefficients. There were a total of 11 different mapping
matrix patterns. With the exception of study 21, all other
studies required mapping matrices with reduced dimensions.

4.3 Estimation and interpretation

The full vector of hyperparameter estimates β̂
(c)

(see Ta-

ble 5) and its corresponding covariance matrix Cov(β̂
(c)

)
were obtained by applying the estimation procedures de-
scribed in Section 3. Table 6 shows that the correlation
estimates of the regression coefficients derived in the cur-
rent study were not boundary estimates (i.e., away from

Table 5. Combined parameter estimates from the multivariate
random-effects meta-analysis

Covariate Estimate p value

0. Intercept 0.4449 0.0051
1. Man (=1 vs. woman=0) 0.0172 0.7184
2. White (=1 vs. nonwhite=0) 0.0564 0.1309
3. First-year (=1 vs. other=0) 0.0403 0.1928
4. PBS at Baseline −0.2825 0.0000
5. PF (=1 vs. control=0) −0.0028 0.9223
6. MI + PF (=1 vs. control=0) 0.0841 0.1270
7. LS −0.0442 0.0178
8. QS 0.0041 0.0276
9. LS × PF 0.0006 0.8729
10. LS × (MI + PF) −0.0311 0.0006
11. QS × PF −0.0004 0.5774
12. QS × (MI + PF) −0.0003 0.8314

Notes. PBS = Estimated latent trait (θ) scores for utilizing protective
behavioral strategies; PF = stand-alone personalized feedback inter-
vention; MI + PF = in-person motivational intervention with person-
alized normative feedback profile; LS = Linear slope (time in month);
and QS = Quadratic slope (months squared).

±1), which usually suggests estimation difficulties in cer-
tain multivariate meta-analysis models [47]. The estimated
full model for the data example at the participant level was:

E(yijt) = + 0.4449 + (0.0172 ×Manijt)

+ (0.0564 ×Whiteijt) + (0.0403 × First-yearijt)

+ (−0.2825 × PBSijt) + (−0.0028 × PFijt)

+ (0.0841 × (MI + PF)ijt)
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Figure 2. Model-based mean estimates for three different groups using the estimated full model shown in Table 5. The top
figure shows estimates at baseline, and 6- and 12-month follow-ups. The bottom figure shows monthly estimates for 12

months post intervention. Theta score = latent trait severity score for alcohol-related problems. PF = stand-alone
personalized feedback intervention; MI + PF = in-person motivational intervention with personalized normative feedback

profile. Values for covariates were set for White, first-year, male students with a mean PBS score at baseline. Vertical dotted
lines indicate 95% confidence intervals.

+ (−0.0442 ×Monthijt) + (0.0041 ×Month2ijt)

+ (0.0006 × (PF×Month)ijt)

+ (−0.0311 × ((MI + PF)×Month)ijt)

+ (−0.0004 × (PF×Month2)ijt)

+ (−0.0003 × ((MI + PF)×Month2)ijt).

Substantively, results indicated that there was a signif-
icant interaction between MI + PF and the linear slope
of time. To interpret this interaction effect, we calculated
model-implied outcome values for all groups based on the es-
timated full model. Namely, we used in-sample covariate val-
ues (i.e., first-year, male, white students, a mean PBS score)
and obtained model-implied means for alcohol-related prob-
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Table 6. Synthesized between-study correlation matrix of the combined parameter estimates

1 2 3 4 5 6 7 8 9 10 11 12

0 0.23 −0.46 −0.37 −0.39 −0.03 −0.49 0.22 −0.57 0.36 0.20 0.07 0.57
1 −0.32 −0.28 0.12 −0.07 −0.38 0.29 −0.24 0.43 0.54 −0.27 0.03
2 0.32 0.28 0.12 0.07 0.38 0.29 0.24 0.43 −0.03 −0.10
3 −0.06 0.26 0.47 −0.28 0.30 −0.42 −0.41 0.13 −0.13
4 −0.02 −0.11 −0.61 0.71 0.01 −0.21 −0.15 0.05
5 0.27 −0.31 0.24 −0.47 −0.33 0.13 0.13
6 −0.13 0.22 −0.42 −0.51 0.13 −0.24
7 −0.87 −0.29 0.72 0.14 −0.33
8 −0.31 −0.56 −0.13 0.00
9 0.40 −0.37 0.12
10 −0.25 −0.40
11 0.26

Notes. 0 = Intercept, 1 = Man, 2 = White, 3 = First-year, 4 = PBS at baseline, 5 = PF, 6 = MI + PF, 7 = LS, 8 = QS, 9 = LS × PF, 10
= LS × (MI + PF), 11 = QS × PF, and 12 = QS × (MI + PF). PBS = Estimated latent trait (θ) scores for utilizing protective behavioral
strategies; PF = stand-alone personalized feedback intervention; MI + PF = in-person motivational intervention with personalized normative
feedback profile; LS = Linear slope (time in month); and QS = Quadratic slope (months squared).

lems and their estimated variances at various time points
post intervention. The estimates were derived based on the
estimated full model.

Figure 2 shows the expected mean levels for all three
groups, which shows a reduction in alcohol-related prob-
lems at 6 months, followed by a rebound at 12 months
(top). To demonstrate the flexibility of this approach, we
plotted monthly estimates of alcohol-related problems up to
12 months post intervention (bottom), which shows the lin-
ear and quadratic growth functions for the following three
groups: MI + PF, PF, and control. MI + PF showed
the best post-intervention trajectory over time, showing a
clearer intervention benefit, which was better maintained
over time, compared with PF. We further probed this by
comparing estimated alcohol-related problems for PF vs.
control and for MI + PF vs. control every three months
(top) and every month (bottom) for up to 12 months
post intervention (Figure 3). Figure 3 (bottom) shows that
statistically significant group differences in alcohol-related
problems emerged around 5-6 months post intervention
(95% confidence intervals are below the dotted horizontal
line).

4.4 Sensitivity analyses

To examine if the reported results were overly influenced
by outlying studies, we conducted a sensitivity analysis by
excluding one study at a time and repeating the analysis.
Results indicated that while individual regression parame-
ters changed in magnitude to some extent, the overall find-
ings remained largely the same (not shown). In addition, we
sequentially removed two different covariates from the anal-
ysis at two different steps of the analysis (i.e., when estimat-
ing Level-1 parameters in the first step and when estimating
Level-2 hyperparameters in the second step) and examined
the impact of model misspecification on two key coefficients
(i.e., PF × Linear Slope and (PF + MI) × Linear Slope).

Figure 4 shows the results when we removed PBS (top)
and first-year student status (bottom) during the second
step when hyperparameters were estimated. Figure 5 shows
the results when we removed covariates during the first step
of the analysis when each covariate was removed from the
study-specific analysis (i.e., removed from both Level-1 and
Level-2 analyses). Results from both sensitivity analyses
suggest that the estimated hyperparameters (shown in filled
diamond symbols in Figures 4 and 5) were fairly robust to
model misspecification, and that an omitted covariate made
little impact on the final estimates, regardless of whether
it was a continuous or binary covariate. We also inspected
other estimated coefficients and concluded that the derived
hyperparameter estimates could be trusted.

5. DISCUSSION

The current study extended the CD-based mapping
method to a multivariate random-effects meta-analysis
model from the multi-parameter synthesis perspective [1, 16,
17]. We showed that data from heterogeneous trials can be
validly accommodated by utilizing the CD concept [59, 60].
The two-step CD-based mapping method differs from the
existing methods in the sense that it is aimed at combining
the entire full model, which is subsequently used to derive
model-based estimates for flexible inference. Broadly speak-
ing, the two-step CD-based mapping method shares some
features in common with Bayesian and meta-analytic struc-
tural equation modeling (MASEM) [4] approaches in the
sense that the CD-based method does not focus on deriv-
ing isolated point estimates. Rather, the CD-based mapping
method utilizes all available evidence that exist within stud-
ies to link to, and estimate, the underlying full model. This
method makes fewer assumptions and can be broadly ap-
plicable, providing a more general synthesis framework (Ta-
ble 7).
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Figure 3. Model-based mean difference estimates of the two intervention groups, compared to control, in alcohol-related
problems at baseline and every three months (top), and at baseline and each subsequent month post intervention (bottom).
Theta score = latent trait severity score for alcohol-related problems. PF = stand-alone personalized feedback intervention;
MI + PF = in-person motivational intervention with personalized normative feedback profile. Vertical dotted lines indicate

95% confidence intervals. A horizontal dashed line at zero indicates no group difference.

In the present study, the combined full model had 13 hy-
perparameter estimates across 11 different estimable pat-
terns of coefficients for 14 trials. To accommodate miss-
ing or inestimable covariates and covariates with different
meanings across studies, we identified appropriate connec-
tions between the expectation of the study-specific parame-
ters and the full model hyperparameters and subsequently,
derived the joint distribution of hyperparameters using the

multivariate CD-based approach to meta-analysis. This new
method may provide the field with a methodological alterna-
tive to consider, in connection with methods of aggregating
published prediction models [9, 10], dealing with systematic
missing data [13, 31, 46, 52], exploring subgroups that may
respond differently to an intervention [14, 50], and combin-
ing multiple parameter estimates from either AD or IPD
[4, 17].
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Figure 4. Results from sensitivity analyses where each covariate from each study was treated as systematically missing in the
second step. The effects of the exclusion of a continuous covariate (PBS at baseline; top) and a binary covariate (first-year
student status; bottom) on the combined estimates of PF × Linear Slope (left) and (MI + PF) × Linear Slope (right) are
shown, respectively. Filled diamond symbols indicate the combined estimates from all 14 studies as reported in Table 5. The

estimates from sensitivity analyses are shown in filled squares.

Multivariate meta-analysis, despite its well established
rationale and premise, has resulted in a rather small im-
provement in the statistical properties of individual esti-
mates [26, 56]. In typical multivariate meta-analysis applica-
tions, the dimension of combined coefficients has been rather
limited, which may help explain the small gain thus far in
the literature. The method illustrated in the current paper
allows us to make more specific inference based on the full
model, which may be helpful for the development of person-
alized treatment approaches using clinical trial data (i.e.,
the Precision Medicine Initiative [7]).

In addition, the CD-based mapping method for mul-
tivariate meta-analysis explicitly accommodates between-
study differences. Consequently, the derived estimates are
not confounded with between-study differences. This CD-
based method may be helpful when estimating treatment
effects for subgroups in data situations where no within-
study estimates exist for some of the studies included in a
meta-analysis. Riley et al. [48] explored a multivariate meta-
analysis extension application, in which different treatment
effects were examined separately for each subgroup. How-
ever, this approach, as Riley et al. discussed, can result in
a confounded treatment effect estimate when one cannot
reasonably assume that within-study and between-study co-
variate interactions are the same. Riley et al. discussed the
advantages (e.g., power) and disadvantages (e.g., ecologi-

cal inference bias and study-level confounding) of combining
within-study estimates with between-study estimates of the
approach. The method we illustrated in the current study
may offer a more favorable solution for this challenge.

Table 7 shows a summarized list of the premises, assump-
tions, and challenges of the CD-based approach to multi-
variate meta-analysis. It is flexible and not computation-
ally intensive. Most of the assumptions involved in this CD-
based approach are assumed for the existing meta-analysis
methods. For example, we assume that the designated full
model is a true model for all studies. For a meta-analysis
of clinical trials, a true full model is reasonable to assume.
We also assume that the pattern of omitted covariates at
the study level meets the MAR assumption, which may be
quite reasonable for randomized clinical trials [48]. Other as-
sumptions, such as common scales, can be explicitly checked
and analyzed when item-level IPD (as opposed to scale-level
IPD) are available. In addition, as long as mapping matri-
ces can be identified, this CD-based approach can be used
more generally without any restrictions on the distributions
of outcome variables or the types of coefficients being com-
bined for a full model. In the current study, we simultane-
ously combined three different types of related coefficients:
the relative intervention benefits (network), informative co-
variates (regression), and repeated follow-up outcome data
(longitudinal).
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Figure 5. Results from sensitivity analyses where a covariate from each study was sequentially removed throughout the entire
analysis. The effects of the exclusion of a continuous covariate (PBS at baseline; top) and a binary covariate (first-year

student status; bottom) on the combined estimates of PF × Linear Slope (left) and (MI + PF) × Linear Slope (right) are
shown, respectively. Filled diamond symbols indicate the combined estimates from all 14 studies as reported in Table 5. The

estimates from sensitivity analyses are shown in filled squares.

There are challenges and caveats of the CD-based ap-
proach. First, the implementation of this approach using
IPD requires considerable time and efforts by a research
team with a wide range of complementary expertise and
skills. In particular, the necessary identification of an ap-
propriate full model and subsequent mapping matrices can
be difficult especially when data dimensions (covariates ×
study) increase. For randomized controlled trials, the identi-
fication of an appropriate full model is more straightforward
than observational studies. Nonetheless, it would be bene-
ficial to include domain experts to help identify important
factors that may affect outcomes so that full models can be
reasonably identified. Despite the best effort, however, if a
full model is incorrect or if mapping matrices are incorrect,
how robust the method is to model misspecification remains
to be more thoroughly studied.

Second, the studies included in a meta-analysis should
be sufficiently similar in terms of their methodological and
clinical characteristics to justify that data can be combined.
Although this assumption is generally required for meta-
analysis, it may not be reasonable or desirable in some data
applications, depending on its goals. If a comprehensively
inclusive meta-analysis is the goal, then creating a subgroup
of studies sharing the same full model within the subgroup
and developing multiple full models to accommodate other
subgroups of studies may be needed.

Third, not all constructs can be directly observed or may
share the same interpretation across studies. For example,
a death is directly observable and has the same meaning
regardless of study membership. Mental health outcomes
and correlates, however, are not directly observable but de-
rived, and measured in a number of different ways. In the
case of depression, there are more than 280 different depres-
sion scales with little item overlap across scales [15]. If there
is sufficient overlap in items across studies, items may be
linked across studies via shared items and a commensurate
metric may be established [38, 23].

Fourth, when the number of studies is small or when indi-
vidual studies have small samples, it may be necessary to ac-
commodate uncertainty surrounding covariance estimators
Si and Σ̂REML. In future meta-analysis studies, this uncer-
tainty may be reflected, for example, by inflating confidence
intervals for the REML method [27]. Finally, our previous
measurement work to make IPD comparable across studies
involved an additional set of assumptions and constraints,
which need to be considered when developing appropriate
mapping matrices.

Substantively, we found the positive effect of the MI +
PF intervention on alcohol-related problems, which is consis-
tent with the previously reported findings [21], despite using
a different methodological approach to IPD meta-analysis.
Huh et al. estimated a Bayesian three-level model in a “one-
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Table 7. The premises, assumptions, and challenges of the CD-based mapping method

Premises

• The CD-based mapping method can be used for both aggregate data and individual participant data.

• This method can be applied to both fixed- and random-effects meta-analysis models.

• Flexible model-based inference, which includes confidence intervals or regions at all levels for all testing
questions (i.e., above and beyond a few isolated point estimates), can be obtained.

• Data can be combined from exploratory studies (e.g., to generate hypothesis testing questions) as well
as from confirmatory studies (e.g., large-scale clinical trials).

Assumptions

• A full model is assumed to be shared by all studies.

• Study-level systematic missing data are assumed to be missing at random.

• Appropriate mapping matrices can be identified for all studies to validly link the expectation of the
study-specific parameters to the vector of hyperparameters of the full model.

• For studies with missing numerical covariates, their population means (e.g., zero) can be reasonably
assumed and accommodated in mapping matrices.

Challenges

• A true full model may be difficult to identify or justify, especially when combining data from highly
heterogeneous studies.

• Appropriate mapping matrices can be challenging to identify as the dimensions of data (i.e., covariate
by study) increase.

• When item-level IPD are available, an additional analysis may be needed to retrospectively establish
a commensurate metric.

• When individual studies have small samples and the number of studies in a meta-analysis is small, it
may be desirable to accommodate uncertainty surrounding covariance estimators.

step” meta-analysis of IPD [19] (see also Huh et al. [22]). In
addition, Huh et al. used a different full model, which spec-
ified alcohol-related problem scores at baseline as a covari-
ate. Intervention effects were estimated within studies using
posterior distributions. Consequently, studies without their
own control group were excluded in the analysis.

Based on the comparison of the one-step approach with
the current two-step CD-based approach, albeit indirectly,
we reach two conclusions. First, the convergent findings from
the two studies increase our confidence in the substantive
conclusion that MI + PF has an advantage over PF in terms
of reducing alcohol-related problems for college students.
Second, the two-step CD-based mapping method approach
to IPD multivariate meta-analysis may be better suited to
build a “scalable” evidence base, compared to the one-step
approach. The term “scalable” applies not only to the num-
ber of studies but also to the number of informative covari-
ates that can be examined in a meta-analysis. Instead of
imputing study-level missing data, the CD-based approach
utilizes information from all available data across studies to
provide inference. Given that with increasing data dimen-
sions, between-study heterogeneity increases, it is critical
that missing or inestimable data are appropriately handled
in IPD meta-analysis. A recent study [51] discussed that
accurate imputations of study-level missing data across 19
depression trials were not obtained, which is a critical step

needed for conducting one-step IPD meta-analysis or IDA.
This has been a major barrier to harmonizing and synthe-
sizing IPD across studies. The CD-based method that we
showcased in the present study may be an important new
tool for the field of complex research synthesis.

In conclusion, to provide answers to complex questions
from available large-scale data, it is critical to account
for between-study differences and accommodate study-level
missing data. The CD-based method is a promising new ap-
proach aimed at promoting large-scale, complex evidence
synthesis of IPD for multivariate meta-analysis models.

APPENDIX

Proof of the claims in Section 3.3. First, let us assume that
Σ is known. At the individual study level, bi ∼ Npi(θi, Si +
Mi ΣMT

i ), where bi is a point estimator of θi =
E(βi) = M iβ. By Singh et al. [55], Hi (θi) = Φpi

((
Si +

Mi ΣMT
i

)−1/2(
θi−bi

))
is a corresponding multivariate CD

function for θi, for i = 1, . . . , k.
Following Xie et al. [60] and Yang et al. [61], we know that

combining normal CDs of individual studies can be achieved
by a linear combination of normal CDs with weight Wi. In
particular, when Σ is known, we have

β̂
(c)

=

(∑k

i=1
Wi

)−1 (∑k

i=1
Wi M

+
i bi

)
.
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Since β̂
(c) ∼ Np (β, Σc), the combined CD function

for the regression parameter of interest β is H(c)(β) =

Φp(Σ
−1/2
c (β − β̂

(c)
)). When Σ is not known, we then re-

place it with a consistent estimator (as k → ∞). This
leads to the following asymptotic combined CD: H(c)(β) =

Φp(Σ̂
−1/2

c (β − β̂
(c)

)) as described in Section 3.3.
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