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The timing and effectiveness of implementing
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The outbreak of novel coronavirus disease (COVID-19)
has spread around the world since it was detected in De-
cember 2019. The Chinese government executed a series of
interventions to curb the pandemic. The “battle” against
COVID-19 in Shenzhen, China is valuable because popu-
lated industrial cities are the epic centres of COVID-19 in
many regions. We made use of synthetic control methods
to create a reference population matching specific charac-
teristics of Shenzhen. With both the synthetic and observed
data, we introduced an epidemic compartmental model to
compare the spread of COVID-19 between Shenzhen and
its counterpart regions in the United States that didn’t im-
plement interventions for policy evaluation. Once the ef-
fects of policy interventions adopted in Shenzhen were esti-
mated, the delay effects of those interventions were referred
to provide the further control degree of interventions. Thus,
the hypothetical epidemic situations in Shenzhen were in-
ferred by using time-varying reproduction numbers in the
proposed SIHR (Susceptible, Infectious, Hospitalized, Re-
moved) model and considering if the interventions were de-
layed by 0 day to 5 days. The expected cumulative confirmed
cases would be 1546, which is 5.75 times of the observed
cumulative confirmed cases of 269 in Shenzhen on Febru-
ary 3, 2020, based on the data from the counterpart coun-
ties (mainly from Broward, New York, Santa Clara, Pinellas,
and Westchester) in the United States. If the interventions
were delayed by 5 days from the day when the interventions
started, the expected cumulative confirmed cases of COVID-
19 in Shenzhen on February 3, 2020 would be 676 with 95%
credible interval (303,1959). Early implementation of mild
interventions can subdue the epidemic of COVID-19. The
later the interventions were implemented, the more severe
the epidemic was in the hard-hit areas. Mild interventions
are less damaging to the society but can be effective when
implemented early.
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1. INTRODUCTION

The confirmed cases of novel coronavirus (SARS-Cov-
2) disease (COVID-19) had been detected since December
2019 [30], and there are over 200 countries with reported
confirmed cases in the world [35]. A potent characteristic of
SARS-Cov-2 is that it can be contagious during the incuba-
tion period, where asymptomatic individuals could become a
disseminating source [28]. Therefore, finding and implement-
ing effective interventions is vital to disease control [17, 32].

On January 23, 2020, non-pharmaceutical interventions
including all public transportation closures started in
Wuhan, and a similar response was triggered in cities ge-
ographically near Wuhan cities, such as the cities within
Hubei province andWenzhou in Zhejiang province on Febru-
ary 1, 2020 [20]. Guangdong province, where there was a
large population of migrants from Hubei province [8], ac-
tivated the first-level public health emergency response on
January 23, 2020 [34]. Shenzhen, with confirmed cases of
COVID-19 initially reported in Guangdong province, imple-
mented the interventions by closely following and isolating
the close contacts of confirmed cases of COVID-19. By far,
the strategic polices for direct protection (such as wearing
face masks) and for transmission reduction (for example 14
days isolation for oversea travellers, cancellation of public
gatherings, delayed reopening of schools) have been main-
tained in Shenzhen. The intervention and control strategies
of Shenzhen were adopted as a classical example in the re-
port from World Health Organization (WHO) [5].

As an industrial city, where there was a large popula-
tion of inbound and outbound travellers [43], Shenzhen im-
plemented a relatively mild intervention strategy compared
with that of Wuhan and mounted an early response to the
epidemic of COVID-19 relative to other cities such as Wen-
zhou. Therefore, there is a great interest to examine how
effective such mild but early interventions were in curb-
ing the epidemic of COVID-19 in Shenzhen. We evaluated
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the treatment effects of intervention policies in Shenzhen by
comparing the epidemic data in Shenzhen with its counter-
part regions in the United States counties, and simulate the
potential outcomes of different hypothetical starting dates
of interventions to project the influence of the delay effects
on the policy effectiveness.

To compare the effects of the control of epidemic in Shen-
zhen, the synthetic control method [2] as a classical method-
ology of causal inference was modified. It estimated the ef-
fects of short-term interventions between the affected unit
and a combination of unaffected units [1]. To seek a series of
unaffected units, i.e. the regions where interventions similar
to those adopted in Shenzhen were not issued at the early
stage of epidemic, we employed the infected counties in the
United States as the quantitative reference for comparison.

Alternatively, in order to evaluate the delay effects of
policy interventions appropriately, it’s crucial to consider
the pre-symptomatic transmission of COVID-19 [16] to re-
flect the nature of COVID-19. Traditional epidemic mod-
els, such as SIR (Susceptible, Infectious, and Recovered)
model [14, 11] and SEIR (Susceptible, Exposed, Infectious,
and Removed) model [29, 26], may not be suitable for mod-
elling the spread of COVID-19 [42] due to the lack of consid-
eration for the incubation period and the pre-symptomatic
transmission pattern during the incubation period. The lit-
erature suggests that the mean length of the incubation
period ranges from 5 to 7 days, and considering the incu-
bation period is important to the understanding of disease
risk [28, 30, 7, 31].

In this paper, we proposed the SIHR (Susceptible, Infec-
tious, Hospitalized, Removed) model, which considers pre-
symptomatic transmission of COVID-19 by an appropri-
ate compartmental assumption with the well-defined time-
varying reproduction number. By modifying the estimated
time-varying reproduction number [24, 36] to reflect delay
effects of interventions, we simulated different outcomes of
COVID-19 for comparison.

The rest of the paper is organized as follows. Section 2
describes the synthetic control method with a modified se-
lection of control variables and the proposed SIHR model.
The results of treatment effects and delay effects of mild
interventions are reported in Section 3. We end this paper
with some concluding remarks.

2. METHODS

2.1 Data collection

Epidemic data were collected for daily cumulative con-
firmed cases of COVID-19 since January 19, 2020 in Shen-
zhen when the first confirmed case was reported [44]. Its
corresponding population, latitude and areas were collected
in the statistical yearbook. Also, the daily cumulative con-
firmed cases of COVID-19 for each county of each state in
the United States were downloaded and available online [18]
since March 1, 2020. The corresponding populations, areas,

and latitudes were collected from the United States Census
Bureau (USCB) [12, 13].

2.2 Effect of mild interventions

To examine the treatment effects of interventions imple-
mented in Shenzhen, we envisioned that cumulative num-
bers of confirmed cases of COVID-19 per 100,000 persons
in the population could be observed at the time t whether
the interventions were implemented (treated) or not (not

treated), which are denoted by {C(0)
t (Wt)}.

C
(0)
t (Wt) =

Number of cumulative confirmed cases

Resident population of infected region

× 100,000.

Here t is the time andWt is the group indicator. “Wt = 1”
corresponds to “exposed to interventions”, and “Wt = 0”
otherwise. Thus, the potential outcomes at the time t are

{C(0)
t (1), C

(0)
t (0)} and the corresponding treatment effect

of interventions is C
(0)
t (1) − C

(0)
t (0). However, only one of

the potential outcomes could be observed, i.e. the observed
outcome at time t is defined as:

(1) C
(0)
t = WtC

(0)
t (1) + (1−Wt)C

(0)
t (0).

Here the untreated outcomes C
(0)
t (0) of “absence of in-

terventions” were missing, which are the so-called counter-

factual outcomes [38]. To formalize C
(0)
t (0), we modified the

synthetic control method (SCM) [2, 1] to construct the coun-
terfactual outcomes by combining a number of untreated
units instead of a single untreated unit.

Those potential untreated units were selected from the
United States counties, where the interventions were not
adopted at the early stage of epidemic. The epidemic data
were reported on March 1, 2020 in the most infected counties
of the United States [18]. However, the White House issued
a “call to action” for coronavirus guidelines including can-
celling gatherings over 10 people and staying at home start-
ing on March 16, 2020 [22]. There were no broad interven-
tions implemented in the early stage of the epidemic in the
United States, which allowed us to define a pre-intervention
period from March 1 to March 16. Therefore, there were
16 days of duration before the interventions implemented in
the United States. These 16-day epidemic data in the United
States were used as the benchmark in our comparison with
the 16-day epidemic data in Shenzhen from January 19 to
February 3, 2020.

COVID-19 was detected and initially reported on Jan-
uary 19, 2020 in Shenzhen [44], and Guangdong province
that includes Shenzhen as one of its cities activated “pub-
lic responses” on January 23, 2020 [34], so there were 4
days before Shenzhen implemented the interventions after
the first case was reported. We use T0 = 4 to denote this
pre-intervention period, which is 4. We compared the data
between Shenzhen from January 19 to February 3, 2020 and
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counties in the United States from March 1 to March 16,
2020, by fixing the total duration at 16 days starting from
the day of the first reported case in the locations of interest,
i.e. “t = 1” means January 19 for Shenzhen, and March 1
for the counties of the United States. The effect of the post-

intervention period at time t is C
(0)
t (1)−C

(0)
t (0) for t > T0.

It can be estimated by:

(2) C
(0)
t (1)− Ĉ

(0)
t (0) := C

(0)
t (1)−

K∑
k=1

dkC
(k)
t (0),

where C
(k)
t (0) was the observed cumulative numbers of

COVID-19 confirmed cases per 100,000 at the time t in k-th
county of the United States in the absence of interventions.
Thus, the counterfactual outcomes in the absence of the
interventions of Shenzhen during the post-intervention pe-
riod were calculated from a weighted linear combination of
K untreated counties. The weights, dk’s, were non-negative

and summed to 1 [1]. Reliable estimates, Ĉ
(0)
t (0), can be ob-

tained by constructing a synthetic region whose characteris-
tics was similar to that in Shenzhen in the pre-intervention
period [3].

The strategy is to find the important characteristics be-
tween Shenzhen and its “highly resembling” regions relating
to the transmission of COVID-19 but not affected by the
interventions. The literature suggests that the risk of trans-
mission is higher in denser populations, and more urbanized
regions may have more infected individuals [25, 15]. There
is a large number of infected counties in the United States,
and the population density of each county varies dramati-
cally from near 0 to 18,721 persons per square kilometre. We
selected the counties with the sizes of population densities
(P ) close to Shenzhen, i.e. metropolis areas in the United
States.

We also considered latitude (L) of the counties because
the latitude was found to be associated with the transmis-
sion of the COVID-19 [39, 25, 40], before applying the data
assimilation [37] procedure in the construction of the syn-
thetic region.

Let Ct := (C
(0)
t (0), C

(1)
t (0), . . . , C

(K)
t (0))T (t ≤ T0). In

order to estimate dk appropriately, we assumed that P and L
share a common least square structure related to SCM [1, 2]:

⎛
⎜⎜⎜⎜⎜⎜⎝

C
(0)
1 (0)
...

C
(0)
T0

(0)
Ps

Ls

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

C
(1)
1 (0) ... C

(K)
1 (0)

...

C
(1)
T0

(0) ... C
(K)
T0

(0)

P (1) ... P (K)

L(1) ... L(K)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

d1
...

dK

⎞
⎟⎠

where Ps and Ls are the population density and the latitude
of Shenzhen, respectively. Similarly, P (k) and L(k) are the
population density and the latitude of the k-th county of
the United States, respectively.

The literature [2, 1] recommended that not all the Ct,
t ≤ T0 should be included in the estimation procedure, al-
though the user can choose to include as many as M (M ≤
T0) linearly independent combinations of pre-intervention
outcomes [2]. Let

C := (Ct)t=1:T0 ,(3)

which can be viewed as the spatial-temporal data for
our data. We performed principal component analysis
(PCA) [19, 23] for the columns of C and evaluated the
value of M and the linearly independent combinations of
pre-intervention outcomes. The PCA reduced the redundant
information of time signal and the impact of cumulative con-
firmed cases within the estimation procedure.

Let (Comp(0)q ,Comp(1)q , . . . ,Comp(K)
q )T be the q-th com-

ponent of the columns of C in the PCA. Also, let Y :=

(Ps, Ls,Comp
(0)
1 , . . . ,Comp

(0)
Q )T be a (J × 1) vector, where

J = Q + 2, and Q is the chosen number of components. In
other words, Q := M . We can choose Q to be the small-
est number of the ranked principal components that explain
at least 95% of the variance in C. X is a (J × K) matrix

whose k-th column is (P (k), L(k),Comp
(k)
1 , . . . ,Comp

(k)
Q )T .

The vector D := (d1, . . . , dK)T is obtained by minimizing
the distance ‖ Y −XD ‖H:

(4) ‖ Y −XD ‖H=
√

(Y −XD)TH(Y −XD),

where H is a J × J positive semidefinite matrix. The es-
timated weight D̂ was obtained by Nelder-Mead meth-
ods [33, 27].

In addition to the population density and latitude, there
are other factors related to the transmission of COVID-19.
However, there were only 4 days in the pre-interventions
period, the inclusion of more predictors in the linear con-
struction of “synthetic Shenzhen” would result in collinear-
ity during this short pre-intervention period; for example,
temperature and latitude are correlated with each other.
Alternatively, the Q components of pre-intervention out-
comes included in the construction of “synthetic Shenzhen”
can reflect the unobserved, shared, and time varying fac-
tors [3]. The gaps in the health care system might con-
tribute to the variation in the number of confirmed cases in
infected regions. However, the intervention and treatment
of the COVID-19 depend on national and local authorities
and resources. In the construction of “synthetic Shenzhen”,
we focus on the natural characteristics that are not easily
affected by human decisions.

After the synthetic region of Shenzhen was constructed,
an inference for the treatment effect of interventions was
performed by a placebo test [3]. A “placebo effect” [4] was
obtained by assigning an arbitrary sample of K counties in
the United States as a “treated unit”, Shenzhen and the
remaining (K − 1) counties synthesized to a combined un-
treated unit, the difference (gap) of COVID-19 cases per
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100,000 between any of the “treated unit” and correspond-
ing combined untreated unit during post-intervention period
formed to a permutation distribution. If the value of this
gap from Shenzhen was extreme compared to the remaining
gaps in the permutation distribution, the treatment effect
of interventions implemented in Shenzhen was considered
statistically significant [2].

2.3 The delay effects of mild interventions

Besides the determination of treatment effect of inter-
vention in Shenzhen, the timeliness of policy implementa-
tion may also affect the effectiveness of intervention. We
considered the likely outcomes of the interventions if they
were delayed by different days by using a SIHR model [42],
which divided the total population into four classes: S (Sus-
ceptible to infectious disease), I (Infected and infectious
without isolation), H (Hospitalized in well-isolation), and
R (Removed from H because of the recovery or death). Let
Zt := (St, It, Ht, Rt) be the random numbers of compart-
ments S, I,H,R at time t, s.t. St + It + Ht + Rt = N ,
where N was the total number of population. We assumed
(Zt)t∈1:T followed the hidden Markov structure:

Zt+1 = Tt,Θ (Zt) + εt,

where Tt,Θ was the dynamic operator indexed by the time t
and parameters Θ. εt were some noise variables, which were
independent at different times. We treated I1:T as the latent
variables.

For the noise, we followed the literature in infectious dis-
ease [9] by assuming

Zt+1 ∼ Mult(N, Tt,Θ(Zt)/N),

where Mult(n, p) was the density of the multinomial distri-
bution with the total number n and the incident rate vec-
tor p. Based on the mechanism of the spread of epidemic,
we assumed the following dynamical operator Tt,Θ [41]:

Tt,Θ(Zt) = Zt +

⎛
⎜⎜⎜⎜⎜⎝

−
∫ t+1

t
β(u)S(u)

N I(u) du∫ t+1

t
β(u)S(u)

N I(u)− I(u)
Lin

du∫ t+1

t
I(u)
Lin

− γH(u) du∫ t+1

t
γH(u) du

⎞
⎟⎟⎟⎟⎟⎠

,

where (S(t), I(t), H(t), R(t)) = (St, It, Ht, Rt), and
(S(u), I(u), H(u), R(u)) were determined by the dynamic
system (A1) in the Appendix with the initial value
(S(t), I(t), H(t), R(t)) (t < u ≤ t + 1). The functional pa-
rameter β was time-varying contact rate controlled by ad-
ditional parameters β0,m1,m2. Lin was the mean length of
incubation period.

Lin and γ can be assumed to be time-varying in SIHR
model. However, since I1:T is unobserved, it may be cru-
cial to fix Lin to ensure identifiability, which was assumed

to be 5 days for COVID-19 [7, 21, 30]. Parameter γ corre-
sponding to “the removed compartment” was considered in
compartment H which did not affect the estimation of β(t).
Because we focused on the SIHR model, we assumed γ to
be time-invariant for simplicity.

Let Θ := (β0,m1,m2, γ) are the parameters needed to be
estimated.

To reflect the effect of interventions, we used the logistic
function [41] to simulate the decreasing trend of β(t):

β(t) =
β0

1 + exp(λm2(t−m1 −m2/2))
,(5)

where λm2 was chosen as 2 log((1−ε)/ε)
m2

and ε was fixed to
be 0.01. The smaller the values of m1 and m2, the earlier
effectiveness and the stronger intensity of interventions were
implemented, respectively [41]. The trend of β(t) was shown
in Figure 1.

Figure 1. The trend of β(t).

The slope of β(t) at point m1+m2

2 is −β0λm2

4 . A larger
value of λm2 results in a larger slope, and the intensity of
interventions would be stronger accordingly.

The time-varying reproduction number Rt [24, 36] of
SIHR model was calculated from:

Rt =
β0Lin

1 + exp(λm2(t−m1 −m2/2))
.(6)

Given the observed data H1:T and R1:T , we used the pos-
terior distribution:

π(Θ, I1:T |H1:T , R1:T , N, Lin)

for Bayesian inference. Once the prior distribution of Θ:
π(Θ) was given:

π(Θ, I1:T |H1:T , R1:T , N, Lin) ∝
T−1∏
t=1

Mult(Zt+1;N, Tt,Θ(Zt)/N) π(Θ),

which could be randomly approximated by Gibbs sam-
pler embedded Metropolis-Hastings steps [10, 6] since
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π(Θ, I1:T |H1:T , R1:T , N, Lin) has no closed form. The full
conditional distributions for the Gibbs sampler were:

p(Θ|·) ∝
T−1∏
t=1

Mult(Zt+1;N, Tt,Θ(Zt)/N) π(Θ),

p(I1:T |·) ∝
T−1∏
t=1

Mult(Zt+1;N, Tt,Θ(Zt)/N).

The initial values for Gibbs sampling were chosen as: Θ(0) =

(1, 1, 1, 1) and I
(0)
1:T = (1, . . . , 1). After a burn-in period in the

Markov chain, we used the remained samples to approximate
the posterior distribution [41, 42].

For the prediction of spread, we used the posterior dis-
tribution (s > T ):

π(μZs |H1:T , R1:T , N, Lin),(7)

where μZs was the conditional mean of Zs given ZT . Notice
that:

π(μZs |H1:T , R1:T , N, Lin)

∝
∫

p(μZs ,Θ, I1:T |H1:T , R1:T , N, Lin) dΘ dI1:T

∝
∫

I(μZs =Ts,T,Θ(ZT ))π(Θ,I1:T |H1:T ,R1:T ,N,Lin)dΘdI1:T ,

where Ts,T,Θ(ZT ) was the vector at time s determined by the
dynamic system (A1) in the Appendix with the initial value
ZT and parameters Θ. Hence the posterior distribution of
μZs was calculated from π(Θ, I1:T |H1:T , R1:T , N, Lin).

The point estimation of parameters Θ, latent variables
I1:T and the predicted μZs , s > T were presented as the
median of the posterior distribution while 95% credible in-
tervals were constructed with 2.5% and 97.5% quantiles.

Parameter m1 denoted the starting time of the efficacy
of interventions. We varied the estimated values of m1 to
investigate the likely outcomes of delayed interventions. We
considered the delay operator Dh: m1 → m1 + h and let

μ
(h)
Zs

:= Ts,m1,Θh(Zm1)), where Θh = (β0,Dh(m1),m2, γ),

s > m1. Similarly, we used the posterior (7) of (μ
(h)
Zs

)s>m1

to simulate the potential outcomes of the delays of the in-
terventions, where h varied from 0 to 5.

3. RESULTS

3.1 Synthetic control method (SCM)
outcomes

Sixty-nine areas (68 counties in the United States and
Shenzhen) were selected by using their corresponding pop-
ulation density over 500 people per square kilometre. SCM
was used to combine 68 counties in the United States to
construct a synthetic region of Shenzhen based on their lat-
itude, population density and first two components from the

PCA procedure described above, where the first two compo-
nents explained over 95% of covariances of C in (3) for the
pre-intervention period.

The synthetic and average values of latitude, population
density, the first component, and the second component of C
in (3) were shown in Table 1. During the pre-intervention pe-
riod, the latitude was higher in the average of the 68 counties
than in Shenzhen, while the population density was substan-
tially lower on average in the 68 counties than in Shenzhen.
Moreover, the values of two principal components of C in (3)
were negative on the average of the 68 counties. In contrast,
the “synthetic Shenzhen” exactly reproduced the values of
population density, and two principal components of C in
(3) which had in Shenzhen. A “highly resembling” region
of Shenzhen was obtained by mainly combining Broward
(Florida), New York (New York), Santa Clara (California),
Pinellas (Florida), and Westchester (New York) with their
corresponding weights 0.423, 0.335, 0.123, 0.032 and 0.025
as an optimal solution, respectively. The weights of all possi-
ble counties (removed counties with value of weight 0) with
their latitude and population density were represented in
Table A1 in the Appendix.

Table 1. The synthetic and average values of latitude,
population density, the first component and the second
component for 68 counties in the pre-intervention period

Features
Shenzhen Average of

Real Synthetic 68 counties

Latitude 22.55 33.16 38.15
Population density 6670 6669 1348
The first component 0.107 0.107 −0.002
The second component 0.035 0.035 −0.001

Before the mild intervention policies were implemented
on January 23, 2020, the trends of actual cases per 100,000 in
both Shenzhen and “synthetic Shenzhen” were highly sim-
ilar, suggesting that such a synthetic region could be used
to estimate the “counterfactual” results of Shenzhen. Based
on Figure 2, after 1 day of the implementation of the poli-
cies, the growth rate of actual cases per 100,000 in Shenzhen
was relatively slower than that of “synthetic Shenzhen” un-
til January 29, 2020. After that, there was a sharp increase
in the gap of cases per 100,000 between Shenzhen and “syn-
thetic Shenzhen”. On the 16th day from January 19, 2020,
i.e. February 3, 2020, the estimated number of cases per
100,000 in “synthetic Shenzhen” was 11.87, which is 5.75
times of the actual COVID-19 cases per 100,000 observed
(2.07) in Shenzhen (Figure 2).

A placebo test was performed to determine the signifi-
cance level of the difference in the trends of COVID-19 cases
per 100,000. To this end, we plotted the gap curves between
Shenzhen and “synthetic Shenzhen” by in turn exchanging
Shenzhen and each one of the 68 counties in the United
States. The gap of COVID-19 cases per 100,000 between
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Figure 2. The trends of COVID-19 cases per 100,000 between
Shenzhen and “synthetic Shenzhen” from January 19 to

February 3, 2020. The black dashed line indicated the day of
starting the intervention policies in Shenzhen.

Shenzhen and our “synthetic Shenzhen” was the negatively
largest among the negative gaps, i.e. the negative effect of
the intervention on COVID-19 per 100,000 in Shenzhen was
the lowest of all. For those 68 counties, the probability of
having a gap for Shenzhen under a random permutation of
the control measures was less than 5% (i.e. 1/69 = 0.014),
which is statistically significant in a conventional test [2].
This suggested that the mild intervention policies of Shen-
zhen might have significantly reduced the COVID-19 cases
per 100,000 (Figure 3).

3.2 The likely outcomes of delayed
interventions

There were mild but early interventions implemented in
Shenzhen. It is worthy examining the likely outcomes of
those interventions if they were delayed by different days
(Figure 4). The observed COVID-19 cases per 100,000 from
January 19 to February 3, 2020 (red points in Figure 4) were
very close to the 0-day delay curve (i.e. the estimated cumu-
lative confirmed cases per 100,000). Based on our simulation
by delaying the interventions, the expected number of cu-
mulative confirmed cases per 100,000 would be 2.32 times
for a 4-day delay and, a larger, 2.51 times for a 5-day delay
on February 3, 2020 (Figure 4).

3.3 Revisiting the results in terms of
cumulative confirmed cases

We have presented our analysis and results based on the
number of cumulative confirmed cases per 100,000 persons
in the population. Here, we summarize our results based on
the number of cumulative confirmed cases.

Figure 3. The permutation test of the treatment effects of
implementing the policies in Shenzhen and the 68 control
regions in the United States. All grey curves represent the

placebo tests of COVID-19 cases per 100,000 gaps between a
control area (an arbitrary random county of the 68 counties)
and synthetic control city (a combination of remaining 67
counties and Shenzhen), and the blue curve represents the
placebo test of COVID-19 cases per 100,000 gap between

Shenzhen and “synthetic Shenzhen”.

If Shenzhen had not implemented mild intervention poli-
cies on January 23, 2020, the projected number of cumu-
lative confirmed cases would be reach 1546 on February 3,
2020, which would be approximately 5.75 times of the actual
number of cases.

The expected number of cumulative confirmed cases with
corresponding 95% credible interval (CI) for different days
of delay are summarized from January 29 to February 3,
2020 in Table 2. The full simulation results from January 19
to February 29, 2020 are presented in supplementary Ap-
pendix Figure A1. According to Table 2, the expected cu-
mulative confirmed cases were 624 with the corresponding
95% CI (298,1551) for the 4-day delay and 676 with the cor-
responding 95% CI (303,1959) for the 5-day delay. Based on
Figure A1, if the mild interventions were delayed for 4 or 5
days, the epidemic of COVID-19 in Shenzhen could be more
severe than that in “synthetic Shenzhen” (1546 cumulative
confirmed cases on February 3, 2020).

4. DISCUSSION

We used the daily reported cumulative confirmed case
data for 16 days since January 19, 2020, in Shenzhen and
the corresponding data for 16 days since March 1, 2020 in 68
counties in the United States serving as a control group, i.e.,
the “synthetic Shenzhen”, those 68 United States counties
were selected to match Shenzhen by latitude, population
density and the first two components of C in (3) for the pre-
intervention period. Those 68 United States counties did not
implement systematic interventions during 16 days period.
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Table 2. The likely outcome of intervention implemented delay in different days including the expected cumulative confirmed
cases with corresponding 95% CI from January 29 to February 3, 2020

Date Actual 0 day 1 day 2 days 3 days 4 days 5 days

01/29 86 92 (68,132) 96 (69,146) 98 (69,154) 99 (69,159) 99 (69,163) 99 (69,165)
01/30 110 126 (89,185) 136 (91,216) 141 (93,238) 144 (93,258) 145 (93,271) 146 (93,281)
01/31 170 163 (112,249) 187 (122,309) 202 (125,363) 209 (126,407) 213 (126,448) 215 (126,490)
02/01 196 201 (135,318) 244 (155,415) 281(164,522) 300 (166,610) 313 (167,716) 319 (167,813)
02/02 226 236 (154, 392) 302 (188,518) 370 (211,685) 417 (225,862) 450 (226,1098) 469 (227,1294)
02/03 269 269 (171, 458) 355 (216, 616) 456 (260,865) 554 (288, 1175) 624 (298,1551) 676 (303,1959)

Figure 4. The expected number of cumulative confirmed
cases per 100,000 with corresponding credible intervals for
mild interventions if they were delayed by 0, 4 and 5 days.
The points represent the actual cumulative confirmed cases

per 100,000 of Shenzhen.

By applying PCA to compress COVID-19 confirmed cases
per 100,000 from the untreated units (counties in the United
States), and combining the PCA with the latitude and pop-
ulation density in the estimation of weights through data
assimilation, we were able to effectively estimate the model
parameters based on the synthetic control method. In doing
so, the latitude and population density as well as the prin-
cipal components of C in (3) during pre-intervention period
were considered as the characteristics of COVID-19.

The cases of COVID-19 per 100,000 in Shenzhen were
significantly lower than those in “synthetic Shenzhen” af-
ter January 29, 2020. This indicated that the implementa-
tion of the mild intervention policies on January 23, 2020
in Shenzhen had a significant effect on controlling the epi-
demic of COVID-19. The reduction in the COVID-19 cases
per 100,000 became larger and larger as time moved on (Fig-
ure 2).

The predicted cumulative confirmed cases (0-day delay)
were very close to the observed cumulative confirmed cases
of Shenzhen, indicating that our simulation could provide
precise estimates [41]. Therefore, our simulated likely out-
comes of delayed interventions were expected to be reliable.
According to our simulation, there was little difference from
January 23 to January 29, but the gap in the expected cu-

mulative confirmed cases started increasing after January
29, 2020. This was consistent with the trend of the epidemic
between Shenzhen and “synthetic Shenzhen” (Figure 2).

Therefore, it took about a week to see clear effects of in-
terventions. If the mild interventions were not implemented,
or were delayed by a week or longer, the epidemic of COVID-
19 could have been severe. When the mild interventions were
implemented early, the epidemic situation was significantly
mitigated.

A novel step of our analysis strategy was to extend the
use of SCM, which is a classical causal effect method and
used it to create a synthetic reference population. Then,
we introduced an epidemic compartmental SIHR model to
evaluate the effectiveness of mild and early interventions in
Shenzhen. Furthermore, the importance of the early inter-
ventions was revealed by simulating delays and assessing the
consequences in the SIHR model. In conclusion, through the
use of both SCM and SIHR models, the lessons were learned
from the effect of timeliness of interventions to control the
epidemic of COVID-19.

APPENDIX A

A.1 Effect of mild interventions

Figure A1. The expected number of cumulative confirmed
cases with corresponding credible intervals for mild

interventions if they were delayed by different days from
January 19 to February 29, 2020. The points represent the

actual cumulative confirmed cases of Shenzhen.
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Table A1. The pool of counties in the United States to
synthesize Shenzhen with their corresponding population

density, latitude and weights

States Counties Latitude Population
density

Weights

Guangdong Shenzhen 22.55 6670
Florida Broward 26.19 570 0.423
New York New York 40.78 18721 0.335
California Santa Clara 37.22 571 0.123
Florida Pinellas 27.90 619 0.032
New York Westchester 41.15 747 0.025
Florida Orange 28.51 536 0.016
Florida Seminole 28.69 528 0.014
Texas Bexar 29.45 616 0.008
Texas Harris 29.86 1024 0.007
Georgia Fulton 33.79 769 0.002
California Los Angeles 34.20 816 0.001
California Orange 33.68 1293 0.001
Georgia Clayton 33.55 782 0.001
Georgia Cobb 33.94 852 0.001
Georgia DeKalb 33.77 1081 0.001
Georgia Gwinnett 33.96 828 0.001
Texas Dallas 32.77 1120 0.001
Texas Tarrant 32.77 900 0.001

A.2 Delay effect of mild interventions

The dynamic system of compartments S, I, H, R are as

follows:

dS

dt
= −β(t)

S(t)

N
I(t),

dI

dt
= β(t)

S(t)

N
I(t)− I(t)

Lin
,

dH

dt
=

I(t)

Lin
− γH(t),

dR

dt
= γH(t),

(A1)

where (S(t), I(t), H(t), R(t)) are the numbers of cor-

responding compartments at the time t. Given initial

(S(t0), I(t0), H(t0), R(t0)) and the parameters (β(t), Lin, γ),

we can simulate the (S(t1), I(t1), H(t1), R(t1)), t1 > t0 by

the deterministic dynamic system (A1). For simplicity, let

β(t) ≡ β(k), if k ≤ t < k + 1.

A.3 Online materials

The data and R files relevant to the analysis in this study

are available at https://github.com/tingT0929/The-timing-

and-effectiveness-of-implementing-mild-interventions-of-

COVID-19.
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