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1. MATCHING COVARIANTS

We agree with Chen and Wang (2020), Purkayastha and
Song (2020), and Ray et al. (2020) that it is critical to
explore the essential characteristics to match the real and
synthetic Shenzhen in the synthetic control method (SCM)
procedure. It is imperative that the characteristics to pro-
duce the “highly resembling” region of Shenzhen are not
influenced by the human decisions. In addition to popu-
lation density and latitude, which are associated with the
transmission of COVID-19, the weather condition and age
distribution may also be useful in constructing a synthetic
Shenzhen. By considering the temperature and relative hu-
midity, which are hourly time series data, we computed the
average temperature and relative humidity by days and then
the averages over 16 days for Shenzhen and 68 counties of
the United States, respectively.

For convenience and clarity, we will refer to the synthetic
Shenzhen in our original article as Shenzhen-Synthetic-0.
The values of the average temperature in Shenzhen and
Shenzhen-Synthetic-0 are very close (Table 1), assuring that
the temperature is well matched. However, this is not the
case for the average relative humidity and the percentage of
the population aged over 65 (Table 1). The elderly popula-
tion is known to be more susceptible to the virus [2]. How-
ever, Shenzhen has a relatively younger population, while
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Table 1. The real and synthetic values of average
temperature, average relative humidity, and the percentage of

the population aged over 65 for 68 counties in the
pre-intervention period between the real Shenzhen and

Shenzhen-Synthetic-0

Features
Shenzhen

Real Synthetic-0

Temperature (◦C) 16.33 16.38
Relative humidity 71.0% 63.7%
The elderly population proportion 8.5% 16.1%

Table 2. The real and synthetic values of population density,
average temperature, average relative humidity, the
percentage of the population aged over 65, the first

component and the second component for 68 counties in the
pre-intervention period between the real Shenzhen and

Shenzhen-Synthetic-1

Features
Shenzhen

Real Synthetic-1

Population density 6670 6667
Temperature (◦C) 16.33 16.33
Relative humidity 71.0% 71.0%
The elderly population proportion 8.5% 13.3%
The first component 0.106 0.106
The second component 0.035 0.035

there are only approximately 0.5% counties with the pro-
portion of elderly (aged over 65) population below 9% in the
United States. This disparity makes it difficult to match the
age distribution between Shenzhen and Shenzhen-Synthetic-
0 by the percentage of the population aged over 65.

To improve the match, we now consider population den-
sity, average temperature, average relative humidity, and the
percentage of the population aged over 65 as the basis to re-
produce a new “synthetic Shenzhen” in our proposed SCM
procedure. This new synthetic Shenzhen will be referred to
as Shenzhen-Synthetic-1.

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


Figure 1. COVID-19 by the number of cases per 100,000
(y-axis) and date (x-axis). (a) The trajectories of Shenzhen

and Shenzhen-Synthetic-0 and Shenzhen-Synthetic-1. (b) The
permutation test of the treatment effects of implementing the
policies in Shenzhen versus the 68 control counties in the
United States. A grey curve represents the path of the

placebo effect (the difference between a county from the 68
control counties and its “synthetic” control city

(a combination of remaining 67 control counties and
Shenzhen)), and the blue curve represents the difference

between Shenzhen and Shenzhen-Synthetic-1.

We can see from Table 2 that the match is much im-
proved, except the percentage of the elderly population. We
then use Shenzhen-Synthetic-1 to estimate the counterfac-
tual result of Shenzhen. Figure 1 (a) depicts the difference
between the two versions of the synthetic Shenzhen. The
trajectory of COVID-19 in Shenzhen-Synthetic-1 is slightly
lower than that of Shenzhen-Synthetic-0 during the post-
intervention period. Figure 1 (b) reveals a significant treat-
ment effect of the mild intervention based on a permutation
test. The reduction in the COVID-19 cases between Shen-
zhen and Shenzhen-Synthetic-1 was estimated to be greater
than any reduction through the permutation.

Among the confirmed cases in Shenzhen, there were
12.7% cases in those over 65 years old on February 3, 2020
[3]. The number of the confirmed cases by age in the United
States warrants further investigation.

2. THE PRE-INTERVENTION PERIOD

Chen and Zheng (2020), Purkayastha and Song (2020),
Ray et al. (2020), and Zhu (2020) suggested that the pre-
intervention period might not be long enough. To investi-

Figure 2. The trajectories of COVID-19 by the number of
cases per 100,000. Curves represent the data in Shenzhen,

Shenzhen-Synthetic-0, Shenzhen-Synthetic-2, and
Shenzhen-Synthetic-3.

gate this issue, we took into account the incubation period
of COVID-19 and extended the period by 1 and 3 days
into the post-intervention period, leading to 5- and 7-day
pre-intervention periods in our matching process, respec-
tively. These extended periods were really hybrids of pre-
and post-intervention periods. A similar approach was sug-
gested by Abadie [1]. We conducted the principal compo-
nent analysis (PCA) using the 5- and 7-day trajectories of
COVID-19. The first component (explaining over 90% of the
variance), population density, and latitude were used to re-
produce Shenzhen-Synthetic-2 (using the 5-day period) and
Shenzhen-Synthetic-3 (using the 7-day period).

Figure 2 compares the trajectories of COVID-19
in Shenzhen, Shenzhen-Synthetic-0, Shenzhen-Synthetic-2,
and Shenzhen-Synthetic-3. The estimated confirmed cases
were the largest in Shenzhen-Synthetic-0 on February 3,
2020. Permutation tests were conducted to compare Shen-
zhen with Shenzhen-Synthetic-2 and then with Shenzhen-
Synthetic-3. Both tests gave the same probability of having
the lowest placebo gap (1/69 = 0.014), indicating statisti-
cal significance. We note that although limited days of the
post-intervention period were used to construct Shenzhen-
Synthetic-2 and Shenzhen-Synthetic-3, the estimation of
confirmed cases was based on January 23, 2020, as the in-
tervention starting date. As Figure 2 confirms, not surpris-
ingly, the estimated number of confirmed cases was some-
what affected the number of days by which we extended
the pre-intervention period into the post-intervention pe-
riod. Nonetheless, the overall conclusion is similar.

3. STATISTICAL INFERENCE

Chen and Zheng (2020) noted that two unusually large
positive placebo gaps in the permutation test. They were the
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results between Westchester and its “synthetic version,” and
New York and its “synthetic version.” Among all 68 coun-
ties, Westchester was the county with a sharp increase in the
confirmed cases after March 6, 2020, and New York was in
a similar situation after March 11, 2020. These two counties
were included in the permutation test because their placebo
gaps did not deviate from the zero in the pre-intervention
period. Thus, we used the 69 placebo runs in our test. As
pointed out by Chen and Wang (2020), alternative tools of
statistical inference, e.g. “confidence bands” for synthetic
Shenzhen, should be explored. We conducted a preliminary
analysis using bootstrap samples of 68 counties in construct-
ing a “synthetic region.” We found the match between Shen-
zhen and a combination of bootstrapped selected counties
was not adequate. To create “confidence bands” for “syn-
thetic Shenzhen,” a modified bootstrap may need to be de-
veloped to ensure a reasonable match between Shenzhen and
its synthetic version.

4. THE DEVELOPMENT OF SIHR MODEL

We agree with Zhu (2020), Purkayastha and Song (2020),
and Ray et al. (2020) that our proposed SIHR model was
limited in reflecting the pre-symptomatic and asymptomatic
transmissions of COVID-19. Also, our assumption that the
time-varying reproduction number tended to zero might be
restrictive. We began with our analysis in the early out-
break (late January 2020) of COVID-19, when there was
little information on the mechanisms of the transmissions
of COVID-19. We have considered other models in our re-
cent research to evaluate the risk of resuming business for
the states of New York, New Jersey, and Connecticut [5].
For example, we divided the total population into suscep-
tible (S) individuals, unidentified infectious (I) individuals,
self-healing (H) individuals without being confirmed, and
confirmed cases (C) (Figure 3).

We assumed the following dynamic system in terms of
the numbers of individuals in compartments S, I, H, and C
at time t:

dS

dt
= −β′(t)

I(t)

N
S(t),

dI

dt
= β′(t)

I(t)

N
S(t)− (

1

DC
+

1

DH
)I(t),

dH

dt
= I(t)/DH ,

dC

dt
= I(t)/DC ,

where β′(t) is the time-varying transmission ability and fol-
lows the curve in Figure 4 along with four additional pa-
rameters. Here β′(t) is similar to β(t) in the original study,
but it is not assumed to tend to zero. DH is the average
duration from catching the virus to self-healing without be-
ing confirmed; DC is the average duration from catching the

Figure 3. The transition diagram of the SIHC model among
compartments S, I, H, and C.

Figure 4. The trend of β′(t). β0 is the transmission potential
of early outbreak, m1 denotes the timing when the

intervention begins to take effects, m2 is the duration of the
decreasing process, and (1− η) is the reduction of β0 in the

later outbreak.

virus to be confirmed by testing. N is the total number of
population.

Our modified SIHC model partially considers the
pre-symptomatic and asymptomatic transmissions of
COVID-19, the influence of the testing procedure, the lag-
ging effect of the observed cases, the unconfirmed self-
healing individuals, and the possibility of repeated out-
breaks of COVID-19. This dynamic SIHC model is more re-
alistic in evaluating the transmission of COVID-19. Further-
more, we have also considered a deep learning based model
to estimate and predict the trajectories of COVID-19 [4].
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