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Heterogeneity learning for SIRS model:

an application to the COVID-19

GuanNnyu Hu*t AND JUNXIAN GENG

We propose a Bayesian Heterogeneity Learning approach
for Susceptible-Infected-Removal-Susceptible (SIRS) model
that allows underlying clustering patterns for transmission
rate, recovery rate, and loss of immunity rate for the lat-
est corona virus (COVID-19) among different regions. Our
proposed method provides simultaneously inference on pa-
rameter estimation and clustering information which con-
tains both number of clusters and cluster configurations.
Specifically, our key idea is to formulates the SIRS model
into a hierarchical form and assign the Mixture of Finite
mixtures priors for heterogeneity learning. The properties
of the proposed models are examined and a Markov chain
Monte Carlo sampling algorithm is used to sample from the
posterior distribution. Extensive simulation studies are car-
ried out to examine empirical performance of the proposed
methods. We further apply the proposed methodology to
analyze the state level COVID-19 data in U.S.

KEYWORDS AND PHRASES: Bayesian nonparametric, Clus-
ter learning, Infectious diseases, MCMC, Mixture of finite
mixtures.

1. INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) has created
a profound public health emergency around world. It has
become an epidemic with more than 5,000,000 confirmed in-
fections worldwide as of May 21 2020. The spreading speed
of COVID-19 which is caused by a new coronavirus is faster
than severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome (MERS). Recently, the risk of
COVID-19 has been a significant public-health concern and
people pay more attention on precise and timely estimates
and predictions of COVID-19. The Susceptible-Infectious-
Recovered (SIR) model and its variation approaches, such
as Susceptible-Infected-Removal-Susceptible (SIRS) [15, 16]
and Susceptible-Exposed-Infected-Removal (SEIR) model
[11], have been widely discussed to study the dynamical evo-
lution of an infectious disease in a certain region. There are
rich literatures producing early results on COVID-19 based
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on SIR model and its variations [26, 21, 24]. From statis-
tician’s perspectives, building a time-varying model under
SIR and its variations is also fully discussed for COVID-
19 [5, 23, 13]. In most existing literature, people focus
more on dynamic regimes of the SIR models for COVID-19.
They lack discussions on heterogeneity pattern of COVID-
19 among different regions.

The aim of this paper is to propose a new hierarchical
SIRS model for detecting heterogeneity pattern of COVID-
19 among different regions under a Bayesian framework.
Bayesian nonparametric methods such as Dirichlet process
(DP) offer choices to do simultaneous inference on parame-
ters’ estimation and parameters’ heterogeneity information
which contains the number of clusters and clustering config-
urations. Compared with existing approaches such as finite
mixtures models, Bayesian nonparametric approach does
not need to pre-specify the number of clusters, which pro-
vides probabilistic framework for simultaneous inference of
the number of clusters and the clustering labels. Miller and
Harrison [17] points out that the estimation of the number of
clusters under Dirichlet process mixture (DPM) model is in-
consistent which will produce extremely small clusters. One
remedy for over-clustering problem under DPM is mixture of
finite mixtures model (MFM) [18]. The clustering properties
of MFM are fully discussed in Miller and Harrison [18], Geng
et al. [9] and it has been widely applied in different areas
such as regional economics [12], environmental science [10],
and social science [9]. Thus, the key idea of this paper is
to assign MFM priors on different parameters of the SIRS
model to capture the heterogeneity of parameters among dif-
ferent regions. The contribution of this paper are two-fold.
First, we formulate a Bayesian heterogeneity learning model
for SIRS under MFM. To our best knowledge, this is the first
time when MFM is applied into epidemiology models such
as SIRS. Our proposed Bayesian approach successfully cap-
tures the heterogeneity of three different parameters under
the SIRS model among different regions while also consid-
ering uncertainty in estimation of the number of clusters.
Several interesting findings based on our proposed method
are discovered for COVID-19 data in US.

This paper is organized as follows. Section 2 presents
the motivating data we analyze. We discuss our proposed
Bayesian hierarchical model for heterogeneity learning un-
der SIRS model framework in Section 3. The performance
of our proposed method is illustrated via simulation studies
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Figure 1. Exploratory Analysis of COVID-19 on June 10th.

in Section 4. Section 5 is devoted to the analysis of state
level COVID-19 data in U.S. A brief discussion is presented
in Section 6.

2. MOTIVATING DATA

Our motivating data comes from the COVID tracking
project https://covidtracking.com. State Level COVID-19
Data are recorded for the 50 states plus Washington, DC.
For simplicity, we refer to them as “51 states” in the rest
of this paper. Up to June 10th, 2020, United States totally
confirmed 2,043,031 cases. 114,533 people died because of
COVID-19, and 607,279 people are recovered from COVID-
19. The fatality rate of COVID-19 is 5.6% (i.e., the number
of COVID-19 deaths divided by the number of confirmed
COVID-19 cases).

Figure 1 shows state level confirmed numbers, death num-
bers, incident rate, and mortality rate. We can see that New
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York state has the highest confirmed number, death num-
bers, and incident rate; Connecticut has the highest mortal-
ity rate among 51 states; Montana has the least confirmed
number; Alaska has the least death number; the incident
rate of Hawaii is lowest among 51 states; and Texas has the
lowest mortality rate.

3. METHOD
3.1 SIRS model

Compartment epidemic models are widely used to study
infectious disease which spreads through human populations
across a large region. SIR model [14] has been universally
discussed for analyzing the dynamical evolution of an infec-
tious disease in a large population. SIR model is extended to
SIRS model for imperfect immunity situation [15, 16]. For a
given time ¢, a fixed population can be split into three com-
partments: S(t), I(t), and R(t), which denotes the number
of susceptibles, the number of infectious, and the number
of “recovereds” (which includes deaths), respectively. The
dynamical process of SIRS model can be written as follow-
ing nonlinear ordinary differential equations of three given
compartments

ds
_— = — I
7 BSI/N + ¢R,
dI
1 = _ BSI/N —~I
(1) o =P8 /N —~I,
dR
N —
=) R,

where 8 denotes the average rate of contact per unit time
multiplied by the probability of disease transmission per
contact between a susceptible and an infectious subject,
denotes the rate of “recovery” per unit time, which is the
rate at which infectious individuals are removed from being
infectious due to recovery (or death), and ¢ denotes the rate
of loss of immunity of recovered individuals per unit time,
which is the rate at which recovered individuals become sus-
ceptible again [1, 28]. By adding the equations in (1), we
notice that

ds
dt

dl
dt

dR
E_O'

Thus, the model postulates a fixed total population without
entry and exits of demographic type. For example, there are
no births or deaths caused by other than the disease we
study in a certain time. The SIRS model assume the sum of
all three compartments together is constant within a short
period of time such that

(2) S(t)+ I(t) + R(t) = N,
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where N is a fixed total population. In cases with discrete
time t = 1,...,T (in units of days), we have

S(t+1) =S5(t) = SHI(t)/N + ¢R(t),
I(t+1) = I(t) + BSWI(t)/N — ~I(),
R(t+1) = R(t) +71(t) — oR(?),

3)

with the same constraints as (2).

Based on the models in (3) and (2) and assumptions in
[8], the data model of SIRS assumes conditional independent
Poisson distributions evolving at discrete time points. For a
given time t = 1,...,T, the data models are

(4) Zr(t)|Pr(t) ~ Possion(N x Pg(t)),

and

(5) Z1(t)|Pr(t) ~ Possion(N x Pr(t)),

where Zg(t) and Z;(t) are the observed number of “recov-
ereds” (includes deaths) and infectious individuals at time
t, respectively; N is known total number of population and
Zs(t) = N — Z;(t) — Zr(t); Pr(t) and Py(t) are underlying
true rates of recovered and infectious individuals. Thus, our
observed data are {(Zr(t),Z;(t))} : t = 1,2...,T. Based
on the relationship between the number of “recovereds”, in-
fectious, and suspects, we have

(6) Pr(t) + Pr(t) + Ps(t) = 1,

where Pg(t) represents the underlying rate of susceptible
individuals.

Similar to [28], we have following hidden processes:

Pr(t+1) = Pr(t) + vPr(t) — ¢Pr(t),
Pr(t+1) = Pr(t) + BPs(t)Pr(t) — vPi(t),
Ps(t +1) = Ps(t) — BPs(t)Pr(t) + ¢ Pr(t).

(7)

In order to model the hidden uncertainties in SIRS model,
we define following transformation of Pr(t), Pr(t) and Ps(¢)
based on (6)

W) = g1,
® _ Pr(t)
Wi(t) = log( 1)),

The time-varying process of Wr(t) and Wy(t) is defined as

Ws(t+1) = ps(t) +es(t +1),

9) Wr(t+1) = pr(t) + er(t + 1),

where eg(t) ~ N(0,0%) and €;(t) ~ N(0,0%) for t =

1,2,...,T. Based on (6) and (7), we have

ps(t) =Ws(t)
¢
ot W)
B Bexp(Wr(t))
1+ exp(Ws(t)) 4+ exp(Wr(t))
1
Ty exp(W1(0) —

)

+ log(

and

pr(t) =Wi(t)

Bexp(Ws (1)
(1) Fogll =7+ T S s (1) + oo (W1 (D))
+ log( 1 )

1+ vexp(Wi(t)) — ¢

Based on the transformation in (8), we have our data in (4)
and (5) as

ZR(t)|Ws(t), Wi(t)

. 1
@ (¥ @ o)
20 Ws(), Wit
exp(i (1)

1+exp(Ws(t)) + GXP(WI(t))> '

~ Poisson <N X

For the simplicity, we refer the model from (9) to (12) as
{(Zr(t), Z1(t),N),t = 1,2...,T} ~ SIRS(B,7,¢,0%,07).
Based on the transmission rate and recover rate, the basic
reproduction number, Ry, can be calculated by

(13)

3.2 Heterogeneity learning

In Section 2, our motivating data is at state level in US
and we are interested in whether there are heterogeneity pat-
terns on the parameters of interest among different states.
As an assumption, we believe that different states might
have different parameters, however, some states will share
similar pattern in transmission rate, recovery rate, or loss of
immunity rate. Next, we introduce nonparametric Bayesian
methods for heterogeneity learning of SIRS parameters over
n different regions. In this section, we focus on the the trans-
mission rate § for different regions. Recovery rate and loss
of immunity rate can be parameterized in the same way.

Let z1,...,2n € {1,...,k} denote clustering labels of n
regions and f1,..., B, denote the corresponding parameters
in SIRS model for n regions. Our goal is to cluster §1,. .., B,
into k clusters with distinct values 87, ..., 8}, which is usu-
ally unknown in practice. A popular solution for unknown
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k is to introduce the Dirichlet process mixture prior models
[2] as following:

(14) Bi~G, G~ DP(aGy),

where (G is a base measure and « is a concentration pa-

rameter. If a set of values of 51,..., 3, are drawn from G,
a conditional prior can be obtained by integration [3]:

P(Brt1 | Biy---,Bn)

1 n
(15) = Zéﬁj (Bny1) + %Go(ﬁnﬂ)-
j=1

n+ «

Here, 6p,(8¢) = I(B¢ = B;) is a point mass at 3;. We can ob-
tain the following equivalent models by introducing cluster
membership z;’s and letting the unknown number of clusters
k go to infinity [19].

z; | @ ~ Discrete(rmy, ..., m),

Bz~ Go
7 ~ Dirichlet(a/k, ..., a/k)

(16)

where w = (71, ..., 7). In addition, the distribution of z;
can be marginally given by a stick-breaking representation
[22] of Dirichlet process (DP) as

o0
2~ E Thon,
h=1

Th = Vp, H(l — I/z),

e<h
vy, ~ Beta(l, ),

(17)

where §, is the Dirac function with mass at h.

However, [18] proved that the DP mixture model pro-
duces extraneous clusters in the posterior leading to incon-
sistent estimation of the number of clusters even when the
sample size grows to infinity. A modification of DP mixture
model called Mixture of finite mixtures (MFM) model is
proposed to circumvent this issue [18]:

k~p()
(m1,...,mk) | k ~ Dirichlet(n,...,n)

(18) K
zi|k,71'~§:7rh(5h7 i=1,...,n,

h=1

where p(-) is a proper probability mass function (p.m.f.)
on {1,2,..., }.

The conditional prior of ’s under MFM can be stated as
below:

p(5n+1 | Bla e 7571)
19 =~ a
1) x Z(nk +n)dg; + %nGo(ﬂnJﬂ)'
k=1 n
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where 37,..., 35 are the distinct values taken by 51, ..., Bn,
w is the number of existing clusters and ny is the size of
cluster k.

Like the stick-breaking representation in (17) of Dirich-
let process, the MFM also has a similar construction. If we
choose k — 1 ~ Poisson(\) and n = 1 in (18), the mixture
weights 71, - - - , g is constructed as follows:

L. Generate 71,172, - - S Exp()),
2 k= min{j: S0, m > 1},
3. mi=mn, fori=1--- k-1,
4. mp=1-— Zf_l .
For ease of exposition, we refer the stick-breaking represen-

tation of MEM above as MFM(\) with default choice of p(-)
being Poisson(A) and n = 1.

3.3 Hierarchical model

In order to allow for simultaneously heterogeneity learn-
ing of three parameters in SIRS model, the MFM prior
is introduced for parameters (5, 7 and ¢ in the SIRS
model. Our observed data are {(Zg(t, s:), Z1(t,8;), N;) : t =
1,2,...,T,i = 1,2,...,n}, where t denotes each discrete
time point, ¢ denotes each state, and s; denotes the location
for state 4. The hierarchical SIRS model with MFM is given
as

{(Zr(t, i), Z1(t,8;), N;), t =1,2..., T} ~
SIRS(,BZ?,74,(]54,0%}1»,0%2»)72’ =1,2,....n
2P~ MFM(Ag),i =1,2,...,n,

z] ~MFM()\,),i=1,2,....n,

20 ~ MFM(N\y),i = 1,2,...
B.o ~ Gg,

Y=y G,

¢e ~ Go,

0%,,07,; ~1G(0.01,0.01),i =1,2,...

(20)

3n,

where 2°, 27, and 2% denote the cluster assignments of pa-
rameter 3, v, and ¢, respectively. G, G-, and Gy is the
base distribution for parameter 8, v, and ¢, respectively.
The choices of Gg, G, and G4 will be discussed in Sec-
tion 3.4.

v

3.4 Prior and posterior

For the hierarchical SIRS model with MFM introduced
in Section 3.3, the set of parameters is denoted as © =
{85,727 ¢,0,0%.4,07 5 A, Ay Ap 11 = 1,2...,n}. To com-
pletle the mddeL we now specify the joint prior distribution
for the parameters. Based on the natural constraints gener-
ated by (3), we have following distribution for bases distri-



bution Gg, G and G, respectively:
B, ~ Uniform(0, 1),

(21) 7.7 ~ Uniform(0, 1),

¢,» ~ Uniform(0,1).

For the hyperparameters for three MFM processes, we
assign gamma prior Gamma(l,1) on Ag, Ay, Ag. With
the joint prior distributions 7(©), the posterior distri-
bution of these parameters based on the data D =
{(ZR(t,Si),Z[(t,SZ‘),Ni) 1t = 1,2,...,T,i = 1,27...,TL}
is given as

(22)

71'(@|(ZR(t, Si),Z[(t,Si),Ni) = 1,2, .ae
x L(D|®) x 7(©),

T,i=1,2,...,n)

where L(D|©) is the full data likelihood given from the
model (9) to (12). The analytical form of the posterior distri-
bution of 7(0|(Zg(t,s:), Z1(t,8:),N;) : t = 1,2,...,T,i =
1,2,...,n) is unavailable. Therefore, we carry out the poste-
rior inference using the MCMC sampling algorithm to sam-
ple from the posterior distribution and then obtain the pos-
terior estimates of the unknown parameters. Computation is
facilitated by the nimble package [7] in R which generates
C++ code for faster computation.

3.5 Group inference via MCMC samples

After obtaining posterior samples, an important task is
to do inference on posterior samples. Using posterior mean
or posterior median for grouping label z is not suitable. In-
stead, inference on the clustering configurations is obtained
employing the modal clustering method of [6]. The inference
is based on the membership matrices of posterior samples,
BW ... BM) where B® for the t-th post-burn-in MCMC
iteration is defined as:

(23)

. t t
B(t) = [B(t)(za])}i,je{lzn} :1(25 ):ZJ( ))ana t=1,..., M.
Here 1(-) denotes the indicator function, which means
B® (i, ) = 1 indicates observations i and j are in the same
cluster in the t-th posterior sample post burn-in. After ob-

taining the membership matrices of the posterior samples, a
Euclidean mean for membership matrices is calculated by:

1 M
B=-—Y B®,
Py

Based on B and B, ..., B(AZ[), we find the iteration with
the least squares distance to B as

(24)  Cp = argminge .0 > > {B(i,5)" — B(i, )}

i=1 j=1

The estimated parameters, together with the cluster assign-
ments z, are then extracted from the Cp-th post burn-in
iteration.

4. SIMULATION

In this section, we investigate the performance of the hier-
archical SIRS model with MFM from a variety of measures.

4.1 Simulation settings and evaluation
metrics

In order to mimic the real dataset we analyze, we choose
n = 51 and the population for each location is assigned as
the real data population for 51 states. The time length T'
equals 30 for all the simulation replicates. The total number
of replicates in our simulation study is 100. For each param-
eter, we have two different groups and we set the true values
of the parameters 51 = 0.06, 32 = 0.6, ¢1 = 0.06, ¢ = 0.6,
and v; = 0.06,v2 = 0.6. We randomly assign the labels to
51 locations and fix them over 100 replicates. The grouping
labels for three parameters is given in Figure 2.

For each replicate, we have 15,000 iterations MCMC sam-
ples and have first 5,000 iterations burn-in in order to obtain
samples from every 5th iteration of the last 10,000 iterations.

The performance of the posterior estimates of parame-
ters were evaluated by the mean bias (MB) and the mean
standard deviation (MSD) in the following ways, take 5 as
an example:

MSD =

where 3 (s;) is the mean of the posterior estimate over 100
replicates.

For clustering estimation evaluation, the estimated num-
ber of clusters K for each replicate is summarized from the
MCMC iteration picked by Dahl’s method. Rand Index [RI;
20] is applied to evaluate cluster configuration. The RI is
calculated by R-package fossil [25]. A higher value of the
RI represents higher accuracy of clustering. The average RI
(MRI) was calculated as the mean of RIs over the 100 repli-
cates.

4.2 Simulation results

The parameter estimation performance and clustering
performance results are shown in Table 1 and Table 2.

From the results shown in Table 1, we see that the MBs
and MSDs of the parameters are both within a reasonable
range. In general, performance of posterior estimates achieve
a good target.
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Figure 2. Grouping Labels for 3, v, and ¢.

Table 1. Estimation Performance for Simulation Study
(B (transmission rate), v (recovery rate), ¢ (loss of immunity

rate)
Parameter MB MSD
b1 0.008  0.021
B2 —0.072 0.152
Y1 0.007  0.017
Y2 —0.068 0.151
¢1 0.012  0.023
P2 —0.069 0.149

And we see that our proposed methods successfully re-
cover the number of groups and grouping labels within a
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Table 2. Grouping Performance for Simulation Study
(B (transmission rate), v (recovery rata), ¢ (loss of immunity

rate)
Parameter MRI  S.D of RI K S.D. of K
B 0.854 0.058 2.12 0.33
~y 0.857 0.057 2.33 0.55
¢ 0.847 0.059 2.31 0.54

reasonable range for all three parameters from Table 2. Av-
erage rand index for all parameters around 0.85 indicate our
proposed method truly recovers the group labels for all three
parameters. The mean of the estimated number of groups is
close to true number of groups over 100 replicates.

5. REAL DATA ANALYSIS

5.1 30-day analysis from April 1st

We analyze 30-Day data from April 1st, 2020. The reason
why we analyze this time period data is that U.S. Govern-
ment announced the suspension of entry as immigrants and
nonimmigrants of certain additional persons who pose a risk
of transmitting corona-virus https://www.whitehouse.gov/
presidential-actions/ on March 11th, 2020. From the April
1st, we can assume that there are very limited imported
cases from outside U.S. We analyze 30-day data based on
the model in (20) and use the priors discussed in Section 3.4.
We run 50,000 MCMC iterations and burnin the first 20,000
iterations in order to obtain samples from every 10th it-
eration of the last 30,000 iterations. The group labels are
obtained by Dalh’s method in Section 3.5.

For 3, one group is identified. 8 = 0.079 with 95% High-
est Probability Density (HPD) interval [4] (0.058,0.098).
For ~, three groups are identified with 73 = 0.0054 with
HPD interval (0.0021,0.0207), 72 = 0.0419 with HPD in-
terval (0.0022,0.0609) and v3 = 0.0164 with HPD inter-
val (0.0035,0.0241). The basic reproduce numbers of three
groups are given: 31 states in Group 1 with Ry = 14.62
and HPD interval (1.048,21.200), 11 states in Group 2 with
Ry = 1.88 and HPD interval (0.039,15.773), and 7 states in
Group 3 with Ry = 4.82 and HPD interval (0.892,11.116),
respectively. The grouping labels are shown in Figure 3.

For ¢, one group is identified. ¢ = 0.0015 with HPD
interval (1.181 x 1077, 0.0047).

5.2 30-day analysis from May 1st

The second time period we analyze is from May 1st, 2020.
Other settings are same with previous analysis.

For 3, one group is identified. 8 = 0.0042 with 95% HPD
interval (3.056 x 107%,0.1083). Compared with previous 30-
day data, in this time period, the transmission rate decreases
a lot. For ~, two groups are identified with v; = 0.0381
with HPD interval (0.0048,0.3713) and v = 0.0007 with
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HPD interval (0.0003,0.0013). Two states, Oregon and Ver-
mont, are identified in group 1. Other states are identified
in group 2. For ¢, one groups is identified. ¢ = 0.0006 with
HPD interval (2.747 x 10~7,0.0026).

With the estimated values of # and ~y, the basic reproduc-
tion number, Ry, is calculated among different states. There
are two different groups for the basic reproduction number.
One group include Oregon and Vermont with Ry = 0.1102
and HPD interval (6.532 x 10~7,2.656). The other group
includes other 49 states with Ry = 5.4619 with HPD inter-
val (3.26 x 1075,118.36). Comparing to the 30 days period
from April 1st, we can see a decrease for Ry in general. The
partial reason for the decreasing of Ry is that most states
have higher daily new confirmed and resource of hospitals
is of shortage in April. The estimated transmission rate is
higher and the recovery rate is lower in April.

The 14-day average growth rates from June 1st of Oregon
and Vermont are 2.25 x 1075 and 1.65 x 10~°, respectively.
The 14-day average growth rates of some representative
states such as New York and South Dakota are 3.69 x 10~°
and 7.21 x 107°, respectively. These growth rate results are
consistent with our grouping detection.

6. DISCUSSION

In this paper, we develop a nonparametric Bayesian het-
erogeneity learning method for SIRS model based on Mix-
ture of Finite Mixtures model. This statistical framework
was motivated by the heterogeneity of COVID-19 pattern
among different regions. Our simulation results indicate that
the proposed method can recover the heterogeneity pattern
of parameters among different regions. Illustrated by the
analysis of COVID-19 data in U.S., our proposed methods
reveal the heterogeneity pattern among different states.

In addition, three topics beyond the scope of this paper
are worth further investigation. First, we can add spatially
dependent structure [12, 27] on the heterogeneity of differ-
ent states. Second, there is one limitation of our proposed

method. Our model assumes parameters are constant over
a certain time period. For a future time window, the het-
erogeneity over different regions is not predictable. Building
heterogeneity learning model with time varying coefficients
is an interesting future work. Finally, proposing a measure-
ment error correction for SIRS devotes another interesting
future work.

APPENDIX A. ADDITIONAL SIMULATION
RESULTS

In this section, we provide the simulation results with
K = 3 for three parameters. The time length T equals 30
for all the simulation replicates. The total number of repli-
cates in our simulation study is 100. For each parameter,
we have three different groups and we set the true values of
the parameters f; = 0.1,85 = 0.3,83 = 0.7, 1 = 0.1, =
0.3,73 = 0.7, and ¢1 = 0.1, ¢ = 0.3, ¢3 = 0.7. The simula-
tion results for grouping performance is presented in Table 3.

Table 3. Grouping Performance for Simulation Study
(K = 3) (B (transmission rate), v (recovery rata), ¢ (loss of
immunity rate)

Parameter MRI  S.D of RI K S.D. of K
B 0.766 0.052 3.09 0.28
ol 0.755 0.043 3.95 0.78
10} 0.743 0.051 3.15 0.41

From the results shown in Table 3, we see that the clus-
tering performance becomes a little bit worse than K = 2.
The partial reason is that the number of observations in
each cluster decreases which makes the clustering harder
than previous cases.

APPENDIX B. NIMBLE CODE FOR MCMC

In the appendix, the nimble code is listed to demonstrate
the MCMC algorithm. With nimble, we can write our own
code in R but in BUGS syntax and then nimble can compile
our code into C4+.

piFun2 <— nimbleFunction (
run = function(r = double (1)) {
rlength <— length (r)
rsum <— rep (0, rlength)
pi <— rep (0, rlength)

rsum [1] <— pi[l] <— r[1]
for (i in 2:rlength) {
rsum[i] <— rsum[i — 1] 4+ r[i]
if (rsum[i] >= 1) {
pi[i] <— 1 — rsum[i — 1]
}
else {pi[i] <— r[i]}
for (i in l:rlength) {
if (pili] < 0) {pi[i] <= 0}

returnType (double (1))
return (pi)
+
)

SIRSCode <— nimbleCode ({

for (i in 1l:n){
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ZR([1,i]" dpois (lambda = probR[1,i]* population[i]) [8] Dukic, V., Lopes, H. F., AND PoLsoN, N. G. (2012). Tracking
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