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Penalized empirical likelihood for
high-dimensional generalized linear models
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and Liyue Mao

We develop penalized empirical likelihood for parameter
estimation and variable selection in high-dimensional gener-
alized linear models. By using adaptive lasso penalty func-
tion, we show that the proposed estimator has the oracle
property. Also, we consider the problem of testing hypothe-
sis, and show that the nonparametric profiled empirical like-
lihood ratio statistic has asymptotic chi-square distribution.
Some simulations and an application are given to illustrate
the performance of the proposed method.
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1. INTRODUCTION

Empirical likelihood (EL), introduced by Owen [23], is a
nonparametric statistical method. Its properties have been
examined by Owen [25], Qin and Lawless [27], Diciccio and
Hall [9], Chen and Cui [6] and references therein. After pro-
posed by Owen [23], EL has been applied to many statis-
tical models such as linear regression models (e.g., Owen
[24]), partially linear models (e.g., Wang and Jing [35]) and
generalized linear models (e.g., Kolaczyk [17], Chen and
Cui [5]). Generalized linear models (GLMs) were introduced
by Nelder and Wedderburn [22], where the response vec-
tor are assumed to have an exponential family distribution.
Wedderburn [36] proposed the quasi-likelihood method and
showed that the distributional assumption on response can
be replaced by a weaker one on the form of their mean and
variance. When the number of covariates is fixed, standard
EL for generalized linear models has been considered by
Kolaczyk [17]. The advantage of the EL in this case is in
its construction of confidence regions of natural shape and
orientation, rather than in parameter estimation. To fully
use the information in variance structure, Chen and Cui [5]
proposed an extended EL for generalized linear models.

Recently, high-dimensional data, whose dimensionality p
tends to infinity as the sample size n → ∞, are becoming
prevalent in many areas, such as hyperspectral imagery, in-
ternet portals, finance data, especially datasets in genomics
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and other areas of computational biology. The emergence of
high-dimensional data brings challenges to many traditional
statistical methods and theory (e.g., Bai and Saranadasa
[1], Fan and Lv [13]). Thereby, studying the performance of
traditional statistical methods in high-dimensional settings
and establishing new approaches are necessary and exigent.
The changing landscape of dimensionality from low to high
brings new challenges to EL method (e.g., Chen et al. [7],
Hjort et al. [16]).

When dimensionality diverges, variable selection through
regularization has proven to be effective. As argued in Fan
and Lv [12] and Hastie et al. [15], penalized likelihood can
properly adjust the biasvariance trade-off so that the per-
formance improvement can be achieved, see Tibshirani [30],
Fan and Li [11], Candes and Tao [3], Zou [39] and Fan
and Lv [12] for penalized likelihood approaches and dis-
cussions. A new and efficient variable selection approach,
penalized empirical likelihood (PEL) introduced by Tang
and Leng [29], was applied to analyze mean vector in multi-
variate analysis and regression coefficients in linear models
with diverging number of parameters. As demonstrated in
Tang and leng [29], the PEL has merits in both efficiency
and adaptivity stemming from a nonparametric likelihood
method. Also, the PEL method possesses the same merit
of the EL which only uses the data to determine the shape
and orientation of confidence regions and without estimat-
ing the complex covariance. There are many studies in the
literatures concerning the PEL approach of different models.
Ren and Zhang [28] studied PEL method in conditional mo-
ment restriction model. Leng and Tang [19] applied the PEL
approach to parametric estimation and variable selection for
general estimating equation. Lahiri and Mukhopadhyay [18]
studied high-dimensional PEL. Wu et al. [37] used the PEL
method to study linear regression model with right censored
data. Fan et al. [10] applied PEL method to partially linear
varying coefficient model. Chang et al. [4] proposed a new
PEL by applying two penalty functions respectively regu-
larizing the model parameters and the associated Lagrange
multiplier in the optimizations of EL. Wang et al. [32] dis-
cussed the PEL for the sparse Cox regression model.

Nonetheless, as far as we know PEL for high-dimensional
GLMs is less studied, especially in the case that there exists
a disperse parameter σ2 between the relationship of mean
and variance. In the existing literatures, such as Park and
Trevor [26] and Liang et al. [20], σ2 set to be known or it is
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not considered usually, but that may not set up in modeling
count variable, which make the discussion of σ2 significance.

Taking these issues into account, in this paper, we pro-
pose PEL with adaptive lasso in high-dimensional GLMs
based on three estimating equations. Our contribution of
the paper is two folded. First, we employ the PEL approach
to build parsimonious and robust models and obtain the or-
acle property of the PEL estimator. Second, we also investi-
gate the PEL ratio for hypothesis testing and constructing
confidence region of unknown parameters. Simulation stud-
ies and real data analysis indicate that the efficiency of the
proposed PEL estimator is encouraging. Although we focus
on the adaptive Lasso in this paper, the penalty function
could be replaced by other penalties such as SCAD (see Fan
Li [11]), or a family of penalties proposed by Lv and Fan
[21].

This paper formulates an empirical likelihood for GLMs
that incorporates extra constraints which explore the pro-
vided variance structure proposed by Chen and Cui [5], but
they only considered the EL for GLMs when the number of
covariates is fixed. Our results extend the results of Chen
and Cui [5] to the case of high-dimensional variable selec-
tion. Also, we generalize the results of Tang and Leng [29]
to the high-dimensional GLMs and improve the rate of di-
mensionality.

The rest of the article is organized as follows. In Sec-
tion 2, we introduce the methodology and main results. Al-
gorithm is presented in Section 3. Section 4 states some sim-
ulations to show the finite sample performance of the pro-
posed method. A real data example is given in Section 5.
Technical proofs are given in the Appendix.

2. PENALIZED EMPIRICAL LIKELIHOOD

Let a scalar random variable Y be the response of a ran-
dom vector X ∈ Rp such that

E(Y |X) = μ(β) = G(XTβ)

and

Var(Y |X) = σ2V {G(XTβ)}

where β is a p × 1 vector of unknown parameter, G(·) is a
known smooth link function, V (·) is a known variance func-
tion and σ2 is the dispersion parameter. This is the frame-
work of generalized linear models under which the quasi-
likelihood has been a popular tool. The log quasi-likelihood
ratio of β is defined as

(1) Q{Y ;μ(β)} =

∫ μ(β)

Y

Y − u

V (u)
du.

Let (X1, Y1), . . . , (Xn, Yn) be an independent and identi-
cally distributed sample, and μi(β) = G(XT

i β). Differenti-
ating (1) with respect to β, the quasi-score function can be

written as

∂Q(Yi, μi(β))

∂β
=

{Yi − μi(β)}G′(XT
i β)Xi

V {μi(β)}
.

From the variance structure of the model, we get

E{[Yi −G(XT
i β)]

2} = σ2V {G(XT
i β)}.

For 1 ≤ i ≤ n, define

Z
(1)
i (σ2, β) =

[Yi −G(XT
i β)]

2

σ4V {G(XT
i β)}

− 1

σ2
,

Z
(2)
i (β) =

[Yi −G(XT
i β)]G

′(XT
i β)Xi

V {G(XT
i β)}

.

The advantage of the empirical likelihood under Z
(j)
i (j =

1, 2) is in its construction of confidence regions of natural
shape and orientation, rather than in parameter estimation

because Z
(2)
i doesn’t fully use information on variance func-

tion. When V ′ = V ′(G(XT
i β)) �= 0, there may contain useful

information on variance structure. To utilize this informa-
tion, Chen and Cui [5] considered the following extra con-
straints

Z
(3)
i (σ2, β) =

(
[Yi −G(XT

i β)]
2

σ4V {G(XT
i β)}

− 1

σ2

)
ω(XT

i β,Xi),

where ω is a r-dimensional weight function and 1 ≤ r ≤ p.
An optimal ω was given in [5]. Numerical studies show that
this extra constraints leads to error reduction in parameter
estimation. In this article, we use

Zi(σ
2, β) = (Z

(1)T
i (σ2, β), Z

(2)T
i (β), Z

(3)T
i (σ2, β))T

as the auxiliary random vector.

If (σ2
0 , β0) is the true value of the parameters,

E(Zi(σ
2
0 , β0)) = 0. Following Owen [23], an empirical log-

likelihood ratio for (σ2, β) is defined as

�(σ2, β) = −max

{ n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZi(σ
2, β) = 0

}
.

By the Lagrange multiplier method, we can obtain

pi =
1

n

1

1 + λTZi(σ2, β)
,

and �(σ2, β) can be expressed as

�(σ2, β) =

n∑
i=1

log{1 + λTZi(σ
2, β)},
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where λ = λ(σ2, β) staisfies

(2)

n∑
i=1

1

n

Zi(σ
2, β)

1 + λTZi(σ2, β)
= 0.

Let the non-penalized least-squares estimator β̃ =
(β̃1, . . . , β̃p)

T be the initial estimator, which satisfies ‖β̃ −
β0‖ = Op((p/n)

1
2 ) (see Wang et al. [34]). Zou [39] suggested

that the adaptive weights are given by w̃j = |β̃j |−1, j =

1, . . . , p. The penalized empirical likelihood estimator (σ̂2, β̂)
with adaptive lasso is defined as the minimizer of

(3) �p(σ
2, β) =

n∑
i=1

log{1 + λTZi(σ
2, β)}+ nτ

p∑
j=1

w̃j |βj |,

where τ is a tuning parameter.
Let A = {j : β0j �= 0} and denote the cardinality of A as

|A| = d which is unknown. Here we allow d to grow when
n → ∞. Without loss of generality, denote θ = (θT1 , θ

T
2 )

T ,
where θ1 = (σ2, βT

1 )
T ∈ R

d+1, θ2 = β2 ∈ R
p−d corre-

spond to the nonzero and zero components. Suppose that
θ0 is the true value of θ, thus θ0 = (σ2

0 , β
T
10, 0

T )T . Simi-

larly, denote θ̂ = (θ̂T1 , θ̂
T
2 )

T , and θ̂1, θ̂2 are the PEL estima-
tors of θ1, θ2 respectively. Let Ω = E(∂Zi(θ0)/∂θ

T ),Σ =
E(Zi(θ0)Z

T
i (θ0)) and V −1 = ΩTΣ−1Ω where Zi(θ) ∈

R
(2p+1),Σ ∈ R

(2p+1)×(2p+1),Ω ∈ R
(2p+1)×(p+1). Corre-

spondingly we decompose V as a block matrix consisting
Vij(i = 1, 2; j = 1, 2), where V11 ∈ R

(d+1)×(d+1). We need
the following assumptions.

(C1) Let εi = Yi −G(XT
i β), {εi}ni=1 are i.i.d random vari-

ables independent of Xi. For α > 4, E‖Xi‖3α <
+∞,E‖εi‖2α < +∞, and E‖∂wi/∂θ

T ‖α < +∞.
(C2) The eigenvalues of Σ satisfy 0 < C1 ≤ γ1(Σ) ≤ · · · ≤

γp+r+1(Σ) ≤ C2, for some C2 > C1 > 0.
(C3) G(·) is three times continuously differentiable and

V (·) is twice continuously differentiable.
(C4) As n → ∞, p → ∞ and p2/n → 0.
(C5) There exists a positive constant M such that

minj∈A |β0j | ≥ M .

(C6) As n → ∞, the tuning parameter τ satisfies
√
ndτ →

0.

Remark 2.1. Conditions (C1)–(C3) ensure the existence
and consistency of the PEL estimator. Both p and d allow
to diverge as long as condition (C4) is satisfied. In particular,
p = o(n1/2) improves the conditions of [19] and [29]. It was
pointed out by [7] that p = o(n1/2) is likely the best rate
for p such that the logEL ratio is asymptotically normal.
Condition (C5) assures that all important coefficients are
included in the final model.

Remark 2.2. It is worth noting that we require τ =
O(−1/2) to get the consistency and sparsity of the adap-
tive Lasso estimator. However, condition (C6) with smaller

τ is needed to obtain the asymptotic normality of the esti-
mator, because larger τ can complete the variable selection
but produce large biases. For convenience, we all use the
condition (C6) to get our results.

First we show the existence, the consistency and the rate
of convergence of PEL.

Theorem 2.1. Under conditions (C1)–(C6), as n → ∞ and

with probability tending to 1, �p(θ) in (3) has a minimum θ̂

such that ‖θ̂ − θ0‖ = Op((p/n)
1/2).

We now present the following oracle property of PEL.

Theorem 2.2. Let θ̂ = (θ̂T1 , θ̂
T
2 )

T be the minimizer of (3).
Under conditions (C1)–(C6), as n → ∞, we have

(i) (Sparsity) with probability tending to 1, θ̂2 = 0;

(ii) (Asymptotic normality) n1/2WnB
−1/2(θ̂1 − θ10)

T →
N(0, G) in distribution where Wn ∈ R

q×(d+1) such that
WnW

T
n → G for G ∈ R

q×q with fixed q and B = V11 −
V12V

−1
22 V21.

Remark 2.3. Theorem 2.2 shows the oracle property of
PEL estimator in the sense of [11]. That is, PEL estimator
is consistent in model selection and is as efficient as the EL
estimate assuming the true spare model was known.

Next we consider testing statistical hypothesis and con-
structing confidence regions for θ. Consider the null hy-
pothesis H0 : Lnθ0 = 0 versus H1 : Lnθ0 �= 0, where
Ln ∈ R

q×(p+1) is a matrix such that LnL
T
n = Iq for a fixed

q and Iq is the q-dimensional identity matrix. This type of
hypotheses covers linear functions of θ and includes indi-
vidual and multiple components as special cases. Given the
penalized empirical likelihood formulation, a nonparametric
profiled likelihood ratio statistic is constructed as

�̃(Ln) = −2

{
�p(θ̂)− min

θ:Lnθ=0
�p(θ)

}
.

In the following theorem, we will show a key property of
the penalized empirical likelihood ratio.

Theorem 2.3. Under the null hypothesis and conditions
(C1)–(C5), as n → ∞, �̃(Ln) → χ2

q in distribution.

Therefore, a (1 − α)-level confidence region for Lnθ can
be constructed as

(4) Vα =

[
υ : −2

{
�p(θ)− min

θ:Lnθ=υ
�p(θ)

}
≤ χ2

q,1−α

]

where χ2
q,1−α is the (1−α)-level quantile of χ2

q distribution.
As a direct result of Theorem 2.3, we have that P(Lnθ0 ∈
Vα) → 1− α as n → ∞.

3. COMPUTATION

In this paper, we use an iterative nonlinear optimization
algorithm together with the local quadratic approximation
proposed by [11] to obtain the PEL estimator. Also, we give
the choice of tuning parameter.
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3.1 Algorithm of the PEL

Let pτ (βi) = τ |βi|/|β̃i|, we approximate pτ (βi) by

pτ (|β(k)
i |) + 1

2
{p′τ (|β

(k)
i |)/|β(k)

i |}(β2
i − β

(k)2
i ),

where β
(k)
i is the kth step estimate of βi. Thus the minimiza-

tion problem can be reduced to a quadratic minimization
problem and the Newton-Raphson algorithm can be used,
and yield the solution

θ(k+1)

= θ(k)−{∇2�(θ(k))+nΣτ (β
(k))}−1{∇�(θ(k)) + nUτ (β

(k))},

where Uτ (β
(k)) = Στ (β

(k))β(k),

∇�(θ(k)) =
∂�(θ(k))

∂θ
, ∇2�(θ(k)) =

∂2�(θ(k))

∂θ∂θT
.

Similarly θ(k) is the kth step estimate of θ. When
max |θ(k+1) − θ(k)| ≤ 10−3, we say the algorithm converges.
We iterate between solving λ and θ, and [25] gave the
method to solve the equation (2).

3.2 Selection of the tuning parameter

It is very critical to choose a proper tuning parameter
τ since it determines the sparsity of the selected model.
An optimal tuning parameter can result in a parsimonious
model with good prediction performance. [33] showed that
Bayesian information criterion (BIC) is consistent in model
selection. So we employ the BIC-type criterion to choose
the tuning parameter. For a given τ , we can obtain an esti-
mate θ̂τ . The BIC-type criterion is defined by

BICτ = 2�p(θ̂τ ) + Cn log(n)dfτ ,

where dfτ is the number of nonzero coefficients in θ̂τ and Cn

is the scaling factor diverging to infinity at a slow rate for
p → ∞. Here, we choose Cn = log log p.

4. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the performance of penalized empirical likelihood. Differ-
ent dimensionality p and sample size n are adopted in each
simulation, and each designed case are repeated 1000 times.
During the iteration, we follow the strategy in [11] of setting

θ
(k)
i as zero when the i-th component of θ(k) is very close to
zero.

Firstly, we compare the performance of oracle empiri-
cal likelihood (OEL) given by the empirical likelihood es-
timates knowing the true sparsity of the model beforehand,
empirical likelihood (EL), and penalized empirical likeli-

hood (PEL) under different estimating equation, i.e. Z
(2)
i ,

(Z
(1)
i , Z

(2)
i ), and (Z

(1)
i , Z

(2)
i , Z

(3)
i ), the number of which are

p, p+ 1 and 2p+ 1 respectively.

For each simulation replication, we calculate L2 distance:
‖θ̂−θ0‖2 = {(θ̂−θ0)

T (θ̂−θ0)}1/2, ‖β̂−β0‖2 = {(β̂−β0)
T (β̂−

β0)}1/2 and ‖σ̂2−σ2
0‖2 = |σ̂2−σ2

0 |. Reporting medians of the
L2 distance for all approaches. The L2 distance illustrate the
estimation accuracy. The average number of zero coefficients
correctly set to zero (T) and average number of nonzero
coefficients incorrectly set to zero (F) explain the variable
selection performance.

Consider the following generalized linear models

Yi = G(XT
i β) + σV 1/2{G(XT

i β)}εi.

Example 1. In this case, we choose G(t) = t2, V (t) = t,
and εi ∼ U [−

√
3,
√
3]. The parameter values are β =

(3, 1.5, 0, 0, 2, 0, . . .)T and σ = 1.2. Xij ∼ U [0, 1], i =
1 . . . n, j = 1 . . . p, where Xij is the j-th element of Xi.

The medians of L2 distance for θ̂, β̂, σ̂2 and the model
selection performances are reported in Table 1. Form Ta-
ble 1, we conclude that the estimation accuracy of OEL, EL
and PEL increase as the number of estimating equation in-
crease. The PEL estimators have smaller L2 distance than
EL, and the performance of the PEL is close to relevant
oracle empirical likelihood, especially for large sample sizes
no matter what kinds of estimating equation version used.
As n increases, the average number of zero components cor-
rectly is close to p − 3. Thus the model selection result is
satisfying in three kinds of PEL. This confirms the results
of Theorem 2.2. Also, we can conclude that the results of
zero coefficients correctly are better with more estimating
equations.

Example 2. Setting G(t) = et, V (t) = t2, εi ∼
U [−

√
3,
√
3], β = (1, 2, . . .)T , Xij ∼ U [0, 2] and σ = 0.5.

The results are presented in Table 2. Form Table 2, we
can get the same information about different methods and
different estimating equations in terms of estimating error as
Example 1. All the PEL methods have the selectivity about
zero.

Example 3. In this example, we consider the binary X and
set P (Xij = 1) = q, P (Xij = 0) = 1−q with q = 0.2, 0.5, 0.8.
The other settings are the same as those in Example 2.

Since overall pattern for the estimation accuracy and the
model selection performances of the three methods with dif-
ferent estimating equations is similar, to save space, Table 3
depicts the simulated results of OEL, EL and PEL with
three estimating equations only. From Table 3, we can see
that the PEL performs satisfactorily in terms of estimation
accuracy and variable selection.

Finally, the performance of penalized empirical likelihood
confidence region is also evaluated in the following example.

Example 4. Following the situation: G(t) = sin(t), V (t) =
t2, εi ∼ N(0, 1), β = (1, 1, 0, 0, 1, 0, . . .)T , and σ = 0.5. Xi

have the same distribution as Example 1.
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Table 1. Medians of L2 distances (×10−1) and model selection performances for Example 1.

n p L2 OEL1 EL1 PEL1 OEL2 EL2 PEL2 OEL3 EL3 PEL3

100 10 D - - - 0.343 1.385 0.530 0.338 1.327 0.377
D1 0.169 1.083 0.244 0.166 1.046 0.215 0.157 1.061 0.174
D2 - - - 0.093 0.232 0.211 0.089 0.151 0.126
T - - 6.801 - - 6.845 - - 6.896
F - - 0 - - 0 - - 0

200 15 D - - - 0.165 0.964 0.257 0.157 0.912 0.180
D1 0.081 0.795 0.103 0.081 0.780 0.101 0.077 0.777 0.082
D2 - - - 0.041 0.114 0.101 0.040 0.058 0.056
T - - 11.906 - - 11.906 - - 11.948
F - - 0 - - 0 - - 0

400 20 D - - - 0.079 0.600 0.117 0.070 0.562 0.076
D1 0.040 0.529 0.049 0.039 0.520 0.048 0.036 0.509 0.036
D2 - - - 0.019 0.049 0.045 0.017 0.023 0.021
T - - 16.926 - - 16.939 - - 16.979
F - - 0 - - 0 - - 0

The small Angle mark of estimators 1, 2, 3 represent the estimating equations Z
(2)
i , (Z

(1)
i , Z

(2)
i ), (Z

(1)
i , Z

(2)
i , Z

(3)
i );D,D1 and D2 represent the

L2 error of θ, β, and σ2.

Table 2. Medians of L2 distances (×10−1) and model selection performances for Example 2.

n p L2 OEL1 EL1 PEL1 OEL2 EL2 PEL2 OEL3 EL3 PEL3

100 10 D - - - 0.060 0.768 0.082 0.038 0.571 0.055
D1 0.049 0.756 0.058 0.049 0.753 0.061 0.0275 0.551 0.036
T - - 7.505 - - 7.691 - - 7.836
F - - 0 - - 0 - - 0

200 15 D - - - 0.030 0.597 0.042 0.018 0.364 0.025
D1 0.025 0.579 0.028 0.025 0.591 0.031 0.014 0.357 0.016
T - - 12.564 - - 12.703 - - 12.899
F - - 0 - - 0 - - 0

400 20 D - - - 0.014 0.375 0.019 0.009 0.206 0.011
D1 0.013 0.384 0.014 0.012 0.372 0.014 0.007 0.203 0.007
T - - 17.716 - - 17.871 - - 17.951
F - - 0 - - 0 - - 0

Table 3. Medians of L2 distances (×10−1) and model selection performances for Example 3.

q = 0.2 q = 0.5 q = 0.8

n p L2 OEL3 EL3 PEL3 OEL3 EL3 PEL3 OEL3 EL3 PEL3

100 10 D 0.099 1.789 0.177 0.056 0.776 0.098 0.069 1.178 0.103
D1 0.096 1.785 0.158 0.048 0.773 0.073 0.057 1.147 0.074
T - - 7.22 - - 7.88 - - 7.96
F - - 0 - - 0 - - 0

200 15 D 0.059 0.768 0.077 0.018 0.519 0.033 0.026 0.735 0.039
D1 0.058 0.761 0.075 0.014 0.518 0.025 0.022 0.729 0.029
T - - 12.7 - - 12.89 - - 12.93
F - - 0 - - 0 - - 0

400 20 D 0.025 0.463 0.032 0.013 0.271 0.018 0.018 0.429 0.017
D1 0.023 0.461 0.029 0.011 0.271 0.016 0.013 0.422 0.013
T - - 17.84 - - 17.91 - - 17.95
F - - 0 - - 0 - - 0
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Table 4. The empirical frequency (%) that a given value of θ2 does not fall in the 95% confidence interval constructed by (4).

p n 0.8 0.9 1.0(size) 1.1 1.2

6 50 18.6 15 8 15.9 23.7

10 100 40.5 27.3 6.7 31.7 40.1

15 200 76.4 61.6 6.2 67.3 83

20 400 93.7 86 5.9 91.4 96.4

26 800 99.3 95.8 6 97.1 99.3

Setting Ln = (0, 1, 0, . . . , 0) in (4) leads to a confidence
set for θ2, the second component of θ, at the (1−α) level. For
the nominal level α = 0.05, we report the empirical frequen-
cies of θ2 /∈ Vα for a sequence of θ2 values in Table 4. At the
true value θ2 = 1, the empirical frequency in rejecting the
null hypothesis is close to the nominal level α = 0.05, which
maintain the size and confirms the result of Theorem 2.3.
When the discrepancy between θ2 and the the true value is
larger, the rejection frequency increases. Particularly, when
n is large and the difference between θ2 and true value is 0.2,
the rejection rate is close to 1. This shows that the proposed
penalized empirical likelihood has a good power for testing
the null hypothesis.

5. REAL APPLICATION

To illustrate the usefulness of proposed penalized empiri-
cal likelihood, we consider the data from the National Med-
ical Expenditure Survey (NMES) which was conducted in
1987 and 1988 to provide a comprehensive of how Americans
use and pay for health services, using a subset of individuals
ages 66 and over (a total of 4406 observations). The same
data set has been used to model the demand for medical
care, e.g., [8] and a subset of this dataset has been analyzed
in [38].

The major objective is to illustrate the number of physi-
cian office visits (OFP) while accounting for the following
predictor variables: EXCLHLTH (=1 if self-perceived health
is excellent), POORHLTH (=1 if self-perceived health is
poor), NUMCHRON (of chronic conditions), ADLDIFF (=1
if the person has a condition that limits activities of daily
living), NOREAST (=1 if the person lives in northeastern
US), MIDWEST (=1 if the person lives in midwestern US),
WEST(=1 if the person lives in western US), AGE (age in
years divided by 10), BLACK (=1 if the person is African
American), MALE (=1 if person is male), MARRIED (=1
if the person is married), SCHOOL (of years of education),
FAMINC (family income in 10000), EMPLOYED (=1 if the
person is employed), PRIVINS (=1 if the person is cov-
ered by private health insurance) and MEDICAID (=1 if
the person is covered by Medicaid). Mean of physician of-
fice visits is 5.77 with variance 45.69. The raw data display
with a high degree of overdispersed. The OFP variable also
have excess number of zero, frequency histogram of it is

present in Figure 1. As noted in [38], consider the following
model:

E(Y |X) = G(XTβ) and Var(Y |X) = σ2G(XTβ),

where G(t) = et. We calculate the quasi-Poisson likelihood
estimator, the best subset estimator comparing with the
proposed PEL. The results are presented in Table 5. The
standard errors of the proposed PEL should divided by ten.
From Table 5, we can see that the PEL estimator achieves
the simplest model, and this technique is close to the best
subset.

Both the number of chronic conditions and self-perceived
health are important determinants of utilization. Indi-
viduals with greater schooling seek care in office settings
more often that may due to the reason that education
makes individuals more informed consumers of medical
care services. Person with supplementary private insurance
seek care from physicians more often. That is because
private insurance typically covers physical therapy, check
ups, etc., with small deductibles and coinsurance rates
while Medicare does not. Medical coverage is a significant
determinant of the number of visit, that [8] give a expla-
nation of price. Moreover, age and the region of residence
appears to have some influence. The impact of a number
of conditions that lead to disability can be ameliorated or
postponed through therapy or rehabilitation. Men seek less
care in office settings. An explanation for this phenomenon
is the anecdotal fact that men tend to wait longer before
seeking medical care. While, the other variables don’t make
contribution to the number of physician office visits.

APPENDIX A. PROOFS OF THEOREMS

We begin by collecting technical lemmas that will be used
in the proof of the main theorems.

Let an = (p/n)1/2, and let Dn = {θ : ‖θ − θ0‖ ≤ can} be
a neighbourhood of θ0 for some constant c > 0. In Lemma 1,
we show that ‖λθ‖ = Op(an) where θ is in a large enough
neighbourhood of θ0, assuring the asymptotic expansion of
�(θ). For notational purposes, we define Ip+1 = (HT

1 , H
T
2 )

where H1 ∈ R
(d+1)×(p+1) and H2 ∈ R

(p−d)×(p+1). Through-
out the proof, we use the Frobenius norm of a matrix A,
that is ‖A‖ = {tr(ATA)}1/2.
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Table 5. The fitted coefficients and standard errors in NMES data.

Variable Likelihood PEL Best Subset

OFP - - -
INTERCEPT 1.296(0.228)*** 1.277(0.013) 1.229(0.082)
EXCLHLTH -0.386(0.079)*** -0.388(0.010) -0.378(0.030)
POORHLTH 0.287(0.047)*** 0.284(0.012) 0.286(0.018)
NUMCHRON 0.163(0.011)*** 0.184(0.002) 0.164(0.004)
ADLDIFF 0.093(0.043)* 0.081(0.009) 0.094(0.016)
NOREAST 0.107(0.046)* 0.110(0.009) 0.113(0.016)
MIDWEST -0.010(0.043) 0 0

WEST 0.123(0.047)** 0.121(0.007) 0.129(0.016)
AGE -0.055(0.028) -0.078(0.003) -0.051(0.010)

BLACK -0.065(0.058) 0 0
MALE -0.071(0.037) -0.065(0.009) -0.084(0.013)

MARRIED -0.040(0.038) 0 0
SCHOOL 0.025(0.005)*** 0.047(0.001) 0.026(0.001)
FAMINC -0.002(0.006) 0 0

EMPLOYED 0.052(0.057) 0 0
PRIVINS 0.321(0.051)*** 0.317(0.001) 0.325(0.019)

MEDICAID 0.288(0.065)*** 0.276(0.003) 0.286(0.024)
σ2 6.842 6.839

Figure 1. The frequency of physician office visits.

Lemma 1. If Conditions (C1)–(C4) hold, then ‖λθ‖ =
Op(an) for θ ∈ Dn.

Proof. For θ ∈ Dn, λ = ρu where ‖u‖ = 1 is a unit vector.
Following [25], we have

ρ

{
uTSθu−max

i
‖Zi(θ)‖

1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ)

∣∣∣∣∣
}

≤ 1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ)

∣∣∣∣∣ ,

where Sθ = n−1
∑n

i=1 Zi(θ)Z
T
i (θ). By the fact,∥∥∥∥∥ 1n

n∑
i=1

Zi(θ0)

∥∥∥∥∥ = Op((p/n)
1/2),

we have

1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ0)

∣∣∣∣∣ = Op((p/n)
1/2).

As

Sθ0 =
1

n

n∑
i=1

Zi(θ0)Z
T
i (θ0)

p−−→ Σ,

so uTSθ0u = Op(1). Because,

max
i

‖Zi(θ0)‖

≤ max
i

‖Z(1)
i (θ0)‖+max

i
‖Z(2)

i (θ0)‖+max
i

‖Z(3)
i (θ0)‖,

under condition (C1), we have maxi ‖Zi(θ0)‖ = Op(n
1/α).

Therefore

max
i

‖Zi(θ0)‖
1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ0)

∣∣∣∣∣
= Op(n

1/α)Op((p/n)
1/2) = op(1),

and we conclude that ‖λθ0‖ = Op((p/n)
1/2). By Taylor ex-

pansion, we have

1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ)

∣∣∣∣∣
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=
1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ0) +
∂Zi(θ0)

∂θ
(θ − θ0) + op(1)

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ0)

∣∣∣∣∣+max
i

∥∥∥∥∂Zi(θ0)

∂θ
(θ − θ0)

∥∥∥∥+ op(1).

From condition (C1), we have

max
i

‖∂Zi(θ0)/∂θ
T (θ − θ0)‖ = op(1),

then

1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ)

∣∣∣∣∣ = Op((p/n)
1/2).

This together with

max
i

‖Zi(θ)‖ ≤ max
i

‖Zi(θ0)‖+max
i

‖∂Zi(θ0)/∂θ
T (θ − θ0)‖,

we have

max
i

‖Zi(θ)‖
1

n

∣∣∣∣∣
n∑

i=1

uTZi(θ)

∣∣∣∣∣ = op(1).

Since

uTSθu = uTSθ0u+ op(1) = Op(1),

Lemma 1 follows.

Proof of Theorem 2.1. It suffices to show that for any given
ε > 0, there exists a large constant C such that

(5) P

{
inf

θ∈∂Dn

�p(θ) > �p(θ0)

}
≥ 1− ε,

where ∂Dn is the boundary of Dn. This implies that, with
probability at least 1 − ε, there exists a local minimum in
the ball {θ0 + anu : ‖u‖ ≤ C}. That is to say, there exists a

local minimizer θ̂ of �p(θ) such that ‖θ̂ − θ0‖ = Op(an).

For θ ∈ Dn, by the definition of EL,

Q1n(θ, λ) =
1

n

n∑
i=1

Zi(θ)

[1 + λTZi(θ)]
= 0.

From Lemma 1, we have that λTZi(θ) and ‖λ‖ are stochas-
tically small for θ ∈ Dn. Applying Taylor expansion on
Q1n(θ, λ), we have

0 = Z̄(θ)− Sθλ+ rn,

where Z̄(θ) = 1
n

∑n
i=1 Zi(θ) and

rn =
1

n

n∑
i=1

Zi(θ)[λ
TZi(θ)]

2(1 + ξi)
−3

is the reminder term and |ξi| ≤ |λTZi(θ)|. Inverting the
expansion, we have λ = S−1

θ [Z̄(θ) + rn]. Applying Taylor’s
expansion on �(θ), we have

2�(θ, λ) = 2
n∑

i=1

λTZi(θ)−
n∑

i=1

[λTZi(θ)]
2+

2

3

n∑
i=1

[λTZi(θ)]
3

(1 + ξi)3
,

where |ξi| ≤ |λTZi(θ)|. Substituting λ into �(θ), we obtain
that

2�(θ) = nZ̄(θ)TS−1
θ Z̄(θ)− nrTnS

−1
θ rn +

2

3

n∑
i=1

[λTZi(θ)]
3

(1 + ξi)3
.

We have a decomposition as

2�(θ) = T0 + T1 + T2,

where

T0 = nZ̄(θ0)
TS−1

θ0
Z̄(θ0),

T1 = n{Z̄(θ)− Z̄(θ0)}TS−1
θ {Z̄(θ)− Z̄(θ0)}

and

T2 =n{Z̄(θ0)
T [S−1

θ − S−1
θ0

]Z̄(θ0)

+ 2Z̄(θ0)
TS−1

θ [Z̄(θ)− Z̄(θ0)]} − nrTnS
−1
θ rn

+
2

3

n∑
i=1

[λTZi(θ)]
3(1 + ξi)

−3.

By Taylor expansion, the definition of Ω and condition (C2),
we have

T1 > n‖Z̄(θ)− Z̄(θ0)‖2r−1
p+r+1(Σ)

= nOp(‖Ω‖2‖θ − θ0‖2)
= na2n‖u‖2Op(1).

As T2/T1 → 0 and 2�(θ0)− T0 → 0, 2�(θ)− 2�(θ0) is domi-
nated by T1.

It can be easily seen that

�p(θ)− �p(θ0)

= �(θ)− �(θ0) + nτ

p∑
j=1

w̃j(|β0j + anuj | − |β0j |)

≥ �(θ)− �(θ0)− nτan
∑
j∈A

w̃j |uj |

Note that

∑
j∈A

w̃2
j ≤ d·

(
min
j∈A

|β̃j |
)−2

=d

⎛
⎝ min

j∈A
|β̃j |

min
j∈A

|β0j |

⎞
⎠

−2

·
(
min
j∈A

|β0j |
)−2
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By conditions (C4) and (C5), we get∣∣∣∣∣∣
min
j∈A

|β̃j |

min
j∈A

|β0j |
− 1

∣∣∣∣∣∣ ≤
(
min
j∈A

|β0j |
)−1

‖β̃ − β0‖ = op(1).

That is

(6) min
j∈A

|β̃j |/min
j∈A

|β0j | = 1 + op(1).

Thus,
∑

j∈A w̃2
j = Op(d). This, together with condition (C6)

and the Cauchy-Schwarz inequality yields that

nτan
∑
j∈A

w̃j |uj | ≤ nτan‖u‖

⎛
⎝∑

j∈A
w̃2

j

⎞
⎠

1/2

= nd1/2τan‖u‖Op(1)

= na2n‖u‖Op(1)

Hence, for a sufficient large constant C, the sign of �p(θ) −
�p(θ0) is dominated by T1 which is nonnegative. This com-
plete the proof.

Proof of Theorem 2.2. Firstly, in order to prove the part (i)
of this Theorem, it is sufficient to show that

P
{
min
j∈A

|θ̂j | > 0
}
→ 1.

Note that θ̂ is a root-(n/p)-consistent estimator of θ0, by
conditions (C4) and (C5), we have

min
j∈A

|θ̂j | ≥ min
j∈A

|θ0j | − ‖θ̂ − θ0‖ ≥ M − op(1)

This ends the proof of part (i).
Next we prove the estimation efficiency part (ii). By the

result of part (i) and the definition of PEL, the PEL estima-

tor θ̂ is the constrained minimizer of (3) subject toH2θ0 = 0.
According to [27], by the Lagrange multiplier method, ob-
taining the estimates is equivalent to minimizing a new ob-
jective function

�̃(θ, λ, ν) = n−1
n∑

i=1

log{1+λTZi(θ)}+
p∑

j=1

pτ (|βj |)+νTH2θ,

where ν ∈ R
p−d is the vector of extra Lagrange multiplier.

Define

Q̃1n(θ, λ, ν) =
1

n

n∑
i=1

Zi(θ)

[1 + λTZi(θ)]
,

Q̃2n(θ, λ, ν) =

(
1

n

{ n∑
i=1

[∂Zi(θ)
T /∂σ2]λ

[1 + λTZi(θ)]

}T

,

1

n

{ n∑
i=1

[∂Zi(θ)
T /∂β]λ

[1 + λTZi(θ)]
+ b(β)

}T)T

+HT
2 ν,

and

Q̃3n(θ, λ, ν) = H2θ,

where b(β) = (τsgn(β1)/|β̃1|, . . . , τsgn(βp)/|β̃p|)T .
The minimizer (θ̂, λ̂, ν̂) satisfies Q̃jn(θ̂, λ̂, ν̂) = 0(j =

1, 2, 3). It follows Lemma 1 that ‖λ̂‖ = Op(an) is stochasti-
cally small. Therefore, similar to the argument of [27], from

Q̃2n(θ̂, λ̂, ν̂) = 0 we conclude that ‖ν̂‖ = Op(an). Hence,

we can use stochastic expansions of Q̃jn around the value
(θ0, 0, 0) (j = 1, 2, 3).

It is straightforward to verify that⎛
⎝ −Q̃1n(θ0, 0, 0)

0
0

⎞
⎠

=

⎛
⎝ −Σ Ω 0

ΩT 0 HT
2

0 H2 0

⎞
⎠

⎛
⎝ λ̂

θ̂ − θ0
ν̂

⎞
⎠(7)

+R(1)
n +R(2)

n +R(3)
n +R(4)

n ,

where R
(1)
n = (R

(1)T
1n , R

(1)T
2n , 0)T , R

(1)
1n ∈ R

r+p+1, R
(1)
2n ∈

R
p+1 and the k-th component of R

(1)
jn (j = 1, 2) is given

by

R
(1)
jn,k =

1

2
(η̂ − η0)

T ∂2Q̃jn,k(η
∗)

∂η∂ηT
(η̂ − η0),

η = (θT , λT )T , η∗ = (θ∗T , λ∗T )T satisfying ‖θ∗ − θ0‖ ≤
‖θ̂ − θ0‖ and ‖λ∗‖ ≤ ‖λ̂‖, so ‖R(1)

n ‖ = op(n
− 1

2 ). The other

three terms are given by R
(2)
n = {0, b̃(β0)

T , 0}T with b̃(β0) =
(0, b(β0)

T )T ∈ R
p+1,

R(3)
n =

{{[
Σ− 1

n

n∑
i=1

Zi(θ0)Z
T
i (θ0)

]
λ̂

}T

+

{(
1

n

n∑
i=1

∂Zi(θ0)/∂θ
T − Ω

)
(θ̂ − θ0)

}T

, 0, 0

}T

and

R(4)
n =

{
0,

{(
1

n

n∑
i=1

∂Zi(θ0)
T /∂θ − ΩT

)
λ̂

}T

, 0

}T

.

Note that the assertion (6), by conditions (C5) and (C6), it
can be concluded that

‖R(2)
n ‖ = ‖b̃(β0)‖ = Op(

√
dτ) = op(n

−1/2)

From Lemma 1, we can establish that ‖R(3)
n ‖ = ‖R(4)

n ‖ =
op(n

−1/2). Therefore we get ‖Rn‖ = op(n
−1/2).

Define K11 = −Σ, K12 = (Ω, 0) and K21 = KT
12, where

K22 =

(
0 HT

2

H2 0

)
, K =

(
K11 K12

K21 K22

)
.
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Let ϑ = (θT , νT )T , by inverting (6.1), we have

(
λ̂− 0

ϑ̂− ϑ0

)
= K−1

⎧⎨
⎩
⎛
⎝ −Q̃1n(θ0, 0, 0)

0
0

⎞
⎠+Rn

⎫⎬
⎭ .

Applying matrix inversion by blocks, we have

K−1 =

(
K−1

11 0
0 0

)

+

(
−K−1

11 K12

I

)
A−1

(
−K21K

−1
11 I

)
,

where A = K22 −K21K
−1
11 K12. Then

ϑ̂− ϑ0 = A−1K21K
−1
11 Q̃1n(θ0, 0, 0) + op(n

−1/2).

Another matrix inversion by blocks gives

A−1 =

(
V − V HT

2 (H2V HT
2 )

−1HT
2 V V HT

2 (H2V HT
2 )

−1

(H2V HT
2 )

−1H2V −(H2V HT
2 )

−1

)
.

This implies that

θ̂ − θ0

= −{V −V HT
2 (H2V HT

2 )
−1H2V }ΩTΣ−1Q̃1n(θ0, 0, 0)+R1n,

where R1n is the corresponding component in vectorK−1Rn

and ‖R1n‖ = op(n
−1/2).

It is clear that the expansion of the nonzero component
θ1 is

θ̂1 − θ10 = −{H1V −H1V HT
2 (H2V HT

2 )
−1H2V }

× ΩTΣ−1Q̃1n(θ0, 0, 0) + op(n
− 1

2 ).

Let B = V11 − V12V
−1
22 V21, Yni = n−1/2Zni and

Zni = −WnB
−1/2{H1V −H1V HT

2 (H2V HT
2 )

−1H2V }
× ΩTΣ−1Zi(θ0).

Next we verify the Lindeberg-Feller condition ([31]). It
is easy to verify that E(Zni) = 0, Var(Zni) = WnW

T
n ,

E(‖Yni‖4) = O(1/n2) and

P(‖Yni‖ > ε) ≤ 1

nε2
E(‖Zni‖2) =

trVar(Zni)

nε2
= O(1/n).

Hence,

n∑
i=1

E(‖Yni‖2)I(‖Yni‖ > ε)

≤ n{E(‖Yn1‖4)}1/2{P(‖Yn1‖ > ε)}1/2
p−−→ 0.

As
n∑

i=1

Var(Yni) = WnW
T
n

p−−→ G,

we have

n1/2WnB
−1/2(θ̂1 − θ10) −→ N(0, G)

in distribution. Finally, by noting that

‖n1/2WnB
−1/2R1n‖2 = op(1),

the proof of part (ii) is complete.

Proof of Theorem 2.3. First, we present the asymptotic ex-
pansion of �(θ̂) where θ̂ is the minimizer of �(θ). Let hi =

λ̂TZi(θ̂), as maxi |λ̂TZi(θ̂)| = op(1) implied by Lemma 1, by
Taylor expansion, we have

�(θ̂) =

n∑
i=1

hi −
n∑

i=1

h2
i

2
+

n∑
i=1

h3
i

{3(1 + ξi)3}
,

where |ξi| < |λ̂TZi(θ̂)|. In the proof of Theorem 2.1, we have
shown the expansion for θ ∈ Dn to be λ = S−1

θ [Z̄(θ) + rn],
where rn = n−1

∑n
i=1{Zi(θ)[λ

TZi(θ)]
2(1+ξi)

−3} and |ξi| ≤
|λTZi(θ)|. Substituting the expansion of λ̂ into hi, we show
that

2�(θ̂) = nZ̄(θ0)
TΣ−1ΩV HT

2 (H2V HT
2 )

−1(8)

×H2V ΩTΣ−1Z̄(θ0) + op(1).

Under the null hypothesis, because LnL
T
n = Iq, there ex-

ists H̃ such that H̃2θ = 0 and H̃2H̃
T
2 = Ip−d+q. Now by

repeating the proof of Theorem 2.2, we establish that under
the null hypothesis, the estimation of θ can be obtained by
minimizing

�̃p(θ, λ, ν) =

n∑
i=1

log{1 + λTZi(θ)}(9)

+ n

p∑
j=1

pτ (|βj |) + νT H̃2θ.

Denote the minimizer of (9) by (θ̆, λ̆, ν̆), from the proof of

Part (i) in Theorem 2.2, θ̆2 = 0 with probability tending
to 1. Similar to (8), we establish that

2�(θ)|Lnθ=0 = nZ̄(θ0)
TΣ−1ΩV H̃T

2 (H̃2V H̃T
2 )

−1(10)

× H̃2V ΩTΣ−1Z̄(θ0) + op(1).

Combining equations (8) and (9), we obtain

�̃(Ln) = nZ̄(θ0)
TΣ−1/2{P1 − P2}Σ−1/2Z̄(θ0) + op(1),

where

P1 = Σ−1/2ΩV H̃T
2 (H̃2V H̃T

2 )
−1H̃2V ΩTΣ−1/2,
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and

P2 = Σ−1/2ΩV HT
2 (H2V HT

2 )
−1H2V ΩTΣ−1/2.

As P1 − P2 is an idempotent matrix of rank q, P1 − P2 can
be written as ΞT

nΞn, where Ξn is a q × (p + r + 1) matrix
such that ΞnΞ

T
n = Iq. Further, we see that

n1/2ΞnΣ
−1/2Z̄(θ0) −→ N(0, Iq)

in distribution can be easily established. Then

nZ̄(θ0)
TΣ−1/2(P1 − P2)Σ

−1/2Z̄(θ0)
T −→ χ2

q

in distribution and Theorem 2.3 follows.
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