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dependence
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Bounded response variables such as percentages, propor-
tions, or rates are common in applications involving social
and educational datasets, including rates of poverty or rates
of achievement by municipalities, counties or provinces. New
regression models have been proposed in recent years by
considering distributions such as the Beta, Simplex and Ku-
maraswamy models for this type of data. However, to this
type of dataset, it is common to observe the spatial depen-
dence of units. For instance, municipalities or counties are
organized into states. For this case, the supposition of in-
dependence among observations in the same state removes
relevant relations between neighboring provinces. In this pa-
per, we present a model of spatially bounded distribution
regression with a Bayesian estimation approach where spa-
tial relations are modeled by a spatial random variable with
a particular dependence structure, such as the intrinsic con-
ditional autoregressive model or the Leroux definition. Ad-
ditionally, the Bayesian inferential method and model com-
parison criteria are discussed. Simulation studies and an ap-
plication in reading comprehension spatial data are used to
illustrate the performance of the proposed model and the
estimation method adopted.

Keywords and phrases: Bounded distribution, Bayesian
inference, Proportions, Spatial models.

1. INTRODUCTION

Regression models for a bounded responses have been
recently proposed in the literature, considering different
distributions for the response variable, for instance, Beta
[19, 11, 8], Simplex [33, 32], Kumaraswamy [6, 1], L-Logistic
[9] and in a more general way, considering the CDF-quantile
[31] and the Generalized Johnson System [20].

In regression analysis using the Beta and Simplex dis-
tributions, the mean and dispersion parameters are associ-
ated with a set of covariates considering proper link func-
tions while for the Kumaraswamy, CDF-quantile, GJS, and
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L-Logistic distributions a quantile, preferentially the me-
dian, and dispersion parameters are considered to intro-
duce the covariates. Additionally, mixed regression mod-
els have been proposed considering Beta, Simplex and
Kumaraswamy distributions. Examples are Verkuilen and
Smithson [37], Figueroa-Zuñiga, Arellano-Valle and Ferrari
[12], Qiu, SONG and Tan [28], Bayes, Bazán and de Cas-
tro [1]. Those classes of models are more convenient when
observations in data are measured, for instance, repeatedly
through time, or if the existence of cluster between units
is observed and it is necessary to incorporate heterogeneity
among units considering random effects or hierarchical or
multilevel structures.

On the other hand, spatial dependence among units is
very common, considering, for instance, the proportion of
students with a satisfactory level in reading comprehension
in cities of a country or the proportion of people living in
poverty in those same cities. In both cases, it is possible
to consider that similar characteristics between neighboring
cities, sharing those similar characteristics, can be associ-
ated with the variability observed in the units, and so an
adequate spatial configuration based on neighbors must be
incorporated in the regression analysis to achieve more re-
alistic results.

At the present, there is only a spatial regression model
for proportions available considering the Beta distribution.
Specifically, Cepeda-Cuervo and Núñez-Antón [8] proposed
a spatial double generalized beta regression model consid-
ering joint modeling approaches for the mean and disper-
sion parameters, which was applied to the analysis of the
quality of education in Colombia. However, several authors
have shown that not always assuming that the response vari-
able follows the Beta distribution is the most appropriate
model, so the, Simplex [22] and Kumaraswamy [1] can be
good modeling alternatives. However, no spatial model has
been proposed, to the best of our knowledge, considering
Simplex and Kumaraswamy distributions using a Bayesian
approach.

Thus, the main goal of this paper is to propose a spatial
regression model with a Bayesian estimation approach for
bounded response variables. In its formulation, the response
variable can follow some bounded distribution such as the
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Simplex or Kumaraswamy distribution, and then by consid-
ering the intrinsic conditional autoregressive (ICAR) model
[3, 2] or the Leroux definition [21], it is possible to measure
dependency among neighbors to take into consideration the
spatial relations in the data. Also, possible differences in
comparisons with the spatial Beta regression model can be
detected.

This work is organized as follows. A dataset and prelim-
inary analysis are introduced in Section 2 to motivate the
purpose of this work. In Section 3, three bounded distri-
butions are presented for a response variable with support
in the unit interval, which is considered in this approach.
Section 4 proposes the general spatial regression model for
bounded response models by considering the distributions
discussed in the previous section and the spatial random
effect to model the spatial dependence. In Section 5, a
Bayesian approach is formulated and developed for the pro-
posed regression model, including model comparison criteria
to choose between alternative models. Section 6 presents re-
sults of simulation studies showing the recovery parameters
of the proposed model and the model comparison criteria.
To illustrate the proposed method, the real database in-
troduced in Section 2 is re-analyzed considering alternative
spatial models in Section 7. Additional comments and future
developments are presented in Section 8.

2. DATA AND PRELIMINARY ANALYSIS

Since 2006 a Student Assessment Census (ECE in Span-
ish) have been carried out annually by the Ministry of Ed-
ucation in Peru, which aims to ascertain the level of stu-
dent achievement in reading and mathematics in the second
grade. In 2012, the ECE reached a school coverage rate of
97.7%, with five or more students, and 89.4% of the student
population. Results are available at http://umc.minedu.gob.
pe/evaluacion-censal-de-estudiantes-2012-ece-2012/.

In this work, we are interested in explaining variable y:
the proportion of students with a satisfactory level in read-
ing comprehension (RC) [10] in each one of the 195 Peruvian
provinces (political subdivisions at the second level) during
the year of 2012. Additional details about the RC Test are
described in MINEDU [24]. As covariates, we considered
some indexes that are part of the mentioned state density
index [26], which measures the provision of essential services
to support human development. Specifically, we consider the
Health Index, which quantifies the number of medical doc-
tors per 10,000 inhabitants and takes values between 0 and
60; higher values mean that there are more doctors and thus
more access to health in the province. There is also the Sani-
tation Index, which is the percentage of dwellings with piped
water and sewer service, taking values from 0 to 100. Fi-
nally, we consider the Electrification Index. This means the
percentage of residences with electricity. The values for this
index again range from 0 to 100. Details to compute these in-
dicators can be found in PNUD [26] and the dataset is avail-
able at http://www.pe.undp.org/content/peru/es/home/

Table 1. Descriptive statistics of the variables for RC data

Descriptive statistics y x1 x2 x3

Minimum 0.023 0.043 0.002 0.338
First quartile 0.099 0.108 0.410 0.613
Median 0.167 0.173 0.542 0.743
Mean 0.203 0.199 0.563 0.721
Third quartile 0.284 0.246 0.725 0.850
Maximum 0.616 0.746 0.995 0.995
Variance 0.017 0.015 0.042 0.025
Skewness 0.919 1.595 0.068 −0.29

library/poverty/Informesobredesarrollohumano2013/
IDHPeru2013.html. In order to formulate a regression
model, the covariates Health, Sanitation, and rate of Elec-
trification are transformed regarding the proportion of each
province and then named as x1, x2, and x3 respectively.
Some descriptive statistics for the response variable and
covariates are presented in Table 1.

Since the response variable is defined int the (0, 1) inter-
val, the following Beta regression model is a natural first
option to fit the dataset:

yi|β, φ ind.∼ Beta(μi, φ)(1)

log

(
μi

1− μi

)
= β0 + β1x1i + β2x2i + β3x3i

i = 1, . . . , 195,

where μi and φ are respectively the mean and precision pa-
rameters of the Beta distribution, β0 is the intercept and
βm, m = 1, 2, 3 are regression coefficients that are associated
with the covariates. By considering a Bayesian approach, the
parameters of the model are estimated using the integrated
nested Laplace approximation (INLA) method, as imple-
mented in the R-INLA package ([30], http://www.r-inla.org).
The following default non-informative priors [see 4, cap. 5]
are used to complete the model:

log(φ) ∼ logGamma(1, 0.1)

βm ∼ N (0, 106), m = 0, 1, 2, 3.

Table 2 displays the posterior mean, standard deviation
and the 95% credible interval (CI) for the parameters of
the fitted Beta regression model. Looking at CI, from the
regression coefficients where the zero value is not included,
it is possible to conclude that the covariates are significant
and have a positive effect on the response variable. In other
words, if essential services in one province increase, then it is
expected that the proportion of students with a satisfactory
level in the RC will also increase.

To evaluate the fit of the model, we initially consider
standardized residuals. These residuals are defined as:
ri = (y�i − yi)/

√
v̂ar(y�i ), where y�i is the posterior mean

of the predictive distribution of the parameters [see 4,
Sections 5.5 and 5.6]. The estimated variance is given
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Table 2. Estimates of parameters for the RC data in the Beta regression model

Parameter Mean Standard deviation 95% Credible interval

β0 −3.63 0.19 (−4.01, −3.26)
β1 1.79 0.36 (1.08, 2.50)
β2 1.27 0.28 (0.73, 1.82)
β3 1.51 0.33 (0.86, 2.17)
φ 24.79 2.47 (20.21, 29.89)

Figure 1. Fit of the Beta regression model for RC data. a) Standardized residuals (ri) vs. fitted values. b) Confidence band of
the posterior predictive distribution with histogram of the observed dataset.

by v̂ar(y�i ) = y�i (1 − y�i )/(1 + φ̂), where φ̂ is the mean
posterior distribution of the parameter φ. An example
of R code for computing the standardized residuals can
be found in Section 5 of the Supplementary Material,
http://intlpress.com/site/pub/files/ supp/sii/2021/0014/
0002/SII-2021-0014-0002-s001.pdf.

The left side of Figure 1 displays the standardized resid-
uals against the posterior means for the predictive distribu-
tion y�i . A band with Φ−1(.025) = −1.96 and Φ−1(.975) =
1.96 was added, where Φ(.) denotes the cumulative den-
sity function (cdf) of the standard normal distribution. It
is possible to see that some residuals are outside the range
indicating the model does not fit the data well, because of
the existence of large residuals. The fitted model induces
a distribution of future data which depend on the obser-
vations. This distribution is called the Posterior Predictive
Distribution (PPD). The PPD is used to generate synthetic

datasets. Considering values of μ̂i and φ̂, i = 1, . . . , n, a to-
tal of M = 1000 datasets of size n were generated using the
predictive distribution of yi. To obtain a confidence band for
the PPD, the data that were generated in each replication
were grouped in frequency tables with each bin (bucket) of
length 0.03. Values in quantiles 0.05 and 0.95 are shown in
dashed lines and quantile 0.5 in solid line, on the right side
of Figure 1, together with the histogram of the response
variable observed. It is possible to see the length of the con-
fidence band is big for response values around 0.15 and some
observations are outside of the range, indicating the model

does not fit the data well. Thus, it is possible to conclude
that both results shown in Figure 1 suggest a lack of fit
of the Beta regression model. No spatial configuration was
considered in the previous Beta regression model.

Additionally, in order to identify a possible spatial config-
uration of the response variable, Figure 2 depicts residuals
from the fitted model classified in seven intervals of size 0.91,
where each interval has a specific color intensity. Provinces
with a light shade mean negative residuals and a dark colors
indicate a province with positive residuals. Thus, spatially,
it is possible to observe the presence of groups of provinces
with similar behavior not explained in the model, some of
them are positive, others negative and also some with small
residuals. As a consequence, a spatial configuration is iden-
tified for the provinces that need an investigation in order
to formulate an adequate model for the RC data. This spa-
tial configuration was not considered in the previous Beta
regression model. This result was also observed considering
alternative regression models without spatial effect, assum-
ing the distribution Simplex or Kumaraswamy distributions,
as will be shown in Section 7.

Motivated by the data, the main purpose of this paper
is to formulate spatial regression models for proportions
that can be used as alternatives to detect relations between
neighboring cities.

This work will initially explore the use of the Beta-spatial
regression model proposed by Cepeda-Cuervo and Núñez-
Antón [8] to the RC data and at the same time, other spatial
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Figure 2. Map of the 195 Peruvian provinces for RC data
with the residuals of the Beta regression model, showing

clusters with surrounding provinces.

models with bounded response variables will be introduced,
using other distributions and two types of spatial random
effects.

3. BOUNDED RESPONSE VARIABLES

This section defines some distributions for bounded re-
sponse variables with support in the unit interval (0, 1).

• A random variable Y follows a Beta distribution with
parameters μ and φ1 if its probability density function
(pdf) is given by:

g(y|μ, φ1)=
Γ(φ1)

Γ(μφ1)Γ[(1−μ)φ1]
yμφ1−1(1− y)(1−μ)φ1−1.

(2)

Notation Y ∼ Beta(μ, φ1) with μ ∈ (0, 1) as the loca-
tion parameter and φ1 > 0 as the precision parameter
is used. The mean and variance of this distribution are
respectively:

E[Y |μ, φ1] = μ and

V ar[Y |μ, φ1] =
μ(1− μ)

1 + φ1
.

• A random variable Y follows a Simplex distribution
with parameters μ and φ2 if its pdf is given by:

g(y | μ, φ2) =

√
φ2√

2π{y(1− y)}3
exp

[
−φ2

2
d(y | μ)

](3)

where d(y | μ) = (y−μ)2

y(1−y)μ2(1−μ)2 is a unitary deviance,

which is nonnegative with value zero if only if y = μ.
Notation Y ∼ S(μ, φ2) with μ ∈ (0, 1) as the location
parameter and φ2 > 0 as the precision parameter is
used. Following Jorgensen [18, pg 199], the mean and
variance of this distribution are respectively

E(Y |μ, φ2) = μ and

V ar(Y |μ, φ2) = μ(1− μ)−
√

φ2

2

exp

{
φ2

2μ2(1− μ)2

}

Γ

(
1

2
,

φ2

2μ2(1− μ)2

)
,

where Γ(a, x) =
∫∞
x

ta−1e−tdt, which defines the in-
complete gamma function.

• A random variable Y follows a Kumaraswamy distribu-
tion if its pdf is given by:

g(y|κ, φ3) =− log(1− q)φ3

log (1− e−φ3) log(κ)
y−

φ3
log(κ)

−1

×
{
1− y−

φ3
log(κ)

} log(1−q)

log(1−e−φ3 )
−1

.

(4)

Notation Y ∼ K(κ, φ3, q) is used, with the quantile
κ ∈ (0, 1) as the location parameter, φ3 > 0 as the
precision parameter. κ = G−1(q) where the probabil-
ity q is assumed to be fixed according to the quantile
of interest and G−1(.) denotes the inverse cdf of Ku-
maraswamy distribution. Under this parameterization
using κ and φ3, the mean and variance of this distribu-
tion are given by:

E(Y |κ, φ3)

=
log(1− q)

log(1− e−φ3)
B

(
1− log κ

φ3
,

log(1− q)

log(1− e−φ3)

)
and

V ar(Y |κ, φ3) =
log(1− q)

log(1− e−φ3)

×B

(
1− 2 log κ

φ3
,

log(1− q)

log(1− e−φ3)

)
− (E(Y |κ, φ3))

2,

where B(·, ·) denotes the beta function and κ denotes
the quantile parameter which defines the median if q =
0.5.

In the remainder of the paper we consider a random
variable y which follows a bounded distribution, denoted by
y ∼ π(θ, φ), where θ is a location parameter (being μ in
the Beta and Simplex distributions or κ corresponding to
the median in the Kumaraswamy distribution), and φ is a
precision parameter φ1, φ2, and φ3 as previously described.
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Figure 3. Pdf of the bounded distributions (Beta, Simplex and Kumaraswamy) with different values of the location parameter
θ and the precision parameter φ.

Figure 3 shows the probability density function (pdf) of

the bounded distributions. They are the Beta, Simplex and

Kumaraswamy distributions, considering different values for

the location parameter θ and the precision parameter φ. On

the left side of Figure 3, different values of the precision

parameter are shown with a fixed value of the location pa-

rameter θ = 0.5. On the right side, the plot shows the pdf

for different values of the location parameter with a fixed

value of the precision parameter φ = φ1 = φ2 = φ3 = 1.

For a fixed value of θ, higher precision values of precision
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result in more concentrated values around the location pa-
rameter. Also, for a fixed value of φ, the distribution moves
to the right or the left according to the value of the location
parameter. Additional shapes of bounded distributions are
included in Figures S1 to S3 of Section 2 of the Supplemen-
tary Material.

Additionally, Figure 4 plots, for a fixed value of the lo-
cation parameter θ = 0.5, the standard deviation (sd) of
the bounded distributions as a function of φ. The value of
sd decreases when φ increases. Also, for the same values of
θ and φ, the Beta distribution has the highest value of sd,
the Simplex distribution has the smallest value in one part
(φ < 10) and the Kumaraswamy in the other part (φ > 10).

4. THE SPATIAL BOUNDED
DISTRIBUTION REGRESSION MODEL

In this section, a spatial bounded distribution regression
model (SBDR) is formulated to determine, beyond the ef-
fects of explanatory variables, how the spatial correlation
between Peruvian provinces can explain the proportion of
students with a satisfactory level in reading comprehension.

To formulate the SBDR model, we consider n observed
variables y = {yi : i = 1, ..., n} with yi following a bounded
distribution with support in the (0, 1) interval, as defined
in Section 3, with location and precision parameters θi and
φ, respectively. Here, i denotes a region with a location in
space (latitude and longitude coordinates). There is also a
set of p < n explanatory variables, thus the SBDR model is
defined as follows:

yi |zi,β, φ ind.∼ π(θi, φ)

g(θi) = x�
i β + zi

z|τ ∼ Nn (0,R)(5)

i = 1, . . . , n,

where π(θi, φ) denotes the bounded distribution of the re-
sponse variable, which can be the Beta, Simplex or Ku-
maraswamy distribution, where θi is the location parameter
for locale i (the mean in the case of the Beta and Simplex
distributions, and the median for the Kumaraswamy distri-
bution) and φ is the precision parameter. The link function
g(.) is assumed to be the logit function, but other link func-
tions can be considered. The unknown regression parame-
ters or regression coefficients of fixed effects are denoted by
a vector β = (β0, ..., βp)

� ∈ Rp+1, X is an n×(p+1) design
matrix, which is assumed to have full rank, with information
of covariates associated with the fixed effects including the
intercept, x�

i = (xi0, xi1, . . . , xip) is the row i of X and R
is an adequate precision matrix.

The random effects vector associated with locations z =
(z1, · · · , zn)� accommodates the spatial dependency. It is
assumed that zi are conditionally normally distributed such
that zi|z−i denotes the conditional distribution of zi given
the all other values of z and ni is the number of neighbors of

Figure 4. Standard deviation of one variable with bounded
distribution, as a function of the precision parameter φ for a

fixed value of the location parameter θ.

region i. To attribute spatial association, let zi|z−i be rep-
resented by a Markov property such that zi|z−i = zi|zi∼j

where i ∼ j denotes the neighbors of region i. This model
is known as the intrinsic conditional autoregressive (ICAR)
model [3]. Furthermore, τ is a spatial precision (inverse of
the variance) parameter of z. In other words, z encapsu-
lates the relationship between region i with its neighbors
j′s considering the joint distribution:

(6) π(z|τ) ∝ τ r(R)/2 exp
(
−τ

2
z�Rz

)
,

where r(.) is defined to be the rank of a matrix. The precision
matrix R, with dimension n × n, has its entries defined as
follows:

Rij = τ

⎧⎨⎩ ni, if i = j,
−1, if i ∼ j,
0, other case.

This specification is called here as SBDR-Icar model.
From the ICAR parameterization, parameter τ can rep-

resent overdispersion and spatial dependence at the same
time [21]. For this reason, we also employ the proposal of
Leroux, Lei and Breslow [21] for random effect z. Their pro-
posal suggests a modification of the precision matrix of z as
follows:

(7) R′ = τ ′((1− λ)I + λR)

where τ ′ is the precision parameter of matrix R′, I is the
identity matrix, R is according to the definition in (6) with
precision one (τ = 1) and λ is a spatial dependence param-
eter with values in the [0, 1] interval. When λ = 0, z has
independent components, resulting in a model named here
SBDR-Ind (with no spatial relations) and retains spatial de-
pendency when λ = 1, such that the SBDR-Icar model is
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obtained. In other cases, when 0 < λ < 1, it is called the
SBDR-Ler model. A bounded regression (BR) exists when
a non-random effect is considered in the model, for instance
the Beta regression presented in Section 2.

5. BAYESIAN INFERENCE

Bayesian inference was performed to fit the model defined
in Equations (5), (6) and (7). In this case, the interest was
to obtain the posterior distribution of p(z,β, φ, τ, λ|y).

Considering the definition in Equations (6) and (7), the
augmented likelihood function takes the following form:

L(β, φ, τ, λ|y, z) =
n∏

i=1

p(yi|θi, φ)p(z|τ, λ)

∝
n∏

i=1

p(yi|θi, φ)× τ
r(R′)

2 exp{−τ

2
z�R′z}

(8)

where β, φ, τ and λ are parameters to be estimated in the
model, with θi = g−1(xT

i β + zi).

Independent normal distributions, with mean zero and
small precision, are considered as the prior for each one
of components of β and the logit λ, log( λ

1−λ ), parame-
ters. In other words, βj ∼ N (0, τβ), j = 0, 1, . . . , p and
logit λ ∼ N (0, τλ). For the φ parameter, we adopt a prior
Gamma(a, b) distribution with a = 1 and b = 0.1, giv-
ing a mean of 10 and variance of 100 [5]. Finally, for the
τ parameter, following Blangiardo and Cameletti [4, pg.
182], a minimal informative prior is considered assuming
a Gamma(a′, b′) distribution, where a′ = 1 and b′ = 0.0005,
giving a mean of 2000 and a large variance.

Thus, the posterior distribution takes the following form:

p(z,β, φ, τ, λ|y) ∝ p(y|z,β, φ)p(z|τ, λ)p(β)p(φ)p(τ)p(λ)
∝ L(β, φ, τ, λ|y, z)p(β)p(φ)p(τ)p(λ),

meaning that the posterior distribution is proportional
to the likelihood function, p(y|.), the random effects
prior, p(z|.), multiplied by the prior distribution of the
parameters of interest. In this case, independent priors
p(β)p(φ)p(τ)p(λ) are assumed.

The posterior distribution can be approximated by
MCMC algorithms; however, we opted to use the approx-
imate Bayesian inference for latent Gaussian models using
the R-INLA program. General information about the INLA
procedure can be found in Section 1 of the Supplementary
Material.

In this case, for the INLA approach the model proposed
takes the latent field as ζ = (θ,β, z) and hyperparameters
as γ = (φ, τ, λ). Then, INLA returns the posterior marginal
for the latent field and the posterior marginal for the hyper-
parameters.

5.1 Model comparison criteria

Since the proposal is a mixed effect model, several model
comparison criteria can be adopted.

One measurement to select the best model is the de-
viance information criterion (DIC), which was introduced
by Spiegelhalter et al. [34], defined as:

DIC = D̂ + pD

where D̂ is the posterior mean of the deviance and pD is the
effective number of parameters of the model. Following Rue,
Martino and Chopin [30, Section 6.4], deviance is defined as:

D(ζ, �) = −2
∑
i∈D

log p(yi|ζi,�) + constant.

where � = (φ,β, τ, λ) and the effective number of parame-
ters is approximated by

pD ≈ n− Trace{Q×Q∗−1}.

where Q is the prior precision matrix of the latent field ζ
and Q∗−1 is the posterior covariance matrix.

DIC is one of the most common criteria, but there is no
consensus about its use. Therefore, other criteria are also
used such, namely the widely applicable information criteria
(WAIC) and the mean absolute error (MAE).

WAIC [38] is a Bayesian approximation to fit the ex-
pected out-of-sample log predictive density. First, it is nec-
essary to calculate the posterior predictive density, then, to
add a correction for the number of effective parameters. In
the context of this work, WAIC is defined as two times the
expression (9) [13]

(9) ̂elppdWAIC = lppd− pWAIC

where lppd is the logarithm of the pointwise predictive den-
sity of yi induced by the posterior distribution p(�|y), given
by

n∑
i=1

log

∫ (∫
p(yi|ζi,�)p(ζi|�,y−i)dζi

)
d�

and

pWAIC =

n∑
i=1

Var(log

∫ (∫
p(yi|ζi,�)p(ζi|�,y−i)dζi

)
d�).

As suggested by Blangiardo and Cameletti [4], summary
indexes can be computed using the posterior predictive dis-
tribution p(y�i |y) =

∫
p(y�i |ζi)p(ζi|y)dζi, in other words, the

likelihood of a replicated observation y�i given data y. Then,
with the purpose of model evaluation, MAE is defined as
the absolute average difference between the observed value
yi and the corresponding estimated value y�i for i = 1, . . . , n,
with the following equation:

MAE =

∑n
i=1 |y�i − yi|

n
.
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Thus, MAE measures the deviation between the observed
value yi and its estimated value y�i providing model goodness
of fit.

6. SIMULATIONS

This section presents a simulation study to analyze the
performance of parameter recovery for SBDR models and
model misspecification. Additionally, other studies are de-
veloped to evaluate the model comparison criteria defined
in Section 5.1.

6.1 Recovery study and model
misspecification

In this first study, nine scenarios with Re = 100 replicates
for each one are simulated from the SBDR-Ler model, since
this model is the more general one. The models in each sce-
nario depend on three values of parameter τ : (0.5, 1 and 2)
and on the three bounded distributions: Beta, Simplex and
Kumaraswamy.

The reason for comparing these models using the three
bounded distributions is to find characteristics of perfor-
mance for each one of the distributions. At the same time,
different values are used for parameter τ to identify charac-
teristics of this parameter, representing the precision of the
spatial relations between regions.

The amount of spatial dependence for the simulated sce-
narios is fixed with λ = 0.9. In order to preserve a com-
parison with the application of RC data, the neighborhood
configuration is identical to the application dataset. This
means that the work was perfomed with n = 195 regions.
Each one has a location in the space with latitude and longi-
tude values, which was used to elaborate the matrix R con-
taining the relations of dependency between regions. Ran-
dom vector z was simulated from a multivariate Normal dis-
tribution with zero mean and precision matrix R′ defined
in (7). Population parameters β were fixed with values sim-
ilar to the RC data, β = (−3.0, 2.0, 0.7, 1.5). The values of
xi, i = 1, . . . , n, were drawn from three independent dis-
tributions, they are respectively Beta(μx = 0.2, φx = 15),
N (0, 1) and Bernoulli(0.7). The intention, of this selection,
is to have variety of covariates representing proportion, con-
tinuous and categorical inputs. The φ parameter of each dis-
tribution was selected similar to its point estimate in real
data application, thus φ1 = 80, φ2 = 19 and φ3 = 12.

For each scenario, the SBDR-Ler model was generated
and then the SBDR-Ler, SBDR-Icar and BR models were
fitted following the method described in Section 5. In order
to evaluate parameter recovery of the “True” model and the
models that are misspecified, some measures are considered
for to evaluate the bias in the estimation of the parameters of
the model. Specifically, we consider the absolute bias (AB),

which is defined as: ABm =
∑Re

r=1 |m̂r−m|
Re , where m identifies

the parameter under evaluation; the standard deviation (Sd)

and the number of times when the parameter is in the 95%
credible interval (CI).

Table 3 shows results only for scenarios which were sim-
ulated from the SBDR-Ler model with τ = 1 and the three
bounded distributions. As can be seen, the point estimates of
the regression parameters are very accurate when consider-
ing the true model in all distributions, but we find some bias
in the estimation of the φ and τ parameters associated with
spatial effects. Additionally, for the true model, empirical IC
coverage for the different parameters seems adequate, espe-
cially for the Simplex distribution. These results are coher-
ent with results reported in other studies where the param-
eters for the spatial effects are known to have identifiability
issues, as to mentioned in [17], so usually it is not easy to
estimate all the parameters simultaneously. The lower cover-
age of the φ parameter in the case of the SBDR-Ler model
with Beta distribution can be explained because this dis-
tribution has a scale bigger than the case of Kumaraswamy
and Simplex distributions. Also, Kumaraswamy distribution
does not come quickly reach small precision compared with
the corresponding precision parameter in the Simplex dis-
tribution, in particular for θ < 0.5, see Figure 4 and Figures
S1 to S3 in Section 2 of the Supplementary Material. By
analyzing results of the models that are misspecified, as ex-
pected, we found that IC coverage are lower than in the true
model. We found bias in the estimation of the parameters
when considering the corresponding ICAR model, and even
more for the non-random effects model.

Results of the scenarios with τ = 0.5 and τ = 2 are in-
cluded in Section 3 of the Supplementary Material, showing
similar results.

6.2 Model comparison criteria study

Two studies are demonstrated to shed light the capacity
of the model comparison criteria to choose the true model.
In both cases, 100 datasets are simulated from the SBDR-
Ler model with one of the three bounded distributions and
τ = 1.

In the first study, inside the same response distribution,
we compare the capacity of the model comparison criteria to
select the true generated model analyzing SBDR-Ler, SBD-
Icar and the model without z (BR). Table 4 presents the
number of times (in 100 datasets) when the criterion selects
the correspondingt fitted model as the best one. It is possible
to see that all criteria arrive at the correct selection, making
the SBDR-Ler model as the preferable one in comparison
with SBDR-Icar and BR models.

In the second study, we compare, across different bounded
response (that is, between different likelihoods), the capac-
ity of the model comparison criteria to determine the model
with true response distribution. As can be seen in Table 5,
the model comparison criteria can be inconclusive to select
the model considering the different bounded response dis-
tributions studied. In order to show this observation, we fix
τ = 1 and λ = 0.9 and perform two experiments: Simulation
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Table 3. Parameter recovery study of the SBDR-Ler model considering three bounded distributions with spatial precision
τ = 1 and model misspecification considering alternative models

Parameter β0 β1 β2 β3 φ τ λ

Beta distribution

True −3 2 0.7 1.5 80 1 0.9
SBDR-Ler Estimated −2.973 2.001 0.692 1.479 60.995 1.398 0.864

Sd 0.309 0.433 0.041 0.101 16.655 0.321 0.095
AB 0.218 0.351 0.034 0.083 19.72 0.417 0.062
95% CI Coverage 94 95 95 91 79 83 96

SBDR-Icar Estimated −2.96 1.994 0.689 1.471 55.578 1.466
Sd 0.125 0.424 0.04 0.101 14.348 0.377
AB 0.219 0.353 0.035 0.084 24.772 0.484
95% CI Coverage 66 95 95 91 62 80

BR Estimated −2.647 1.808 0.62 1.275 13.537
Sd 0.152 0.471 0.045 0.121 1.348
AB 0.37 0.5 0.083 0.225 66.463
95% CI Coverage 47 87 54 54 0

Kumaraswamy distribution

True −3 2 0.7 1.5 12 1 0.9
SBDR-Ler Estimated −3.004 2.035 0.7 1.507 8.888 1.299 0.862

Sd 0.315 0.405 0.037 0.09 1.461 0.231 0.093
AB 0.215 0.317 0.029 0.069 3.134 0.306 0.064
95% CI Coverage 89 97 95 95 52 78 97

SBDR-Icar Estimated −3.005 2.036 0.7 1.509 8.51 1.27
Sd 0.11 0.398 0.036 0.09 1.379 0.241
AB 0.215 0.321 0.029 0.068 3.51 0.28
95% CI Coverage 59 97 94 95 32 83

BR Estimated −2.97 2.011 0.697 1.497 3.107
Sd 0.18 0.521 0.048 0.15 0.162
AB 0.248 0.54 0.044 0.106 8.893
95% CI Coverage 72 86 92 99 0

Simplex distribution

True −3 2 0.7 1.5 19 1 0.9
SBDR-Ler Estimated −3.016 2.032 0.696 1.503 12.379 1.125 0.845

Sd 0.259 0.345 0.034 0.077 7.338 0.212 0.106
AB 0.205 0.271 0.026 0.06 6.639 0.168 0.081
95% CI Coverage 89 96 94 93 93 93 94

SBDR-Icar Estimated −3.016 2.033 0.696 1.504 10.606 1.054
Sd 0.087 0.357 0.032 0.07 8.081 0.137
AB 0.205 0.27 0.027 0.06 8.407 0.132
95% CI Coverage 51 95 93 92 83 92

BR Estimated −2.836 1.895 0.651 1.439 0.248
Sd 0.131 0.536 0.043 0.097 0.025
AB 0.262 0.515 0.068 0.12 18.752
95% CI Coverage 53 92 66 77 0

A sets φ3 = 12, φ2 = 19 and φ1 = 80 for the Kumaraswamy,

Simplex and Beta distributions, respectively, while Simu-

lation B sets φ3 = 1 for the Kumaraswamy distribution,

φ2 = 5 for the Simplex distribution and φ1 = 10 for the

Beta distribution.

Table 5 shows that for larger φ’s the Simplex adapts very

well to the data and dominates the model selection for all

criteria even when it is not the true distribution. However,

for small values of φ the criteria seem to better select the

correct model. The MAE presents a poor performance when

the Beta distribution is the true model generated. This is
evidence that for a small scale of φ, the distributions behave
differently and one cannot nicely fit the data generated. This
result can be explained in part, since the bounded distribu-
tions are very flexible and for some combination of param-
eters can really adapt to each other.

7. REAL DATA ANALYSIS

In this section, the RC data are revisited and a compara-
tive regression analysis is performed considering or not the
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spatial component z for this data. Thus, the SBDR mod-
els (SDBR-Ler, SDBR-Icar) and the model without the z
spatial component (BR) were fitted using the three bounded
distributions studied in the paper.

The purpose is to explain the proportion of students with
a satisfactory level in the reading comprehension (RC) Test
(y) in each one of the 195 Peruvian provinces (political sub-
divisions at the second level), with three explanatory vari-
ables as covariates: health, sanitation and electrification in-
dexes, which are represented by x1, x2 and x3, respectively.

Additional details about the RC Test are described in the
framework document [24]. Health, sanitation and electrifi-
cation indexes are components of the state density index,
which is described in Section 2 and additional details can
be found in the PNUD report [26].

As described in Section 2 and Figure 2, the proportion of
students with satisfactory level in the RC Test has a spa-

Table 4. Evaluation of model comparison criteria (DIC, WAIC
and MAE) to select the true model for simulated data of the
SBDR-Ler model considering different bounded response

variables with spatial precision τ = 1. Values correspond to
the number of times (in 100 datasets)

Criterion SBDR-Ler SBDR-Icar BR (without z)

Beta distribution

DIC 99 1 0
WAIC 100 0 0
MAE 100 0 0

Kumaraswamy distribution

DIC 100 0 0
WAIC 100 0 0
MAE 100 0 0

Simplex distribution

DIC 68 32 0
WAIC 97 3 0
MAE 100 0 0

tial configuration that is considered in the SBDR models
as a random variable z, which summarizes the relations in
adjacent provinces.

Specifically, for this application the SBDR models are
defined as follows:

yi|zi, φ ind.∼ π(θi, φ)(10)

g(θi) = β0 + β1x1i + β2x2i + β3x3i + zi

zi|z−i, τ
′, λ ∼ N

(
λ

1−λ+λni

∑
i∼j zj ,

1
(1−λ+λni)τ ′

)
i = 1, ..., 195,

where z = (z1, ..., z195)
′ is the random vector, which retains

the spatial effect and follows the definition of Leroux, Lei
and Breslow [21] called here the SBDR-Ler model. When
λ = 1 SBDR-Icar model is defined and when λ = 0, the
SBDR-Ind model is specified. The distribution π(θi, φ) can
take the three different bounded distributions: Beta, Sim-
plex and Kumaraswamy, where θi is the location parameter
and φ the precision parameter. Also, g(s) = log(s/(1 − s))
is the logit function. The non-spatial regression can also be
represented by Equation (10), but without the spatial ef-
fect z and its prior distribution named the BR model. The
code used for this application is included in Section 5 of the
Supplementary Material.

Table 6 shows only parameter estimation for the possible
SBDR-Ler models and the corresponding model compari-
son criteria (DIC, WAIC and MAE) of those models. Also,
Table S1 and S2 in Section 3 from Supplementary Material
include the same information for the SDBR-Icar model and
the analogous BR model without the z spatial component.
Considering the three model comparison criteria, the SBDR-
Ler Simplex model is selected as being the best model to fit
the RC data. Additionally, it can be noted that this model
presents the best result among the alternative models in the
Simplex family (the fitted information criteria for the com-
peting models can be seen in Tables S1 and S2 in Section 3

Table 5. Number of times that each fitted model was selected as the best model by DIC, WAIC and MAE values, for the
simulation of the SBDR-Ler model and with spatial precision τ = 1

Simulation A Simulation B
Criterion Beta Simplex Kumaraswamy Beta Simplex Kumaraswamy

SBDR-Ler Beta distribution φ = 80 SBDR-Ler Beta distribution φ = 10

DIC 4 92 4 69 1 30
WAIC 6 92 2 79 1 20
MAE 4 92 4 19 1 80

SBDR-Ler Simplex distribution φ = 19 SBDR-Ler Simplex distribution φ = 5

DIC 0 93 7 0 89 11
WAIC 0 90 10 0 85 15
MAE 0 80 20 0 68 32

SBDR-Ler Kumaraswamy distribution φ = 12 SBDR-Ler Kumaraswamy distribution φ = 1

DIC 0 100 0 27 0 73
WAIC 0 100 0 35 0 65
MAE 0 100 0 10 0 90
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Table 6. Posterior mean (mean), standard deviation (s.d.)
and 95% credible interval (CI) for parameter estimation for
the RC data in the SBDR-Ler models with different bounded

response

SBDR-Ler Beta model

mean s.d. 95% CI
β0 −3.54 0.24 (−4.01, −3.07)
β1 1.62 0.35 (0.93, 2.31)
β2 0.84 0.26 (0.34, 1.35)
β3 1.67 0.30 (1.09, 2.27)
φ 82.73 17.52 (53.36, 121.89)
τ 2.86 0.59 (1.87, 4.19)
λ 0.90 0.06 (0.74, 0.98)

DIC = −628
WAIC = −642
MAE = 0.0209

SBDR-Ler Simplex model

mean s.d. 95% CI
β0 −3.59 0.23 (−4.04, −3.14)
β1 1.74 0.38 (0.99, 2.49)
β2 0.82 0.27 (0.29, 1.35)
β3 1.68 0.30 (1.08, 2.28)
φ 19.52 12.13 (5.16, 50.85)
τ 1.40 0.18 (1.08, 1.77)
λ 0.81 0.09 (0.60, 0.95)

DIC = −1022
WAIC = −1055
MAE = 0.0028

SBDR-Ler Kumaraswamy model

mean s.d. 95% CI

β0 −3.54 0.24 (−4.01, −3.06)
β1 1.66 0.35 (0.98, 2.34)
β2 0.77 0.25 (0.28, 1.27)
β3 1.72 0.30 (1.14, 2.30)
φ 11.25 1.71 (8.24, 14.95)
τ 2.09 0.35 (1.49, 2.87)
λ 0.88 0.07 (0.69, 0.98)

DIC = −723
WAIC = −733
MAE = 0.0133

of the Supplementary Material). Furthermore, the standard-
ized residuals and PPD of the SBDR-Ler Simplex model are
presented in Figure 5 and of the alternative models in Fig-
ures S4 to S6 of Section 3 of the Supplementary Material.
These figures suggest that the residuals are smaller, and no
spatial configuration is presented in Figure 6 in comparison
with the preliminary analysis in Figure 2 from Section 2.

Recently, the issue of spatial confounding between fixed
and spatial random effects was introduced and studied in
the literature [29, 16]. Later, different solutions to alleviate
it and discussions about the need for this adjustment have
appeared [e.g., 17, 15, 36, 27]. The SPOCK method [27] is an
alternative that can be fitted using INLA, so, a version of the
proposed Leroux model combined with the SPOCK method

is fitted to alleviate a possible spatial confounding between
the RC responses and the covariates. This model is called
SBDR-SPOCK. As it can be seen in Table S3 in the Sup-
plementary Material, the SBDR-Ler Simplex still presents
smaller DIC and WAIC values but equal MAE values, sug-
gesting it is preferable. Thus, we continue the analysis with
the SBDR-Ler Simplex.

Considering this model, the 95% CI coverage suggests
that β0 is negative. Moreover, the 95% CI for β1, β2 and
β3 do not have the zero value, meaning the existence of a
positive effect of the health, sanitation and electrification
indexes regarding the proportion of students with a satis-
factory level in the RC Test in provinces. This means that
higher values of these indexes indicate more students having
success in the RC Test in the cities.

The results reveal the existence of a spatial effect λ =
0.81, where the precision associated with this effect is τ =
1.4 meaning variation among values of zi. Estimations of
zi are depicted in Figure 7 where the size of the triangles
depends on the z values. It is possible to identify positive
(�) and negative (�) effects from the direction of those tri-
angles. The positive spatial effects are concentrated in the
southern Peruvian provinces. The northeastern (the Ama-
zon Forest) provinces have negative spatial effects.

8. FINAL COMMENTS

In this paper, a spatial bounded distribution regression
(SBDR) model is proposed where the spatial effect follows
Leroux’s definition, returning a degree of spatial dependence
λ ∈ [0, 1], which has as particular cases the definition of Icar
and the independent case.

Since the posterior distribution is not amenable to an-
alytical treatment, the INLA method was chosen. Results
from the simulation study show that the Bayesian proposal
yields estimators with good performance. Furthermore, a
real dataset is analyzed using the proposed methods. Since
the value of λ is in [0, 1] for the Leroux representation of
the spatial effects, an advantage of this definition is that it
provides the magnitude of the spatial dependence.

As it is traditional in real data, the proposal assumes
equal dependence between neighboring regions, although,
other dependence parameters can be used, e.g., using the
distance between the centroids of the regions, (not consid-
ered here). Bayesian estimation using BUGS [23, 35, 14],
JAGS [25], STAN [7] or other statistical Bayesian tools can
be developed. Finally, zero/one inflated spatial regression
considering bounded distributions can be a direction for fu-
ture research.
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