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Lead time distribution for individuals
with a screening history
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We derived the distribution of lead time for periodic
screening in the future when an individual has a screening
history with negative results. It is a mixture of a point mass
at zero and a positive sub-PDF. The motivation comes from
the reality that for people in older age, they may already
have some screening exams for targeted cancer before and
still look healthy and are asymptomatic at their current age.
How to evaluate their future screening result is a challenge.
We explored how the screening history would affect the lead
time if one would be diagnosed with cancer in the future.
Simulations were carried out on combinations of different
initial screening age, current age, sensitivity, mean sojourn
time, and screening schedule in the past and in the future.
The method developed can be applied to periodic exams
for any kind of chronic disease, such as cancer. We applied
our new method of evaluating the lead time distribution for
male and female heavy smokers using low-dose computed
tomography in the National Lung Screening Trial.

1. INTRODUCTION

Cancer is a group of diseases involving abnormal cell
growth with potential to invade or spread to other parts
of the body. Most types of cancer can be described using
staging; stage I means that the cancer is small and has not
grown deeply into nearby tissues, while stage IV means the
cancer has spread to other parts of the body. Cancer stage
at diagnosis helps determine which treatment is available
and corresponding survival time. In general, patients with
early-stage cancer have better prognosis and higher survival
rate than those with late-stage cancer. Specifically, the 5-
year survival rate for patients with early-stage lung cancer
is approximately 50%, while it is only about 5% for stage
IV lung cancer patients [1].

As the primary technique for early detection, the goal of
screening is to detect the disease earlier before any symp-
toms appear; so patients may receive earlier intervention and
better treatment. Periodic screening is recommended for al-
most all kinds of cancers, such as breast, lung, colon, cervical
cancer, etc. [2] Several major randomized controlled cancer
screening studies have been carried out since the 1960s: the
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Health Insurance Plan of Greater New York Project [3]; the
Mayo Lung Project [4]; the Johns Hopkins Lung Project [5];
the Minnesota Colon Cancer Control Study [6]; the Prostate,
Lung, Colorectal and Ovarian (PLCO) cancer screening trial
[7] and the National Lung Screening Trial (NLST) [8, 9].

Early detection may mean more treatment choices and
longer survivals for patients. However, since survival time is
measured from the time of diagnosis, it could appear longer
for screen-detected cases and screening may not truly con-
tribute to overall survival. Lead time is the time interval
between the time of early diagnosis using a screening exam
and the time a clinical diagnosis would have been made with-
out a screening. Therefore, to correctly estimate the survival
time of screen-detected cases, it is critical to estimate the
lead time first, and then subtract it from the overall survival.
Hence, the lead time is an important factor when evaluating
the effectiveness of a screening program [10].

A number of statistical methods were provided to esti-
mate the mean and variance of lead time [11, 12, 13, 14].
Prorok [15] estimated the local lead time by focusing on
the i-th screen-detected cases whose lead time is positive.
However, he ignored the interval-incident cases, whose lead
time is zero. Wu et al. [10] estimated the lead time for both
screen-detected and interval-incident cases, where a person’s
lifetime is treated as a fixed value. This model was applied to
the Mayo Lung Project data to estimate the lead time when
human lifetime was assumed to be 80 years. Later, Wu et al.
[16] extended the model to make it more practical by treat-
ing the lifetime as random, deriving its distribution from
the actuarial life table of the US Social Security Adminis-
tration [17]. The lead time for lung cancer screening using
chest X-ray was estimated previously, when the lifetime was
either fixed [18] or random [19]. Considering the advantage
of low-dose helical computed tomography (LDCT) over tra-
ditional chest X-ray, Liu et al. [20] estimated the lead time
distribution for both genders using LDCT when the lifetime
is random in the National Lung Screening Trials.

All of the above methods were developed based on the
assumption that an asymptomatic individual has not taken
any screening exams at his/her current age, that is, there
is no screening history. While in reality, participants aged
55 and older may already have had at least one (previous)
screening exam in the past and look healthy right now. In
this paper, we will introduce a lead time distribution model
which can incorporate one’s screening history and derive the
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lead time distribution when the lifetime is fixed and when it
is random. And we will present our simulation results and
applications using the NLST-LDCT data to estimate the
lead time for lung cancer screening for subjects with any
screening history.

2. METHOD

We will use the well-known disease progressive model, as-
suming that tumor develops through three states, denoted
by S0 → Sp → Sc [21]. The state S0 is the disease-free
state in which there is no disease or the disease is at a
very early stage and cannot be detected by any screening
exam. Sp refers to the preclinical state, in which the person
has the disease that can be detected by a screening exam
even though s/he is asymptomatic. Sc represents the clinical
state, where clinical symptoms have presented.

We will use females’ lung cancer as an example in the
problem solving, while the result is equally valid for males
and other kinds of cancer.

Assume a woman at current age tK1 has gone through
K1 exams before, at her age t0 < t1 < · · · < tK1−1, all test
results were negative, and she plans to take K more exams
at the future age tK1 < tK1+1 < tK1+2 < · · · < tK1+K−1.
To derive the lead time distribution, we proceed as follows:

• We derive the lead time distribution when K1 = K =
1, i.e. one previous screen and one future screen, the
simplest case, with a fixed lifetime T = t(> t1); then
we allow the lifetime T to be random.

• We derive the lead time distribution for any fixed pos-
itive integers K1 and K, with a fixed lifetime T = t(>
tK1+K−1); Finally, we allow T to be random; hence the
number of future exams K is random as well.

Let β(t) be the sensitivity of the exam at age t, i.e.,
the probability that the screening is positive given that the
individual is in the preclinical state Sp at age t, and let
βi = β(ti). We let X be the time duration in the disease-free
state S0, with a pdf w(x) (also called transition probability
by other researchers); and let Y be the sojourn time (the
length of time in the preclinical state Sp), with a pdf q(y);
and Q(y) =

∫∞
y

q(x)dx be the survival function of the so-
journ time Y . We assume that the sojourn time Y and the
time duration in the disease-free state X are independent.

Let D be a binary random variable, representing true
disease status: with D = 1 indicating “having cancer”, and
D = 0 indicating “no cancer” in one’s whole lifetime. Let L
represent the lead time for an individual. The distribution of
the lead time is a mixture of a point mass at zero and a pos-
itive probability density, depending on whether the cancer
was a clinical incident case, or was detected by screening.

2.1 Lead time distribution when
K1 = K = 1

Suppose an asymptomatic woman at current age t1, had
only one screening exam at age t0 (< t1), and it was nega-

tive. We define this event:

H1 =

⎧⎨
⎩

A woman had one screening exam at age t0,
no lung cancer was found,
and she is asymptomatic at current age t1

⎫⎬
⎭ .

Let the (fixed) lifetime T = t, with t > t1, if she will take
another screening at her current age t1, then the lead time
distribution is composed of two parts:

P (L = 0|D = 1, H1, T = t) =
P (L = 0, D = 1, H1|T = t)

P (D = 1, H1|T = t)
,

(1)

fL(z|D = 1, H1, T = t) =
fL(z,D = 1, H1|T = t)

P (D = 1, H1|T = t)
.(2)

We need to calculate three terms: P (D = 1, H1|T = t),
P (L = 0, D = 1, H1|T = t) and fL(z,D = 1, H1|T = t).

To calculate P (D = 1, H1|T = t), the probability of no
lung cancer appears before/at age t1 (with one screening at
age t0), but she would have lung cancer in (t1, T ); it could
happen in three ways: i). she enters the preclinical state Sp

in (0, t0), i.e., X ∈ (0, t0), but her cancer was not detected
at t0; ii). she enters Sp in (t0, t1), i.e., X ∈ (t0, t1); or iii). she
enters Sp in (t1, T ), i.e., X ∈ (t1, T ). In all three cases, her
sojourn time is longer enough, that the onset of her clinical
state Sc is in (t1, T ). That is, X + Y ∈ (t1, T ). Hence,

P (D = 1, H1|T = t)

= (1− β0)

∫ t0

0

w(x)[Q(t1 − x)−Q(t− x)]dx

+

∫ t1

t0

w(x)[Q(t1 − x)−Q(t− x)]dx

+

∫ t

t1

w(x)[1−Q(t− x)]dx.

Similarly, to calculate P (L = 0, D = 1, H1|T = t), the prob-
ability of clinical incidence in (t1, T ) and with two exams
at t0 and t1, (i.e., no early detection by screening). It could
happen in three ways also, depending on when she enters
the Sp. Hence,

P (L = 0, D = 1, H1|T = t)

= (1− β0)(1− β1)

∫ t0

0

w(x)[Q(t1 − x)−Q(t− x)]dx

+ (1− β1)

∫ t1

t0

w(x)[Q(t1 − x)−Q(t− x)]dx

+

∫ t

t1

w(x)[1−Q(t− x)]dx.

Finally, to obtain fL(z,D = 1, H1|T = t), the probability
density function of lead time when it is positive, it means
that her lung cancer was detected at t1, and if she were
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untreated, cancer symptoms would appear at (t1 + z). De-
pending on the onset time of her preclinical state, it could
happen in two ways: either she enters the preclinical state
in (0, t0), or in (t0, t1); in either way, her sojourn time in
the preclinical state would be exactly (t1 + z − x), where
x is the onset time/age of her preclinical state. Hence, for
∀z ∈ (0, t− t1),

fL(z,D = 1, H1|T = t)

= β1

[
(1− β0)

∫ t0

0

w(x)q(t1 + z − x)dx

+

∫ t1

t0

w(x)q(t1 + z − x)dx
]
.

It is easy to check that:

P (L = 0, D = 1, H1|T = t)

+

∫ t−t1

0

fL(z,D = 1, H1|T = t)dz

= P (D = 1, H1|T = t).

Or, equivalently,

P (L = 0|D = 1, H1, T = t)

+

∫ t−t1

0

fL(z|D = 1, H1, T = t)dz = 1.

Hence, the derived mixture distribution of the lead time is a
valid distribution. When her lifetime T is random and larger
than her current age, i.e. T > t1, the lead time distribution
would be:

P (L = 0|D = 1, H1, T > t1)

=

∫ ∞

t1

P (L = 0|D = 1, H1, T = t)fT (t|T > t1) dt,(3)

fL(z|D = 1, H1, T > t1)

=

∫ ∞

t1+z

fL(z|D = 1, H1, T = t)fT (t|T > t1) dt,(4)

z ∈ (0,∞).

Where fT (t|T > t1) = fT (t)/P (T > t1) = fT (t)/[1−FT (t1)]
for t > t1, is the conditional PDF of the lifetime. It is easy
to verify that

P (L = 0|D = 1, H1, T > t1)

+

∫ ∞

0

fL(z|D = 1, H1, T > t1)dz ≡ 1.

Therefore the mixture distribution of the lead time is valid.

2.2 Lead time distribution for any K1 and K

Now we consider the general case for any positive integer
K1 and K. Suppose a woman has received K1 screening

exams, and she will continue withK screenings in the future.
We define this event:

HK1 =

⎧⎪⎪⎨
⎪⎪⎩

A woman had screening exams at age
t0 < t1 < · · · < tK1−1,
no cancer was detected,
and she is asymptomatic at current age tK1

⎫⎪⎪⎬
⎪⎪⎭ .

We first derive the distribution of lead time when human
lifetime T is fixed, then we allow T to be random.

When the lifetime T = t(> tK1−1) is fixed, similar to
Equations (1) and (2), the distribution of lead time is:

P (L = 0|D = 1, HK1 , T = t)(5)

=
P (L = 0, D = 1, HK1 |T = t)

P (D = 1, HK1 |T = t)
,

fL(z|D = 1, HK1 , T = t)(6)

=
fL(z,D = 1, HK1 |T = t)

P (D = 1, HK1 |T = t)
.

We define t−1 = 0. To obtain P (D = 1, HK1 |T = t), the
probability of no cancer detected before tK1 (with a sequence
of exams at age t0 < t1 < · · · < tK1−1), but will have
cancer in (tK1 , t), this could happen in (K1 + 2) different
ways: i). she enters the preclinical state Sp in (ti−1, ti), i =
0, 1, . . . ,K1 − 1, and her cancer was not detected by the
exams at and after ti; ii). she enters Sp in (tK1−1, tK1); and
iii). she enters Sp in (tK1 , t). And in the above (K1 + 2)
cases, her sojourn time is longer than tK1 − x, but shorter
than t − x, where x ∈ (ti−1, ti) is the onset of Sp; Since
these are mutually exclusive events, we simply add these
probabilities:

P (D = 1, HK1 |T = t)

=

K1−1∑
i=0

(1− βi) · · · (1− βK1−1)(7)

×
∫ ti

ti−1

w(x)[Q(tK1 − x)−Q(t− x)] dx

+

∫ tK1

tK1−1

w(x)[Q(tK1 − x)−Q(t− x)] dx

+

∫ T

tK1

w(x)[1−Q(t− x)] dx.

To calculate P (L = 0, D = 1, HK1 |T = t), we define
tK1+K = t (to simplify notation, but keep in mind that
it is not a screening time), and we let IK1+K,j represent
the probability of incidence in (tj−1, tj), j = K1 + 1,K1 +
2, . . . ,K1 +K, then

P (L = 0, D = 1, HK1 |T = t)

= IK1+K,K1+1 + IK1+K,K1+2 + · · ·+ IK1+K,K1+K ,
(8)
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Table 1. Values of input parameters in our simulation study

Parameter Settings Value

Sensitivity N/A Sensitivity is a fixed value 0.7 or 0.9

Transition Probability
μ The mode of the log-normal

distribution is set to be 70
4.4

σ2 0.16

Sojourn Time
λ

MST = 2 0.1963
MST = 5 0.0314
MST = 10 0.0079

α α is a fixed value 2.0

where

IK1+K, j =

j−1∑
i=0

(1− βi) · · · (1− βj−1)

×
∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)] dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)] dx,

for j = K1 + 1, · · · ,K1 +K.

(9)

Finally, if t− tj < z ≤ t− tj−1, for j = K1 +1, . . . ,K1 +K,
the PDF of lead time at z is:

fL(z,D = 1, HK1 |T = t)(10)

=

j−1∑
i=K1

βi

{
i−1∑
r=0

(1− βr) · · · (1− βi−1)

×
∫ tr

tr−1

w(x)q(ti + z − x) dx

+

∫ ti

ti−1

w(x)q(ti + z − x) dx

}
.

We can prove that this mixed probability distribution is
valid since

P (L = 0|D = 1, HK1 , T = t)

+

∫ T−tK1

0

fL(z|D = 1, HK1 , T = t) dz ≡ 1.
(11)

When the lifetime T is random, the lead time distribution
(with T greater than the current age tK1) can be obtained
by

P (L = 0|D = 1, HK1 , T > tK1)

=

∫ ∞

tK1

P (L = 0|D = 1, HK1 , T = t)fT (t|T > tK1) dt,
(12)

fL(z|D = 1, HK1 , T > tK1)

=

∫ ∞

tK1
+z

fL(z|D = 1, HK1 , T = t)fT (t|T > tK1) dt,

z ∈ (0,∞),

(13)

where

fT (t|T > tK1) =

{
fT (t)

P (T>tK1
) =

fT (t)
1−FT (tK1

) , if t > tK1 ,

0, otherwise.

And the lifetime distribution density fT (t|T > tK1) can be
obtained by using the US Social Security Administrations
actuarial lifetable [16]. Again we can prove that

P (L = 0|D = 1, HK1 , T > tK1)

+

∫ ∞

0

fL(z|D = 1, HK1 , T > tK1)dz ≡ 1.

For a person at her current age tK1 , if she plans to follow a
future screening schedule, such as tK1 < tK1+1 < . . . , then
the number of screenings in the future K = n if tK1+n−1 <
T ≤ tK1+n, therefore the future screening number K =
K(T ) is random if the lifetime T is random. If the future
screening exam is equally-spaced with a time interval Δ,
then K = K(T ) = �(T − tK1)/Δ	.

3. SIMULATION STUDY

Screening for breast, lung, colon and cervical cancers
are recommended by the United States Preventive Services
Task Force [2]. Different screening modalities/techniques are
used to detect different cancer; and the screening sensitiv-
ity for these methods are very different. In addition, the
speed of cancer grows and spreads also vary dramatically,
which means, the sojourn times in the preclinical state are
different. From the results in Section 2, the distribution
of lead time is a function of the sensitivity, the sojourn
time distribution and the transition probability density. We
will explore the characteristics of the newly developed lead
time distribution for different cancer and different screening
schedules; and our simulations were done, using combina-
tions of the following settings:

1. Three different initial screening ages:
t0 = 56, 60 and 64 years.

2. Two different screening sensitivities:
β = 0.7 and 0.9.

3. Three different mean sojourn time:
MST = 2, 5 and 10 years.
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Table 2. A projection of the lead time distribution for individuals with screening history by current age and screening intervals,
with MST = 2

(Δ1,Δ2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1 = 60
(1,1) 20.10 1.14 (1.05) 1.25 0.85 10.32 1.33 (1.04) 1.35 0.95
(2,1) 20.02 1.13 (1.04) 1.25 0.75 10.05 1.32 (1.04) 1.35 0.95
(1,2) 41.26 0.76 (0.97) 1.15 0.35 28.00 0.95 (1.01) 1.15 0.45
(2,2) 40.69 0.76 (0.96) 1.15 0.35 27.08 0.96 (1.00) 1.15 0.45

initial screening age t0 = 56, current age tK1 = 64
(1,1) 20.34 1.12 (1.04) 1.25 0.75 10.45 1.31 (1.03) 1.35 0.95
(2,1) 20.23 1.11 (1.03) 1.25 0.65 10.10 1.30 (1.03) 1.35 0.95
(1,2) 41.34 0.75 (0.96) 1.15 0.15 28.09 0.94 (1.00) 1.15 0.45
(2,2) 40.63 0.75 (0.96) 1.05 0.15 26.96 0.94 (0.99) 1.15 0.45

initial screening age t0 = 56, current age tK1 = 68
(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.03) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 56, current age tK1 = 72
(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 60, current age tK1 = 64
(1,1) 20.34 1.12 (1.04) 1.25 0.75 10.45 1.31 (1.03) 1.35 0.95
(2,1) 20.23 1.11 (1.03) 1.25 0.65 10.10 1.30 (1.03) 1.35 0.95
(1,2) 41.34 0.75 (0.96) 1.15 0.15 28.09 0.94 (1.00) 1.15 0.45
(2,2) 40.63 0.75 (0.96) 1.05 0.15 26.96 0.94 (0.99) 1.15 0.45

initial screening age t0 = 60, current age tK1 = 68
(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.02) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 60, current age tK1 = 72
(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 60, current age tK1 = 76
(1,1) 21.77 1.01 (0.99) 1.15 0.45 11.22 1.20 (1.00) 1.25 0.65
(2,1) 21.46 1.00 (0.98) 1.15 0.15 10.49 1.18 (0.99) 1.15 0.65
(1,2) 41.77 0.69 (0.91) 1.05 0.15 28.55 0.87 (0.95) 1.05 0.15
(2,2) 40.43 0.70 (0.91) 0.95 0.05 26.38 0.88 (0.94) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 20.69 1.09 (1.03) 1.25 0.65 10.63 1.29 (1.02) 1.25 0.85
(2,1) 20.53 1.08 (1.02) 1.25 0.65 10.19 1.27 (1.02) 1.25 0.85
(1,2) 41.46 0.74 (0.95) 1.05 0.15 28.21 0.92 (0.99) 1.15 0.45
(2,2) 40.58 0.74 (0.94) 1.05 0.15 26.81 0.93 (0.98) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 72
(1,1) 21.15 1.06 (1.01) 1.15 0.65 10.88 1.25 (1.01) 1.25 0.85
(2,1) 20.93 1.05 (1.01) 1.15 0.65 10.32 1.24 (1.01) 1.25 0.65
(1,2) 41.58 0.72 (0.93) 1.05 0.15 28.36 0.90 (0.97) 1.05 0.15
(2,2) 40.50 0.72 (0.93) 1.05 0.15 26.61 0.91 (0.97) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 21.77 1.01 (0.99) 1.15 0.45 11.22 1.20 (1.00) 1.25 0.65
(2,1) 21.46 1.00 (0.98) 1.15 0.15 10.49 1.18 (0.99) 1.15 0.65
(1,2) 41.77 0.69 (0.91) 1.05 0.15 28.55 0.87 (0.95) 1.05 0.15
(2,2) 40.43 0.70 (0.91) 0.95 0.05 26.38 0.88 (0.94) 1.05 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 22.60 0.95 (0.96) 1.05 0.15 11.68 1.13 (0.97) 1.15 0.45
(2,1) 22.15 0.94 (0.95) 1.05 0.15 10.71 1.12 (0.96) 1.15 0.15
(1,2) 41.88 0.66 (0.88) 0.95 0.05 28.68 0.82 (0.92) 1.05 0.15
(2,2) 40.21 0.66 (0.88) 0.95 0.05 25.97 0.84 (0.92) 0.95 0.05
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Table 3. A projection of the lead time distribution for individuals with screening history by current age and screening intervals,
with MST = 5

(Δ1,Δ2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1 = 60
(1,1) 6.47 3.44 (2.50) 3.35 2.45 2.77 3.72 (2.48) 3.45 2.75
(2,1) 6.44 3.42 (2.50) 3.35 2.45 2.55 3.71 (2.47) 3.45 2.75
(1,2) 17.21 2.80 (2.49) 2.95 1.85 8.81 3.21 (2.48) 3.15 2.25
(2,2) 16.73 2.80 (2.49) 2.95 1.85 8.09 3.23 (2.47) 3.15 2.25

initial screening age t0 = 56, current age tK1 = 64
(1,1) 6.95 3.31 (2.46) 3.25 2.15 3.00 3.59 (2.44) 3.35 2.45
(2,1) 6.87 3.29 (2.46) 3.15 2.15 2.72 3.58 (2.44) 3.35 2.45
(1,2) 17.93 2.69 (2.44) 2.85 1.45 9.31 3.09 (2.44) 3.05 1.95
(2,2) 17.28 2.70 (2.44) 2.85 1.45 8.38 3.12 (2.43) 3.05 1.95

initial screening age t0 = 56, current age tK1 = 68
(1,1) 7.64 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.51 3.12 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.05 2.56 (2.38) 2.75 1.15 8.79 2.97 (2.38) 2.85 1.95

initial screening age t0 = 56, current age tK1 = 72
(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 60, current age tK1 = 64
(1,1) 6.96 3.31 (2.46) 3.25 2.15 3.00 3.59 (2.44) 3.35 2.45
(2,1) 6.90 3.28 (2.46) 3.15 2.15 2.72 3.58 (2.44) 3.35 2.45
(1,2) 17.93 2.69 (2.44) 2.85 1.45 9.31 3.09 (2.44) 3.05 1.95
(2,2) 17.29 2.69 (2.44) 2.85 1.45 8.38 3.12 (2.43) 3.05 1.95

initial screening age t0 = 60, current age tK1 = 68
(1,1) 7.64 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.51 3.12 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.05 2.56 (2.38) 2.75 1.15 8.79 2.97 (2.38) 2.85 1.95

initial screening age t0 = 60, current age tK1 = 72
(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 60, current age tK1 = 76
(1,1) 9.84 2.65 (2.23) 2.55 0.15 4.42 2.90 (2.22) 2.65 1.45
(2,1) 9.50 2.64 (2.23) 2.55 0.15 3.71 2.92 (2.23) 2.65 0.15
(1,2) 21.85 2.14 (2.17) 2.35 0.15 12.13 2.47 (2.19) 2.45 0.15
(2,2) 20.35 2.17 (2.18) 2.35 0.05 10.01 2.55 (2.20) 2.45 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 7.65 3.14 (2.41) 3.05 1.95 3.34 3.41 (2.39) 3.15 1.95
(2,1) 7.54 3.11 (2.41) 3.05 1.95 2.95 3.41 (2.39) 3.15 1.95
(1,2) 18.91 2.54 (2.38) 2.75 1.45 10.01 2.93 (2.38) 2.85 1.95
(2,2) 18.06 2.55 (2.38) 2.75 1.15 8.78 2.97 (2.38) 2.85 1.95

initial screening age t0 = 64, current age tK1 = 72
(1,1) 8.58 2.93 (2.33) 2.85 1.65 3.80 3.18 (2.32) 2.95 1.95
(2,1) 8.37 2.91 (2.33) 2.85 1.65 3.28 3.19 (2.32) 2.95 1.95
(1,2) 20.19 2.36 (2.29) 2.55 0.15 10.93 2.73 (2.30) 2.65 1.45
(2,2) 19.06 2.39 (2.29) 2.55 0.15 9.32 2.78 (2.30) 2.75 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 9.84 2.65 (2.23) 2.55 0.15 4.42 2.90 (2.22) 2.65 1.45
(2,1) 9.50 2.64 (2.23) 2.55 0.15 3.71 2.92 (2.23) 2.65 0.15
(1,2) 21.85 2.14 (2.17) 2.35 0.15 12.13 2.47 (2.19) 2.45 0.15
(2,2) 20.35 2.17 (2.18) 2.35 0.05 10.01 2.55 (2.20) 2.45 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 11.58 2.32 (2.08) 2.25 0.15 5.29 2.55 (2.08) 2.35 0.15
(2,1) 11.06 2.32 (2.09) 2.25 0.05 4.31 2.58 (2.09) 2.35 0.05
(1,2) 23.94 1.86 (2.01) 2.05 0.05 13.67 2.17 (2.04) 2.15 0.15
(2,2) 21.98 1.91 (2.02) 2.05 0.05 10.87 2.26 (2.05) 2.15 0.05
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Table 4. A projection of the lead time distribution for individuals with screening history by current age and screening intervals,
with MST = 10

(Δ1,Δ2)
(years)

β = 0.7 β = 0.9
P0 EL (s.d.) Median Mode P0 EL (s.d.) Median Mode

initial screening age t0 = 56, current age tK1 = 60
(1,1) 3.43 6.32 (4.41) 5.95 3.95 1.47 6.60 (4.39) 6.05 4.25
(2,1) 3.38 6.32 (4.44) 5.95 3.95 1.24 6.66 (4.41) 6.15 4.25
(1,2) 9.19 5.58 (4.42) 5.45 2.85 4.48 6.07 (4.39) 5.75 3.85
(2,2) 8.64 5.63 (4.44) 5.45 2.85 3.78 6.17 (4.41) 5.75 3.85

initial screening age t0 = 56, current age tK1 = 64
(1,1) 4.00 5.87 (4.23) 5.45 3.65 1.73 6.13 (4.21) 5.65 3.75
(2,1) 3.82 5.92 (4.26) 5.55 3.65 1.44 6.22 (4.24) 5.65 3.75
(1,2) 10.31 5.15 (4.23) 5.05 2.65 5.14 5.61 (4.21) 5.25 2.65
(2,2) 9.52 5.25 (4.26) 5.15 2.65 4.24 5.75 (4.23) 5.35 3.25

initial screening age t0 = 56, current age tK1 = 68
(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.55 5.38 (4.04) 5.05 2.95 1.72 5.67 (4.02) 5.15 3.15
(1,2) 11.79 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.74 4.76 (4.03) 4.65 0.15 4.84 5.23 (4.01) 4.85 2.65

initial screening age t0 = 56, current age tK1 = 72
(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.54 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.20 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 60, current age tK1 = 64
(1,1) 4.00 5.86 (4.23) 5.45 3.65 1.73 6.13 (4.21) 5.65 3.75
(2,1) 3.93 5.87 (4.27) 5.45 3.65 1.44 6.21 (4.24) 5.65 3.75
(1,2) 10.27 5.15 (4.23) 5.05 2.65 5.14 5.61 (4.21) 5.25 2.65
(2,2) 9.55 5.21 (4.26) 5.05 2.65 4.21 5.74 (4.23) 5.35 3.25

initial screening age t0 = 60, current age tK1 = 68
(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.56 5.38 (4.05) 4.95 2.95 1.72 5.67 (4.02) 5.15 3.15
(1,2) 11.79 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.74 4.76 (4.03) 4.65 0.15 4.84 5.23 (4.01) 4.85 2.65

initial screening age t0 = 60, current age tK1 = 72
(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.54 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.20 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 60, current age tK1 = 76
(1,1) 7.38 3.99 (3.37) 3.65 0.15 3.33 4.21 (3.35) 3.75 0.15
(2,1) 6.86 4.08 (3.43) 3.75 0.05 2.59 4.34 (3.41) 3.85 0.15
(1,2) 16.11 3.42 (3.31) 3.45 0.15 8.76 3.78 (3.32) 3.55 0.15
(2,2) 14.29 3.57 (3.38) 3.55 0.05 6.62 3.98 (3.38) 3.65 0.15

initial screening age t0 = 64, current age tK1 = 68
(1,1) 4.82 5.31 (4.01) 4.95 2.95 2.11 5.57 (3.99) 5.05 2.95
(2,1) 4.70 5.32 (4.05) 4.95 0.15 1.71 5.66 (4.03) 5.15 3.15
(1,2) 11.73 4.64 (3.98) 4.55 0.15 6.04 5.07 (3.97) 4.75 1.95
(2,2) 10.76 4.72 (4.02) 4.55 0.15 4.80 5.22 (4.01) 4.85 0.15

initial screening age t0 = 64, current age tK1 = 72
(1,1) 5.92 4.68 (3.72) 4.35 0.15 2.63 4.92 (3.70) 4.45 2.15
(2,1) 5.55 4.76 (3.77) 4.45 0.15 2.09 5.04 (3.75) 4.55 0.15
(1,2) 13.70 4.05 (3.68) 4.05 0.15 7.23 4.45 (3.68) 4.15 0.15
(2,2) 12.31 4.19 (3.73) 4.15 0.15 5.63 4.63 (3.73) 4.25 0.15

initial screening age t0 = 64, current age tK1 = 76
(1,1) 7.38 3.99 (3.37) 3.65 0.15 3.33 4.21 (3.35) 3.75 0.15
(2,1) 6.86 4.08 (3.43) 3.75 0.05 2.59 4.34 (3.41) 3.85 0.15
(1,2) 16.11 3.42 (3.31) 3.45 0.15 8.76 3.78 (3.32) 3.55 0.15
(2,2) 14.30 3.57 (3.38) 3.55 0.05 6.62 3.98 (3.38) 3.65 0.15

initial screening age t0 = 64, current age tK1 = 80
(1,1) 9.38 3.26 (2.97) 3.05 0.05 4.29 3.47 (2.96) 3.05 0.15
(2,1) 8.67 3.35 (3.03) 3.05 0.05 3.28 3.60 (3.02) 3.15 0.05
(1,2) 19.09 2.76 (2.89) 2.85 0.05 10.72 3.08 (2.91) 2.85 0.15
(2,2) 16.76 2.92 (2.97) 2.85 0.05 7.86 3.28 (2.99) 2.95 0.05
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Figure 1. The PDF curves of the lead time for tK1 = 68 and tK1 = 72 with different t0: 12 curves representing different
screening schedules and different initial screening age t0 are plotted for tK1 = 68 (upper panel) and tK1 = 72 (bottom panel),

respectively. Curves with the same t0 overlap each other, and only one curve for each t0 shows. β = 0.7, MST = 2.

For a given initial screening age t0, we examined the
lead time distribution for four different current ages tK1

with four-year intervals. That is, when t0 = 56, we con-
ducted simulations by setting tK1 = 60, 64, 68 and 72; and
when t0 = 60, we let tK1 = 64, 68, 72 and 76; and when
t0 = 64, we let tK1 = 68, 72, 76 and 80. For each combi-
nation of initial screening ages, sensitivities, mean sojourn
times and current ages, we considered four screening inter-
vals in the past and in the future with (Δ1,Δ2) = (1, 1),
(2, 1), (1, 2) and (2, 2). For example, (Δ1,Δ2) = (1, 2)
means that an individual received annual exams in the past
and will take screening exams biennially in the future. We
used the actuarial lifetime table for males in this simula-

tion study. Since female results were similar, we omitted it
here.

We use the same parametric model of the transition den-
sity and the sojourn time as in Liu et al. 2018 [20]:

w(t|μ, σ2) =
0.3√
2πσt

exp{−(log t− μ)2/(2σ2)},(14)

q(x|λ, α) = αλxα−1 exp (−λxα), λ > 0, α > 0,(15)

Q(x|λ, α) = exp (−λxα), λ > 0, α > 0.(16)

The input parameters of μ and σ2 were decided based
on the mode of the log-normal distribution, here we let the
mode be 70, as most lung cancer cases are diagnosed around
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Figure 2. The bar plots of percentage changes for P0 and P1 with different tK1 : Six bars representing different current ages
are plotted for each of the four screening schedules, (Δ1,Δ2) = (1, 1) (upper left panel), (Δ1,Δ2) = (2, 1) (upper right

panel), (Δ1,Δ2) = (1, 2) (bottom left panel) and (Δ1,Δ2) = (2, 2) (bottom right panel). β = 0.7, MST = 5, any t0(< tK1).

Figure 3. The sub-PDF curves of the lead time for t0 = 56, β = 0.7, MST = 2.
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Figure 4. The sub-PDF curves of the lead time for t0 = 56, β = 0.7, MST = 5.

Figure 5. The sub-PDF curves of the lead time for t0 = 56, β = 0.7, MST = 10.
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Figure 6. The bar plots of percentage changes for P0 with different Δ1 and the same Δ2: Bars grouped by six different current
ages are plotted for two future schedules, Δ2 = 1 (upper panel) and Δ2 = 2 (bottom panel). β = 0.7, MST = 10, any t0.

that. For different mean sojourn time, we chose different val-
ues of λ. The values of the input parameters in the simula-
tion are shown in Table 1.

Simulation results for MST = 2, 5 and 10 are shown in
Tables 2–4, respectively. In each table, we report P0, the
probability that the lead time is zero, in percentage. This
is also the possibility that one would not be detected early
by screening. When the lead time is positive, we report the
mean lead time EL, its standard deviation, the median and
the mode of lead time in years. Larger lead time usually
means that the person benefits more from the screening
program since the treatments and interventions could be
provided earlier.

Intuitively, the length of lead time will depend on the
length of sojourn time. This is reflected in our simulation:
a longer sojourn time will lead to a longer lead time. For
example, the mean lead time is about 1 year if the mean
sojourn time (MST) is 2 years; and it is about 2 to 3 years
if the MST is 5 years, and it is about 3 to 7 years if the MST
is 10 years. So they are positively correlated. Meanwhile, the
probability of no-early-detection P0 is negatively correlated
with the MST: longer MST will cause smaller P0, indicat-
ing that people with slow growing tumor will benefit more
from screening. For example, if an individual started bien-
nial screening exam (Δ1 = 2) at age 56, and will continue
screening annually (Δ2 = 1) from her current age tK1 = 64,
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Table 5. A projection of the lead time distribution for male heavy smokers with initial screening age t0 = 56

(Δ1,Δ2) (years) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR

current age tK1 = 60
(1,1) 11.83 (7.37, 17.93) 88.17 (2.66) 0.87 (0.69) 1.06
(2,1) 11.67 (7.28, 17.79) 88.33 (2.62) 0.86 (0.68) 0.94
(-,1) 11.65 (7.28, 17.76) 88.35 (2.61) 0.86 (0.68) 0.94
(1,2) 36.91 (28.21, 45.48) 63.09 (4.49) 0.54 (0.66) 0.83
(2,2) 36.30 (27.59, 44.99) 63.70 (4.53) 0.54 (0.66) 0.83
(-,2) 36.35 (27.67, 45.06) 63.65 (4.54) 0.55 (0.66) 0.83

current age tK1 = 64
(1,1) 11.86 (6.93, 19.12) 88.14 (3.04) 0.86 (0.68) 0.94
(2,1) 11.62 (6.82, 18.83) 88.38 (3.00) 0.85 (0.68) 0.94
(-,1) 11.58 (6.82, 18.77) 88.42 (2.99) 0.85 (0.68) 0.94
(1,2) 36.60 (27.69, 45.84) 63.40 (4.72) 0.55 (0.66) 0.83
(2,2) 35.68 (26.67, 45.19) 64.32 (4.78) 0.54 (0.65) 0.83
(-,2) 35.68 (26.42, 45.11) 64.32 (4.83) 0.55 (0.66) 0.83

current age tK1 = 68
(1,1) 12.00 (6.47, 20.89) 88.00 (3.62) 0.85 (0.68) 0.94
(2,1) 11.66 (6.42, 20.48) 88.34 (3.59) 0.84 (0.68) 0.94
(-,1) 11.61 (6.39, 20.48) 88.39 (3.58) 0.83 (0.67) 0.94
(1,2) 36.31 (27.09, 46.40) 63.69 (5.08) 0.54 (0.65) 0.83
(2,2) 35.01 (25.60, 45.55) 64.99 (5.18) 0.54 (0.65) 0.83
(-,2) 34.96 (25.23, 45.45) 65.04 (5.26) 0.54 (0.65) 0.94

current age tK1 = 72
(1,1) 12.29 (6.07, 23.67) 87.71 (4.43) 0.83 (0.68) 0.94
(2,1) 11.84 (5.96, 23.35) 88.16 (4.43) 0.81 (0.67) 0.94
(-,1) 11.77 (5.96, 23.33) 88.23 (4.43) 0.81 (0.67) 1.06
(1,2) 36.04 (26.18, 47.83) 63.96 (5.60) 0.54 (0.65) 0.83
(2,2) 34.34 (24.37, 46.75) 65.66 (5.78) 0.54 (0.64) 0.94
(-,2) 34.22 (23.88, 46.78) 65.78 (5.89) 0.54 (0.64) 0.81

with screening sensitivity β = 0.7, then P0 will be 20.23%,
6.87%, and 3.82% correspondingly under the different MST
of 2, 5 and 10 years. Finally, screening sensitivity is nega-
tively correlated with the P0: higher sensitivity will lead to
lower P0. Comparing the results for β = 0.7 and 0.9 un-
der the same conditions, it appears that the probability P0

is almost doubled in case of the lower sensitivity. There-
fore, higher sensitivity will contribute greatly to early de-
tection.

By examining three different initial screening ages t0, we
want to see if this factor t0 affects the lead time given a per-
son looks healthy at current age, or if the screening history
has any influence on the lead time given the same current
age. We found that the lead time distribution tends to be
the same for different t0 if the current age tK1 is the same.
Simply look at the results of tK1 = 68, we compare the
results of (t0, tK1) = (56, 68), (60, 68), and (64, 68) in Ta-
bles 2–4, they are almost the same. It is also true when we
compare the results of (t0, tK1) = (56, 72), (60, 72), and
(64, 72). This indicates that the factor t0 does not seem to
affect the lead time distribution provided that the person
still looks healthy at the current age tK1 . Figure 1 shows
the density plots of the lead time given the MST is 2 years
and sensitivity β = 0.7, for tK1 = 68 and tK1 = 72, and un-
der the 4 different combinations of (Δ1,Δ2). In this graph,

each curve, in fact, represents the density of three different
initial screening ages (i.e., t0 = 56, 60 and 64), but since the
three curves (of the three t0) completely overlap each other,
we can only observe one curve for each pair of (Δ1,Δ2) in
each panel. However, the length of the past (Δ1) and fu-
ture screening interval (Δ2) do affect the lead time density,
with the future screening intervals Δ2 cause more differ-
ences.

When the mean sojourn time (MST) is larger than 5
years, the probability of no-early-detection P0 is slightly in-
creasing with a participant’s current age tK1 given that all
other factors are the same. This means that the younger par-
ticipants (such as people in their 60s) may benefit slightly
more from the screening. For example, in Table 3, the prob-
ability P0 is 17.21% and the mean lead time is 2.80 yrs for an
individual who started annual screening exam at age 56, and
will begin screening biennially from current age tK1 = 60, if
the sensitivity β = 0.7. The probability P0 slightly goes up
to 20.19% and the mean lead time becomes 2.36 yrs when
the individual’s current age is 72. Figure 2 gives percentages
of P0 and P1 = 1 − P0, when β = 0.7, MST is 5 years, and
tK1 increases from 60 to 80 in a 4-year interval. We can see
that P0 increases as the current age tK1 increases for all four
screening schedules (Δ1,Δ2). Since the results are the same
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Table 6. A projection of the lead time distribution for female heavy smokers with initial screening age t0 = 56

(Δ1,Δ2) (years) P0 (95% C.I.) 1− P0 (s.d.) EL (s.d.) Med/IQR

current age tK1 = 60
(1,1) 6.87 (3.94, 10.93) 93.13 (1.81) 1.06 (0.72) 1.17
(2,1) 6.78 (3.91, 10.73) 93.22 (1.77) 1.05 (0.72) 1.17
(-,1) 6.76 (3.91, 10.68) 93.24 (1.76) 1.05 (0.72) 1.17
(1,2) 28.69 (19.83, 38.26) 71.31 (4.64) 0.69 (0.73) 0.94
(2,2) 28.15 (19.39, 37.77) 71.85 (4.63) 0.69 (0.73) 0.94
(-,2) 28.26 (19.41, 37.85) 71.74 (4.65) 0.69 (0.73) 0.94

current age tK1 = 64
(1,1) 6.84 (3.82, 10.98) 93.16 (1.90) 1.05 (0.72) 1.17
(2,1) 6.69 (3.74, 10.68) 93.31 (1.85) 1.04 (0.72) 1.17
(-,1) 6.67 (3.74, 10.60) 93.33 (1.84) 1.04 (0.72) 1.05
(1,2) 28.44 (19.38, 37.99) 71.56 (4.65) 0.69 (0.73) 0.94
(2,2) 27.63 (18.76, 37.18) 72.37 (4.65) 0.69 (0.72) 0.94
(-,2) 27.69 (18.71, 37.29) 72.31 (4.69) 0.69 (0.72) 0.94

current age tK1 = 68
(1,1) 6.85 (3.70, 11.24) 93.15 (2.06) 1.04 (0.72) 1.17
(2,1) 6.64 (3.59, 10.99) 93.36 (2.00) 1.03 (0.72) 1.05
(-,1) 6.60 (3.59, 10.96) 93.40 (1.99) 1.02 (0.72) 1.17
(1,2) 28.20 (19.36, 37.59) 71.80 (4.68) 0.69 (0.72) 0.94
(2,2) 27.06 (18.24, 36.58) 72.94 (4.69) 0.69 (0.72) 0.94
(-,2) 27.06 (18.00, 36.61) 72.94 (4.77) 0.68 (0.72) 0.94

current age tK1 = 72
(1,1) 6.92 (3.57, 12.24) 93.08 (2.31) 1.03 (0.72) 1.17
(2,1) 6.63 (3.39, 11.78) 93.37 (2.26) 1.00 (0.72) 1.06
(-,1) 6.59 (3.39, 11.63) 93.41 (2.25) 1.00 (0.71) 1.06
(1,2) 27.97 (19.11, 37.41) 72.03 (4.76) 0.69 (0.72) 0.94
(2,2) 26.45 (17.74, 35.99) 73.55 (4.78) 0.68 (0.71) 0.94
(-,2) 26.39 (17.20, 36.03) 73.61 (4.90) 0.68 (0.71) 0.75

for different t0 (provided t0 < tK1), we put results of all tK1

together in the bar plots regardless of t0.
For a given combination of the sensitivity, the initial and

current age, we compare the results of different screening
schedules (Δ1,Δ2). For the cases with the same Δ2 (fu-
ture screening interval) but different Δ1 (historic screening
interval), the lead time distribution tends to be very simi-
lar. For example, if we compare the results of (Δ1,Δ2) =
(1, 1), (1, 2) and (2, 1). It is obvious that the results of
(Δ1,Δ2) = (1, 1) are significantly different from the results
of (Δ1,Δ2) = (1, 2), but the results for (Δ1,Δ2) = (1, 1)
and (Δ1,Δ2) = (2, 1) are very close. We can also see this
pattern from the PDF curves of lead time when MST = 2,
5 and 10, as shown in Figures 3–5, respectively. Since the
results are similar, we only present curves of t0 = 56 and
β = 0.7 for different tK1 and MST. The PDF curves for lead
time with the same future screening interval Δ2 almost over-
lap each other for different Δ1 when given the same initial
and current age, the sensitivity and the mean sojourn time.

We find a small trend that larger Δ1 will result in smaller
P0 and larger mean lead time if the Δ2 remains the same,
and this trend is obvious when MST is larger. In Table 4, the
probability P0 is 9.19% and the mean lead time is 5.58 years
for an individual whose initial screening age t0 = 56 and cur-
rent age tK1 = 60 with screening schedules (Δ1,Δ2) = (1, 2)

given β = 0.7. The probability P0 decreases to 8.64% and
the mean lead time increases to 5.63 years if the individual’s
past screening interval Δ1 = 2. We can see the trend more
clearly in Figure 6, where smaller Δ1 resulted in larger P0,
and the difference is getting larger as the current age in-
creases. We didn’t carry out more simulations to compare
with the case when one’s screening history doesn’t exist (ie,
previous model in Wu et al. [16]), however, based on the
simulation results for different Δ1 and different t0, the in-
fluence of a person’s screening history on his/her future lead
time distribution seems negligible using our current model
assumption.

4. APPLICATION

The recently finished NLST study is designed to compare
two different screening modalities for early detection of lung
cancer among heavy smokers: low-dose computed tomogra-
phy (LDCT) versus standard chest X-rays [23]. The NLST
study enrolled approximately 54,000 male and female heavy
smokers (current or former smokers with a smoking history
of 30 or more pack-years, and at most 15 years since quitting
if former smokers), aged 55 to 74 between August 2002 and
April 2004. Participants were randomized into two inter-
vention arms in equal proportions: LDCT or X-ray. Partic-
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Figure 7. The sub-PDF curves of lead time for male heavy smokers when t0 = 56: Six curves of different screening schedules
for four current ages, tK1 = 60 (upper left panel), tK1 = 64 (upper right panel), tK1 = 68 (bottom left panel) and tK1 = 72

(bottom right panel).

ipants were offered three annual screening exams, with the
first exam performed soon after study entry. Over 52,000
participants joined the NLST and were screened for lung
cancer for the first time. In total, 15,537 men and 10,769
women were assigned to the LDCT arm, and 15,396 men and
10,634 women were assigned to the X-ray arm. If any of the
screening results was abnormal, then the screen was consid-
ered positive and more diagnostic tests were conducted (i.e.,
biopsy) as a follow-up. Participants were followed with a me-
dian time of 6.5 years. The NLST results seem to indicate
that smokers screened by LDCT had a 20% lower chance of
dying from lung cancer than those who were screened via
chest X-rays.

We apply the new lead time method to the NLST-LDCT
group data, using a parametric model for the sensitivity,
β(t) = {1+exp[−b0−b1(t− t̄)]}−1 and the same parametric
models for the w(t), q(x) and Q(x) as in Equations (14)–
(16). The six unknown parameters θ = (b0, b1, μ, σ

2, λ, α)
were estimated using Markov Chain Monte Carlo (MCMC)

and a likelihood function based on the NLST-LDCT data
[22]: two Markov Chains were simulated with overdispersed
initial values. Each chain ran 130,000 iterations, with 30,000
burn-in steps; after the burn-in, the posteriors were sampled
every 200 steps, providing 500 posteriors θ∗ from each chain.
We then used the pooled 1,000 posterior samples θ∗j , j =
1, . . . , 1000 (from the two chains) to make inference on the
lead time for hypothetic cohorts. The posterior predictive
distribution of the lead time is a weighted average at each
θ∗j : fL(l|NLST ) ≈ 1

1000

∑n
j=1 fL(l|θ∗j ).

For each gender, we assumed that there were four co-
horts of initially asymptomatic individuals, with current
age tK1 = 60, 64, 68 and 72, respectively. Then within
each cohort, we examined six different screening schedules
(Δ1,Δ2) = (1, 1), (2, 1), (−, 1), (1, 2), (2, 2), and (−, 2),
The symbol Δ1 = − means that the individuals have no
screening history; this is added for comparison purpose. We
assumed that the initial screening age t0 = 56 for all cases
(except those without any screening history), since our simu-
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Figure 8. The sub-PDF curves of lead time for female heavy smokers when t0 = 56: Six curves of different screening schedules
for four current ages, tK1 = 60 (upper left panel), tK1 = 64 (upper right panel), tK1 = 68 (bottom left panel) and tK1 = 72

(bottom right panel).

lation study showed that the initial screening age has no sig-
nificant influence on the lead time distribution. We present
simulation results of these 24 scenarios (4 ages times 6 sched-
ules) for both genders.

Table 5 and Table 6 present the Bayesian predictive infer-
ence for the probability of no-early-detection (P0), the prob-
ability of early-detection (1 − P0) and the mean lead time
(in years) for male and female heavy smokers, respectively.
The probabilities, with its 95% C.I., and the corresponding
standard deviation are reported as percentages. The mean
and the standard deviation are reported in years; we also re-
ported the ratio of the median over the interquartile range
(Med/IQR).

For both male and female heavy smokers, we can see
that the results of (Δ1,Δ2) = (1, 1), (2, 1), and (−, 1) are
very similar, and the results of (Δ1,Δ2) = (1, 2), (2, 2), and
(−, 2) are similar, which are compatible with our expecta-
tions. That is, the future screening schedule plays a far more
important role than the historic screening schedule regard-

ing the lead time distribution. For example, in Table 5, the
probability P0 is 11.83% and the mean lead time is 0.87
years for screening schedules (Δ1,Δ2) = (1, 1), and P0 is
11.67% and the mean lead time is 0.86 for (Δ1,Δ2) = (2, 1)
given the person’s current age tK1 = 60. The probability
P0 is 11.65% and the mean lead time is 0.86 years if a male
heavy smoker has no screening history, but plans to take an-
nual exam starting at age 60. We also present the sub-PDF
curves of lead time (the lead time distribution is a mixture
of a point mass at 0 and a positive sub-PDF) for male and
female heavy smokers in Figure 7 and 8, respectively. In
each figure, four panels represent four different current ages
(tK1 = 60, 64, 68 and 72). In each panel, the six curves are
the corresponding lead time densities for six different screen-
ing intervals: (Δ1,Δ2) = (1, 1), (2,1), (-,1), (1,2), (2,2) and
(-,2). The sub-PDF curves of lead time for the same future
screening interval Δ2 almost overlap with each other given
the same current age, and they are almost the same if the
lead time is larger than one year.
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Figure 9. The lead time sub-PDF curves for male heavy smokers when t0 = 56: Four curves representing different current ages
of four screening schedules, (Δ1,Δ2) = (1, 1) (upper left panel), (Δ1,Δ2) = (2, 1) (upper right panel), (Δ1,Δ2) = (1, 2)

(bottom left panel) and (Δ1,Δ2) = (2, 2) (bottom right panel).

Like in the simulation study, we also find a similar trend
that larger Δ1 will result in smaller P0 if Δ2 is the same. In
Table 6, the probability P0 is 6.84% for current age tK1 = 64
with screening schedules (Δ1,Δ2) = (1, 1), and it drops to
6.69% if the individual’s past screening interval Δ1 = 2.

For all heavy smokers, it is obvious that the probabil-
ity P0 increases and the mean lead time decreases as the
future screening interval Δ2 increases within the same age
group. Across the age groups, the probability P0 and the
mean lead time does not seem to have significant differ-
ences. To illustrate, let us see the lead time density curves
of both genders in Figure 9 and 10. Four panels represent
four different screening schedules, and four curves repre-
sent four current ages within each panel. In each panel, the
curves do not differentiate too much except in the very be-
ginning.

In addition, the projected lead time is significantly af-
fected by gender. Comparing to female heavy smokers, male
heavy smokers usually have a larger P0 and a shorter mean

lead time, given the same age and the same screening sched-
ule. It seems that male heavy smokers will have a smaller
chance to be detected early by LDCT screening than their
female counterparts.

5. DISCUSSION

We derived the lead time distribution for individuals with
a screening history when human lifetime is random. Simu-
lation study was done to investigate the effect of a person’s
screening history on the lead time distribution in the fu-
ture. We estimated the projected lead time for male and
female heavy smokers, regarding different ages, past and fu-
ture screening schedules using the NLST low dose CT arm
data. Although our simulations were carried out for equally-
spaced screening intervals, the method can be applied to any
screening scenarios.

In the simulation study, we found that the lead time and
the sojourn time are positively correlated: people with a
longer sojourn time (or slowly growing tumors) will benefit
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Figure 10. The lead time sub-PDF curves for female heavy smokers when t0 = 56: Four curves representing different current
ages of four screening schedules, (Δ1,Δ2) = (1, 1) (upper left panel), (Δ1,Δ2) = (2, 1) (upper right panel),

(Δ1,Δ2) = (1, 2) (bottom left panel) and (Δ1,Δ2) = (2, 2) (bottom right panel).

more from screening, in terms of a longer lead time and a
higher probability of early detection (i.e., smaller P0). The
lead time distribution depends more on one’s current age
tK1 , rather than on one’s initial exam age t0. The proba-
bility of no-early-detection P0 slightly increases with one’s
current age, if all other conditions are the same. There is
a small trend that larger screening interval Δ1 in the past
will result in a smaller P0 (probability that the lead time is
0), or, in another words, a slightly larger chance of early-
detection and a longer mean lead time if the individual’s
future screening interval is fixed (see Figure 6 and Table 4).
In the NLST application, we found a similar trend. For a
given current age, the length of screening history does not
really affect the lead time distribution much. This indicates
that one’s current age is more important to the lead time
distribution than the initial screening age, since the person
still looks healthy at his/her current age.

The influence of a person’s screening history on his/her
future lead time distribution is not significant. This may be

due to our model assumption. We assumed that the sojourn
time Y and the time duration in the preclinical state X are
independent; we also assumed that the sensitivity does not
depend on the time one stays in the preclinical state. While
in reality, the sensitivity is low when one just enters the pre-
clinical state, and it is close to one when one is at the end
of the preclincal state (i.e., one is close to the onset of the
clinical state). These assumptions were made to simplify the
derivation procedure of the lead time. We will consider re-
laxing on these assumptions in the next step, in which case,
the screening history may play some role on one’s future lead
time when more realistic (and complicated) models are ap-
plied. Another possible reason that one’s screening history
seems to have little effect on future lead time, may be due
to the fact that, we are predicting the future lead time given
two conditions: a). one’s screening history, and b). one looks
healthy and is asymptomatic at the current age. The second
condition may carry much more information/message than
the first, and thus may overshadow the impact of the first
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one. This may explain why the lead time distribution is more
related to one’s current situation. More research are needed
to verify this point.

We want to point out that the estimated lead time distri-
bution was robust under diffent parametric models. We have
done extensive simulations on the behavior of the three key
parameters β(t), w(t), q(x), using different parametric mod-
els [24]. It turns out that these three key parameter won’t
change much under different parametric models and under
the current model assumption. Since the lead time is a func-
tion of these three, it won’t change much either under the
current model assumption.

In summary, this project is an extension on the lead
time distribution given one’s screening history with nega-
tive exam results. We realize that the modeling approach is
just one way of dealing with the problem. Other models and
approaches may be possible. The lead time distribution is
an important indicator of how effective a screening schedule
and screening modality are. However, early detection may
cause higher percentage of over-diagnosis, that is, cancer
cases that would never have caused clinical symptoms in
one’s lifetime, and the individual would die of other causes
[25]. Too frequent screening exam may not be necessary, es-
pecially for people with low risk. Too many exams is not
only a waste of resource, but also may cause unnecessary
stress and anxiety if one gets a false positive result. We are
working on optimal scheduling problem based on one’s his-
torical screening history and other parameters, and we hope
to provide some guidelines regarding the timing of future
screening exam.
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