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Bayesian zero-inflated growth mixture models
with application to health risk behavior data
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This paper focuses on developing latent class models for
longitudinal data with zero-inflated count response vari-
ables. The goals are to model discrete longitudinal patterns
of rare events counts (for instance, health-risky behavior),
and to identify individual-specific covariates associated with
latent class probabilities. Two discrete latent structures are
present in this type of model: a latent categorical variable
that classifies subgroups with distinct developmental tra-
jectories and a latent binary variable that identifies whether
an observation is from a zero-inflation process or a regular
count process. Within each class, two sets of covariates are
used to separately model the probability of structural zeros
and the mean trajectories of the count process. The estima-
tion of the latent variables and regression parameters are
carried jointly in a hierarchical Bayesian framework. Our
methods are validated through a simulation study and then
applied to cigarette smoking data, obtained from the Na-
tional Longitudinal Study of Adolescent Health.
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1. INTRODUCTION

Latent Class Models (LCMs), also known as finite mix-
ture models, are a class of flexible methods used to model
unobserved heterogeneity in a population. A LCM assumes
that a heterogeneous group can be reduced to several ho-
mogeneous subgroups by minimizing the association among
responses across multiple variables. The goal is to categorize
participants into groups, each one containing participants
who are similar to each other and different from partici-
pants in other groups [24]. A latent categorical variable is
often used to label the group membership. The latent classi-
fication has a variety of interpretations under a wide range of
applications. For instance, in medical diagnosis, it classifies
patients with or without a certain disease when an accu-
rate diagnosis is unavailable; in behavioral and health sci-
ence, subgroups could involve different behavioral patterns
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(e.g. drinkers and abstainers); LCMs have also been applied
to identify phenotypes or genetic susceptibility for diseases
based on clinical and biological data [16, 24, 31, 34, 42].

LCMs have been extended to accommodate longitudi-
nally observed data to identify distinct groups of changing
trajectories within a population. Using a semi-parametric
strategy, Nagin [26] developed a group-based approach for
estimating trajectories for longitudinal data with different
types of outcomes. The developmental trajectories are mod-
eled through time dependent parameters. In many applica-
tions, it is customary to assume that the difference among
several trajectory classes is associated with some stable indi-
vidual characteristics or background variables. This type of
LCM extension has been referred to as Latent Class Growth
Model (LCGM). Using a frequentist approach, parameters
from LCGM can be estimated through the SAS procedure
TRAJ written by Jones et al. [15]. In this setting, the in-
ferential interest focus is on a) estimating the proportion of
the population in each subgroup, b) relating group member-
ship probabilities to individual characteristics, and c) profil-
ing the characteristics of individuals within subgroups [26].
More specifically, time invariant risk factors can be incorpo-
rated in the model by assuming they influence the proba-
bility of being in a certain class and time varying covariates
can also be included to directly affect the observed outcome.
A further extension, the Growth Mixture Models (GMMs),
is based on the structural equations framework, and it can be
described as a combination of Latent Growth Curve Model
(LGCM) and a LCM [20, 25, 24]. In a LGCM, the initial
status and slope of change for the outcome variables are con-
sidered as random continuous latent growth factors. Thus,
a GMM estimates a mean growth curve for each class and
also allows individual variations within classes, whereas a
LCGM assumes variation in growth patterns within each
class is zero. A detailed description of LCGM and GMM
was given by Muthén [23].

When the observed outcome of interest is a count vari-
able, often a high incidence of zero counts is encountered. As
an illustration, consider a dataset of cigarettes smoking from
the National Longitudinal Study of Adolescent Health (Add
Health). Add Health is a longitudinal, nationally representa-
tive, and school based study of U.S. adolescents in grades 7
through 12. In 1995–1996, the first wave in-home interviews
were conducted on students aged 11–21 years. Further waves
were collected in 1996, 2001–2002, and 2007–2008 when the
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sample was aged 24–33 years. Participants were asked to
report the average number of cigarettes smoked per day in
the past 30 days each time they took the survey. Although
the percentage of individuals who reported 0 cigarette use
decreased as age increased, there were about 64%–77% of
zero counts in these four waves of the data. In practice,
the classic Poisson regression model is often of limited use
because of its equality constraint on variance and mean.
Zero-inflated Poisson (ZIP) model and zero-inflated nega-
tive binomial (ZINB) model are often used to analyze count
data with excessive zeros. Zero-inflated models assume that
there are two underlying processes generating zeros, one
from the zero point mass (or structural zero) process and
one from the Poisson or negative binomial process. When a
value of zero is observed in the response, the process which
it belongs to is unknown. A latent binary variable that fol-
lows a Bernoulli distribution is usually introduced to label
structural zeros and non-structural zeros. Zero-inflation is
particularly meaningful when there are theoretical justifica-
tions for modeling zeros in two separate processes. For in-
stance, in public health and medical studies, we can assume
that zeros to arise from at-risk (susceptible) and not-at-risk
(non-susceptible) populations (e.g. a zero count of smoked
cigarettes could come from a non-smoker or a smoker who
reported zero cigarette during the period of study). For this
reason, zero-inflated LCMs are a methodologically justified
choice for the application in our paper, since several zeros are
expected to represent a temporary attempt to quit smoking.

For count data, Shiyko et al. [37] applied Poisson GMM
for modeling smoking cessation behavior among smokers.
GMM was also used for modeling delinquent behavior of
adolescents and the model was specified to be zero-inflated
to account for a large amount of non-delinquent adolescents
using a frequentist approach [32]. In the Bayesian frame-
work, both latent class models and zero-inflated regression
models have been widely used and applied. Ghosh et al. [12]
first proposed a data augmentation method with Markov
Chain Monte Carlo (MCMC) to generate posterior sam-
ples from zero-inflated models. Dagne [7], Fu et al. [10], and
Neelon et al. [28] proposed analyses for correlated or clus-
tered zero-inflated count data. Klein et al. [18] developed
Bayesian generalized additive models for data with zero-
inflation and over-dispersion. However, there is sparse liter-
ature on the Bayesian analysis of zero-inflated latent class
models. To our knowledge the only study was conducted
by Neelon et al. [27]. They propose a two-part latent class
model to analyze the effect of a health care parity policy on
mental health use and expenditures. Their data contained a
large proportion of participants who did not use any mental
health service. A binomial component was used to model the
observed zeros and a lognormal to model the right skewed
nonzero values. Three classes of participants were identified
as low spenders, moderate spenders, and high spenders and
they also found that the parity policy had an impact only
on moderate spenders.

While Neelon et al. [27] focuses on a zero-inflated contin-
uous dependent variable, our paper proposes a latent class
model on longitudinal zero-inflated count responses. The
application of interest is to model trajectories of smoking
behavior from adolescent to adulthood. Although myriad
studies have been conducted on smoking behaviors, many of
them focus on adult populations using cross-sectional data.
The pattern of cigarette smoking is commonly established
during adolescence, and often carried into adulthood, affect-
ing health and wellbeing in later life. Thus, a more detailed
and sophisticated understanding of the initiation and estab-
lishment of smoking behaviors from adolescence to adult-
hood is particularly important. Only few researchers have
studied development trajectories of smoking behavior us-
ing longitudinal data. For instance, Colder et al. [6] stud-
ied trajectories of adolescent smoking on a sample of 323
from 12–16 years old and found five distinct patterns for
cigarette smoking: early rapid escalators, late moderate es-
calators, late slow escalators, stable light smokers, and sta-
ble puffers. White et al. [44] interviewed 374 participants
five times from age 12 until age 30/31 about their smok-
ing behavior and identified three classes of trajectory group:
non/experimental smokers, occasional/maturing out smok-
ers, and heavy/regular smokers and found sex differences
in smoking developmental trajectories to be notable. From
five cohorts of adolescents (ages 12–16 with a sample size of
3647) followed for 3 years, Bernat et al. [3] found six dis-
tinct trajectories of smoking: nonsmokers, triers, occasional
users, early established, late established, and decliners. Chen
and Jacobson [5] also used data from Add Health and mod-
eled the overall developmental trajectories of substance use
and found that levels of substance use, including smoking,
increased from early adolescence to mid-20s, and then de-
clined after.

Literature from the studies described above and other
comparable studies on smoking trajectories [8, 19, 43] all
suggest that first, there are diverse patterns of smoking be-
havior among the population; second, for those who smoke,
they usually initiate the smoking behavior in early adoles-
cence and tend to smoke more as they age, and when they
reach their 20s or mid-20s, some choose to quit smoking
and others become regular smokers; third, the classification
of trajectories differ study by study and demographic vari-
ables such as gender and race play a role in trajectories of
cigarette use; and fourth, most of the studies used a “two
stage” estimation approach that cigarette outcomes were
first used to categorize participants into different groups and
then standard logistic regression analyses were used to test
the cross-group difference by risk factors. The separate es-
timation fails to capture the uncertainty in class member-
ship and often results underestimated standard errors [2].
In order to overcome this limitation, we propose a joint es-
timation of the latent class membership and risk factors.
Gender, race, and some other smoking related risk factors
are included in the model as covariates for smoking patterns.
Polynomial functions are used to reflect curvilinear trends.
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Estimation of the joint posterior distribution for the pa-
rameters is quite complex and it does not have a closed
analytical form, thus estimation is performed with MCMC
algorithms. The rest of this paper is organized as follows:
Section 2 presents the proposed ZIP and ZINB LCMs. In
Section 3, we have a choice of prior distributions for the
model parameters and latent class variables and the MCMC
algorithm is outlined. Criteria for model comparisons are
also discussed. Section 4 provides a simulation study on a
synthetic dataset generated from a three-class ZIP mixture
process. Section 5 illustrates the procedure with real data.
Section 6 summarizes our findings and discusses directions
for future research.

2. ZERO-INFLATED LATENT CLASS
GROWTH MODELS AND GROWTH

MIXTURE MODELS

A zero-inflated model is a mixture model of a zero point
mass and a distribution (in our case Poisson or negative
binomial). Let yit be a count measure for individual i mea-
sured at the t-th measurement. The probability mass func-
tion of a repeated measures ZIP model fZIP (yit; pit, μit) and
ZINB model fZINB(yit; pit, μit, φit) can be written, respec-
tively as:⎧⎪⎨

⎪⎩
pit + (1− pit)

1

eμit
, for yit = 0

(1− pit)
μyit

it

yit!eμit
, for yit = 1, 2, . . . ,

(1)
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(
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yit!Γ(φ)
×
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(

μit
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)yit
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φ
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, for yit = 1, 2, . . .

(2)

Two kinds of zeros are thought to exist in the data:
“structural zeros” (or true zeros) from a non-susceptible
group (i.e., those that do not have the attribute or expe-
rience of interest, such as nonsmokers) and “random zeros”
(or false zeros) for those from a susceptible group (e.g., those
who smoke but may falsely indicate a count of zero). With
pit we denote the probability of being in a non-susceptible
group and it can be estimated by information from covari-
ates with a logistic link. If an individual is from the suscep-
tible group, the observed count is a realization of a random
variable distributed as a Poisson distribution with mean μit

or from a negative binomial distribution with mean μit and
dispersion parameter of φ, accounting for over-dispersion
generated from positive counts. In this parametrization, φ
takes only strictly positive values and a bigger φ indicates a
higher degree of dispersion. In practice, a ZINB model with
a value of φ close to zero is statistically indistinguishable
from a ZIP model [13].

For our modeling purposes, we take mixtures of the dis-
tributions in (1) and (2). A random vector Y is said to arise
from a finite mixture of ZIP or ZINB distributions, if the
probability mass function takes the form of a mixture den-
sity for all y ∈ Y as follows:

p(y|pk, μk) =

K∑
k=1

πkfZIP(y; pk, μk),

p(y|pk, μk, φk) =

K∑
k=1

πkfZINB(y; pk, μk, φk),

where fZIP(y; pk, μk) or fZINB(y; pk, μk, φk) is a probabil-
ity mass function for all k = 1, . . . ,K. K is the number
of mixture components. The parameters π1, . . . , πK are the
weights for each component and they indicate the proba-
bility of an underlying categorical latent variable Ci tak-
ing a value of k with k = 1, 2, . . . ,K. Thus, a latent class
model on zero-inflated count responses includes two unob-
served random variables. First, there is the latent categorical
variable Ci, which follows a multinomial distribution: Ci ∼
Multinom(πi1, . . . , πiK). It divides a population into differ-
ent subgroups. Within each subgroup, Bit ∼ Bernoulli(pit),
is a latent variable indicating the split between a structural
zero process and a count process. For modeling longitudinal
data, latent class variable Ci essentially summarizes differ-
ent developmental trajectories over time, thus for each par-
ticipant, their class memberships are constrained to be the
same over time. However, over time an individual’s response
can change from a structural zero to a count or vice versa
(e.g., a participant from class 1 can change from being a
non-smoker at the beginning of the study to being a regular
smoker at the follow-up).

To allow the probabilities of the latent class membership
to be functionally related to individual characteristics, time-
invariant covariates can be summarized and added to the
model to affect the classification of underlying trajectory
patterns. Hence, πik is related to a r×1 vector of covariates
zi via a logit link as follows:

(3) πik =
ez

T
i γk∑K

h=1 e
zT
i γh

, with γ1 = 0.

Conditioning on class membership, the regression models
that predict the probability of being a structural zero (pitk)
and the mean of the count process (μitk) are given by:

logit(pitk) = log

(
pitk

1− pitk

)
= xT

itαk,(4)

log(μitk) = xT
itβk + bki,(5)

where xit are p× 1 vectors of fixed effect covariates; αk and
βk are class specific fixed effect regression coefficients for
class k; and bki ∼ N (0, σ2

k) is participant i’s random ef-
fect for the count component with class specific variance σ2

k.
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When mixture models are fitted on large datasets, the num-
ber of classes tends to be overestimated by model selection
criteria or other approaches. A mixed model can mitigate
this problem and offer more parsimonious choices in terms
of number of components, since individual heterogeneity can
be incorporated within each class, thus obtaining a simi-
lar fit to fixed effect specifications with a larger number of
classes. In this work, we fit latent class models with both
fixed (LCGM) and mixed effect specifications (GMM); in
the rest of the paper, for simplicity we will refer to them
generally as LCM models, specifying if it is a fixed or a
mixed effect specification, where necessary. In many longi-
tudinal studies, the true trend over time for the underlying
mean response is likely to happen in a relatively smooth pat-
tern. Simple parametric curves such as linear and quadratic
trends and semi-parametric curves such as piecewise lin-
ear trend can be used to describe how the mean response
changes over time [9]. As a result, for modeling a quadratic
trend, xit includes an intercept, a linear time effect, and
a quadratic time effect. Depending on different theoretical
justifications, one might allow covariates that affect p and μ
to be different. For illustrative purposes, we have the same
set of predictors for the two components in this study.

3. MODEL ESTIMATION

3.1 Likelihood and prior specification

Let us consider an observed sample (y11, z11, x11), . . . ,
(yNT , zNT , xNT ) of N×T observations, where each response
observed at time t for individual i is denoted by yit. For
the mixed effects ZIP-LCM model, the likelihood of ob-
taining the observed sample given the vector of parameters
and the latent variable P (Y |ΘZIPMixed), where ΘZIPMixed =
{αk, βk, γk, Ci, bki}) has the following form:

N∏
i=1

K∑
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K∑
k=1

πik

{ ∏
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T
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}
.

The likelihood of the mixed effects ZINB-LCM model can
be found in Appendix A. We define with bki ∼ N (0, σ2

k) a

Gaussian individual random effect. Prior distributions need
to be specified for model parameters {αk, βk, γk, bki} and
for the additional dispersion parameter φk in the case of the
ZINB model. We assign multivariate normal priors for all
class specific regression parameters, an inverse-gamma prior
for the variance of the random effect, and a gamma prior for
the dispersion parameter. That is, αk ∼ Np(μα, σ

2
αIp), βk ∼

Np(μβ , σ
2
βIp), γk ∼ Nr(μγ , σ

2
γIr), σ

2
k ∼ IG(a, b), and φk ∼

G(a, b). In our analyses, both for the simulation study and
the real data application, we choose hyperparameters that
characterize diffuse priors, so that the posterior estimates
will be mostly determined by the data. When prior infor-
mation on the parameter distributions is available, one may
choose more strongly informative priors and also specify dif-
ferent priors for different classes.

3.2 Posterior computation

Using Bayes’ theorem, the joint posterior distribution is
proportional to the product of the prior and the likelihood
specified in Section 3.1. Since it is not feasible to analyti-
cally derive the joint posterior distribution, a Gibbs sam-
pler is used to sample from the full conditional distribution
of each parameter. For the fixed effects ZIP-LCM, the full
conditional posterior distributions of each parameter and
the latent class variable have the following forms:

γk|· ∝
N∏
i=1

[P (Ci = k|γk; zi)]I(Ci=k)π(γk),

Ci|· ∼ Multinom(ρik) ∝ P (Yi|Ci, αk, βk;xi)P (Ci|γk; zi),
αk|· ∝ P (Dk|Ci = k, αk, βk;xk)π(αk),

βk|· ∝ P (Yk|Ci = k, αk, βk;xk)π(βk).

We introduce a variable Dit here, which is equal to 0 when
Yit = 0 and equal to 1 when Yit > 0. We assume Dit ∼
Binomial(θit) where θit is the probability of overall observed
zeros which combines zeros from the zero-inflation process
and the count process (e.g., for a ZIP model, θit = pit+(1−
pit)e

−μit). For the fixed effects ZINB-LCM, we sample the
dispersion parameter from its full conditional:

φk|· ∝ P (Yk|Ci = k, αk, βk;xk)π(φk).

For mixed effects models, π(γk|·) has the same form as
above, however, π(Ci|·), π(αk|·), and π(βk|·) are also condi-
tional on random effects bk. The full conditionals for σ

2
k and

bi are

σ2
k|· ∼ IG

(
a+Nk, b+

Nk∑
i=1

b2ki

2

)
,

bi|· ∝ P (Yi|Ci = k, αk, βk, bi)π(bi),

where Nk denotes the number of participants in class k.
As for sampling Ci, ρik is the posterior probability that
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individual i belongs to class k and it is given by

ρik =

πik(γk)

[
T∏

t=1
fZIP(yitk|pitk, μitk)

]
N (bi; 0, σ

2
k)

K∑
h=1

πih(γh)

[
T∏

t=1
fZIP(yitk|pitk, μitk)

]
N (bi; 0, σ2

h)

,

ρik =

πik(γk)
T∏

t=1
fZINB(yitk|pitk, μitk, φk)

K∑
h=1

πih(γh)
T∏

t=1
fZINB(yith|pith, μith, φh)

,

for a mixed effects ZIP-LCM and a fixed effects ZINB-LCM,
respectively. Because no closed forms are available for the
full conditional posterior distributions of α, β, γ, and bi, we
use a Metropolis algorithm to draw samples for these three
parameters. As a result, for the mixed effects ZIP-LCM, the
following algorithm can be used to generate samples from
the above full conditional distributions:

1. Assign initial values to αk, βk, σk for k = 1, . . . ,K, to
γk for k = 2, . . . ,K, to class membership indicator Ci,
and to random intercepts bi;

2. for k = 2, . . . ,K, update γ using random walk Metropo-
lis;

3. sample Ci from the multinomial distribution based on
posterior probability ρ;

4. for k = 1, . . . ,K, update αk and βk using a random
walk Metropolis;

5. for i = 1, . . . , N , update bi using a random walk
Metropolis; and

6. sample σ2
k directly from the inverse-gamma distribu-

tion.

Similar steps can be used for the mixed effects ZINB-
LCM except that for k = 1, . . . ,K, we also update φk using
random walk Metropolis-Hastings. For fixed effects models,
we do not have to sample bi and σ2

k. The Metropolis al-
gorithm proceeds by sampling a proposal value nearby the
current value using a symmetric proposal (e.g., normal dis-
tribution), whereas the Metropolis-Hastings algorithm uses
an asymmetric proposal distribution (e.g., log-normal dis-
tribution). While theoretically the proposal density can be
arbitrary, in practice, only a distribution that is close to our
target distribution will generate an efficient number of ac-
ceptances. The proposal density we use for the random walk
Metropolis is a multivariate normal density centered at the
previous value. As the posterior covariance for regression
parameters are close to σ2

Y (X
TX)−1 and proportional to

(XTX)−1 [14], to improve mixing, the proposal densities we
use for updating αk, βk, and γk are Np(α

old
k , tα(X

T
k Xk)

−1),
Np(β

old
k , tβ(X

T
k Xk)

−1), and Nr(γ
old
k , tγ(Z

T
k Zk)

−1), respec-
tively. Since φ can only be positive values, we propose φnew

from a log-normal distribution, i.e., LN (log(φold), tφσ
2
φ).

We indicate with {tα, tβ , tγ , tφ} the tuning parameters that

can be altered in order to achieve a proper acceptance
rate.

The performance of the MCMC algorithm is monitored
by inspecting acceptance rates, trace and empirical auto-
correlation function plots, and computing common diag-
nostics on simulated draws, including the effective sample
size.

3.3 Model comparison

In the frequentist framework, standard model comparison
criteria such as the Akaike information criterion (AIC) [1]
and the Bayesian information criterion (BIC) [36] assume
the number of parameters to be known, however, the num-
ber of parameters in hierarchical Bayesian models is not
clear and cannot be determined directly. In the Bayesian
framework, there are several approaches for model compar-
isons, such as Bayes factors and the Deviance Information
Criterion (DIC). The former approach is computationally
complex and sensitive to prior specifications. In this paper,
we use the DIC as the default model selection criterion.
Considering that sometimes the DIC can have unpleasant
properties, e.g. a possibly negative number of effective pa-
rameters, we use as a secondary check for models with more
than one class: the DIC3, a modified version proposed by
Celeux et al. [4] in the case of finite mixture models. Details
of these models selection criteria calculation can be found
in Appendix B. Generally, models with smaller DIC are
preferred, but this cannot be an exclusive factor in choos-
ing a model. While selection criteria can be very effective
at identifying the data generating model in a synthetic data
context, they can fall short with real datasets, when more
than one reasonable model can describe the data compara-
bly well.

In order to further evaluate the performance of the differ-
ent modeling specifications, for our real data application we
apply some common posterior predictive checking [11] meth-
ods. If the model displays a good predictive performance,
replicated data yrep generated under the model should look
similar to observed data y. Bayesian p-value, which repre-
sents the probability that the replicated statistics (T rep)
is more extreme than the observed statistics (T obs), was
used to offer a quantitative measurement of the discrepancy.
A p-value closer to 0.5 indicates an adequate fit. We chose
proportion of participants that never smoked (T1), mean of
positive counts (T2), and standard deviation (T3) as dis-
crepancy statistics to highlight model performance in pre-
dicting proportion of non-smokers, average smoking level
for those who smoked, and overall variation among the
population. Both yrep and T rep can be obtained from the
draws of model parameters generated from the MCMC out-
put.

4. SIMULATION STUDY

To test the proposed models, a small simulation study
was conducted. We generated Y as a mixture of three zero-
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Table 1. Model selection statistics for the simulation study.
With ∗ we indicate convergence/overfitting issues. With T we

indicate the “true” model

Model Classes pD DIC pD3 DIC3

1 5.98 90711.50 – –
2 17.88 69464.93 33.73 69480.78

ZIP 3 29.83 62216.07 41.88 62228.13
Fixed 4 42.22 59569.64 44.13 59571.55

5 53.60 58508.49 48.96 58503.85
6 64.97 57918.29 48.32 57901.64

1 3687.05 54457.16 – –
2 1429.15 54024.71 456.25 53051.81

ZIP 3 (T) 1651.32 53266.77 397.30 52012.75
Mixed 4 ∗ 1757.37 53419.74 372.57 52034.94

5 ∗ 2205.18 53930.92 361.64 52087.38
6 ∗ 1737.88 53471.24 428.12 52161.48

1 6.45 68092.95 – –
2 19.05 61501.29 86.18 61568.42

ZINB 3 32.40 58470.05 76.23 58513.88
Fixed 4 44.88 57696.74 77.27 57729.13

5 56.53 57466.28 79.93 57489.68
6 65.78 57368.19 76.03 57378.44

1 3709.79 54971.85 – –
2 1584.41 54536.48 339.81 53291.88

ZINB 3 1715.62 53373.07 309.87 51967.33
Mixed 4 ∗ 1715.29 53443.24 371.13 52099.07

5 ∗ 1728.22 53452.32 354.59 52078.69
6 ∗ 1648.83 53456.95 435.91 52244.04

inflated Poisson distributions. The simulated dataset had
a sample size of N = 4500, each with four observations
over time. Both the binomial and the Poisson components
contained class specific fixed effect intercepts (αk1 and βk1),
linear fixed time effects (αk2 and βk2), quadratic fixed time
effects (αk3 and βk3), and random intercepts (bi) for the
Poisson component. One binary covariate and one 5-level
categorical covariate were also generated to be associated
with class membership probabilities. We dummy coded these
two variables such that we had γk = (γk1, . . . , γk6) for k = 2
and 3.

We then fitted one to six class fixed effects ZIP/ZINB
models and mixed effects ZIP/ZINB models to the simulated
data. Table 1 presents model comparison statistics for the
fitted models. The mixed effects ZIP/ZINB models with 4 or
more classes were only able to identify three classes with the
remaining ones having 0 or very few individuals, thus their
DIC statistics need to be interpreted with care. This overfit-
ting phenomenon is well known and expected. Models with a
number of classes higher than 4 also tend to have some con-
vergence issues. The DIC had the lowest value for the three-
class mixed effects ZIP model, thus correctly identifying the
“true” data generating model. A slightly overparametrized
specification, the three-class mixed effects ZINB, showed a
slightly higher DIC value and slightly smaller DIC3 value
compared with the three-class mixed effects ZIP model.

Figure 1. Posterior trajectories for the three-class models
from the simulation study.

However, the posterior means of the dispersion parameters
(i.e. φ1, φ2, and φ3) from the three-class mixed effects ZINB
model were all approaching to zeros, indicating that the
ZINB components were degenerating into ZIP distributions.
Fixed effects ZINB models had lower DIC values than the
fixed ZIP models but higher DIC values compared with all
ZIP mixed effect models. By introducing random effects or
additional dispersion parameters, less classes were needed to
achieve an optimal fit. On the other hand, ignoring the indi-
vidual variations would lead to incorrect classification and
biased parameter estimates. We notice that DIC leads to
very large values of the effective number of parameters pD in
mixed models because of its treatment of the random effect
as a parameter. This feature is somewhat mitigated with
the corresponding complexity parameter PD3, as discussed
in [4]. Figure 1 shows posterior and true trajectory patterns
of y over x for the three-class models. The “true” model
(with or without dispersion parameters) recovers very well
the true latent trajectories, while their fixed counterparts
appear to fit very different curves. The class proportions for
class 1 to 3 were 65.96%, 16.60%, and 17.44%, respectively.
These were almost identical with the true class proportions
(65.29%, 16.91%, and 17.80%). True values of all parame-
ters were contained in their 95% highest posterior density
(HPD) intervals.
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5. APPLICATION TO REAL DATA

To model the change of smoking behavior from early ado-
lescence to adulthood and to identify latent subgroups from
the population, we use data collected from the Add Health
study. As described in the introduction, data from wave
1 to 4 will be combined to assess the full age range from
early adolescence through the transition to adulthood. We
used complete cases of the publicly available subsamples
(N = 2923). To examine possible baseline risk factors for
smoking patterns, we allow gender, race, peer smoking, and
household smoking as covariates to influence class member-
ship probabilities. Peer smoking was measured as the num-
ber of friends out of three best friends that were smokers and
household smoking was a binary variable indicating whether
or not there were smokers in the household. As a result, zi
in Equation (3) represented an 8× 1 vector of covariates in-
cluding an intercept and indicators for males, Asian descent,
African descent, Hispanic, Native American and other, peer
smoking, and household smoking. Female Caucasians, with
no additional smokers in their household were set to be the
reference group.

We ran a series of latent class models with the number
of classes K ranging from two to five. Within each class, we
fitted a fixed effects ZIP or ZINB model, a mixed effects ZIP
or ZINB model as in Equations (1) and (2). As suggested
in the literature, the developmental trajectories of smoking
are not linear but curvilinear, thus for both the zero-inflation
component and the count component, covariates vector xit

in Equations (4) and (5) comprised an intercept term, a
linear age effect (age), and a quadratic age effect (age2).

Models with different classes were fitted in R [30] using
the MCMC algorithm as described in Section 3. The R code
was developed by the authors and some parts were adapted
from the code in Dr. Brian Neelon’s website: http://people.
musc.edu/∼brn200/r/. Non-informative priors were speci-
fied for each parameter. Specifically, we had μα = μβ =
μγ = μbi = 0 and σ2

α = σ2
β = σ2

γ = 100 for regression
parameters {αk, βk, bi, γk}, a = 0.001, b = 0.001 for disper-
sion parameter φk and variance of the random intercepts σ2

k.
For ZIP fixed effect models, we ran 400,000 iterations for
each model, discarding the first 80,000 for burn-in. We then
obtained 1 draw from every 100 iterations for thinning to
reduce autocorrelation. As complexity increases for ZINB
latent class models, we ran the same number of iterations
for ZINB latent class models but allowed them to have a
longer burn-in period of 240,000.

We examined trace plots and autocorrelation function
plots for all parameters from all models. Specifications with
more than 4 classes displayed issues of convergence for the
ZIP mixed and ZINB (fixed and mixed), thus we did not pur-
sue them further. When the number of classes is less than
4, all trace plots showed chains with good mixing proper-
ties, providing evidence of convergence to their stationary
distribution. It is worth mentioning that one of the main
challenges of Bayesian analysis of finite mixture models is

“label switching”. That is, due to the invariance of the like-
lihood under relabeling of the latent classes, the marginal
posterior distributions for the parameters will be identical
for each latent class, and therefore, during a MCMC run, the
label of a certain class could switch to the label of another
class. As a consequence of label switching, the class mem-
bership probabilities will be 1/K for every participant and
the posterior distribution of the parameters will be highly
symmetric and multimodal [41]. Thus, label switching re-
sults in misleading parameter estimates. Several online or
post-hoc algorithms have been developed to relabel the la-
tent classes [38, 41]. We carefully examined the MCMC out-
put, however, and we found no evidence of label switch-
ing in our estimates. It is plausible that the inclusion of
class membership covariates helped with the identifiability
of the classification. We have also ran Poisson-LCM and
NB-LCM (with no zero inflation) with and without ran-
dom effects. As expected, the values of DIC were much
larger compared with models with zero-inflation. Thus, the
non-zero-inflated models were not considered for further
comparison. Models with just one class performed rather
poorly.

Table 2 presents DIC statistics for ZIP-LCM and ZINB-
LCM with and without random effects. The four-class mixed
effects ZIP model had the lowest DIC and the three-class
mixed effects ZIP model had the lowest DIC3 among all
models. When comparing different models, regardless of the

Table 2. DIC statistics for the smoking study, with ∗ we
indicate convergence/overfitting issues

Model Classes pD DIC pD3 DIC3

1 5.85 49709.50 – –
2 19.91 38031.14 34.81 38046.05

ZIP 3 34.38 35757.29 40.58 35763.48
Fixed 4 46.20 34514.93 46.50 34520.93

5 60.96 33761.10 54.07 33754.22
6 73.65 33200.86 55.78 33182.99

1 2378.20 32607.25 – –
2 1252.58 30361.35 315.40 29424.17

ZIP 3 775.80 29722.38 252.31 29198.89
Mixed 4 183.98 29507.50 299.89 29623.42

5 ∗ 1626.75 30413.51 232.59 29019.35
6 ∗ 1257.97 30081.44 308.76 29132.23

1 6.41 36210.88 – –
2 20.84 32769.90 77.95 32827.01

ZINB 3 35.61 31875.94 88.37 31928.70
Fixed 4 50.61 31552.68 74.45 31576.51

5 ∗ −92.46 31412.97 130.06 31635.50
6 ∗ −991.21 30429.16 142.96 31563.34

1 2242.15 30688.73 – –
2 174.56 30538.53 419.58 30783.55

ZINB 3 21.23 30324.10 410.13 30712.99
Mixed 4 190.10 30618.71 423.75 30852.36

5 ∗ 159.07 30531.59 331.47 30703.99
6 ∗ 423.46 30910.59 417.45 30904.58
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Figure 2. Posterior class trajectories for 3 candidate models. Each color represents one smoking class and dashed lines are
posterior mean trajectories.

Table 3. Posterior means and 95% credible intervals for the four-class fixed effects ZINB-LCM

Class (%) Component Parameter (Covariate) Posterior Mean 95% Credible Interval

Non/Experimental Binomial α11 (Intercept) −7.672 (−15.449, 0.380)
(54.88%) α12 (Linear Age) 0.847 (0.151, 1.497)

α13 (Quadratic Age) −0.017 (−0.030, −0.003)
NB β11 (Intercept) −9.851 (−16.07, −2.211)

β12 (Linear Age) 0.698 (0.002, 1.275)
β13 (Quadratic Age) −0.012 (−0.025, 0.004)

φ1 (Dispersion Parameter) 0.044 (0.000, 0.492)
Light/Occasional Binomial α21 (Intercept) −7.775 (−12.157, −3.923)

(13.79%) α22 (Linear Age) 0.630 (0.292, 1.021)
α23 (Quadratic Age) −0.012 (−0.021, −0.005)

NB β21 (Intercept) −4.896 (−6.907, −2.989)
β22 (Linear Age) 0.502 (0.322, 0.694)

β23 (Quadratic Age) −0.010 (−0.015, −0.006)
φ2 (Dispersion Parameter) 0.306 (0.175, 0.460)

Moderate Binomial α31 (Intercept) 12.140 (9.396, 15.151)
(19.50%) α32 (Linear Age) −1.036 (−1.317, −0.778)

α33 (Quadratic Age) 0.020 (0.014, 0.026)
NB β31 (Intercept) −9.797 (−11.483, −8.184)

β32 (Linear Age) 0.978 (0.839, 1.121)
β33 (Quadratic Age) −0.019 (−0.022, −0.016)

φ3 (Dispersion Parameter) 0.490 (0.407, 0.584)
Heavy Binomial α41 (Intercept) 1.069 (−2.800, 4.728)

(11.84%) α42 (Linear Age) −0.298 (−0.634, 0.058)
α43 (Quadratic Age) 0.007 (−0.001, 0.015)

NB β41 (Intercept) −0.563 (−1.499, 0.260)
β42 (Linear Age) 0.278 (0.204, 0.363)

β43 (Quadratic Age) −0.006 (−0.008, −0.004)
φ4 (Dispersion Parameter) 0.336 (0.283, 0.389)

number of classes, fixed effects ZIP models had the high-
est DIC values, whereas mixed effects ZIP models had the
lowest DIC values. Mixed effect ZINB models, being the
most flexible and complicated models had higher DIC val-
ues than the mixed effects ZIP models, indicating that they
over-fit the data. For fixed effects ZIP models, the DIC kept

decreasing as the number of classes increased and it was
the lowest for the six-class model. In the absence of ran-
dom effects and parameters of over-dispersion, more classes
were needed to explain the heterogeneity in the data. We
excluded the fixed effects ZIP models and the mixed effects
ZINB models for further analyses.
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We kept the three and four-class mixed effects ZIP models
and the four-class fixed effects ZINB model (the converging
model without a random effect with the lowest DIC value).
Figure 2 shows the cigarette smoking posterior trajectories
for these three models, with each color representing a differ-
ent smoking pattern. Posterior predictive checking was also
performed on these three candidate models as described in
Section 3.3. The posterior predictive p-values corresponds to
proportion of four-time zeros (T1), mean of positive counts
(T2), and standard deviation (T3) were 0.33, 0.76, and 0.92
for the four-class fixed effects ZINB models, were 0.27, 1,
and 1 for the three-class mixed effects ZIP model, and were
0.47, 0.98, and 1 for the four-class mixed effects ZIP model.
Although, the mixed effects ZIP models had a lower DIC,
posterior predictive checks show that it always tends to over-
estimate the positive mean and standard deviation of the
smoking level. It is possible that the random effects model
is too flexible for the data and assumes too much variabil-
ity. The fixed effects ZINB model also displays a tendency
to over-estimate positive mean and standard deviation com-
pared with the observed data but Bayesian p-values were in
an acceptable range. Based on the predictive checks we chose
the four-class fixed effects ZINB model as our final model
for the smoking study.

Posterior means and 95% credible intervals of αs and βs
for the four-class fixed effects ZINB-LCM are presented in
Table 3. Figure 3 presents posterior trajectories for prob-

Figure 3. Posterior class trajectories for mean smoking level
from the count process (blue) and probability of being a

non-smoker (red) from the four-class fixed effects ZINB-LCM.
Black dots are average number of cigarettes smoked per day.

ability of being a non-smoker (structural zero) and pos-
terior trajectories of average number of cigarettes smoked
given that the participant smokes (i.e. from the count pro-
cess). These four smoking patterns differ by several aspects,
such as level of smoking, initial time of smoking, turn-
ing point, and rate of change. The first class comprised
54.88% of the participants and the trajectory pattern was
characterized by a very high probability of being a non-
smoker and an average smoking level around 0 cigarettes.
As shown in Figure 3, this class (the upper right plot)
also included some participants who tried smoking occa-
sionally at a very low level, especially after age 20. We
labeled participants from this class as “non/experimental
smokers”. Class 2 included 13.79% of the participants and
was characterized by a relatively high probability of being
a non-smoker and a relatively low level of smoking. Partic-
ipants from class 2 were termed as “light/occasional smok-
ers”.

Both the probability of being a non-smoker and the smok-
ing level increased until around 25 and then decreased after.
Class 3 had 11.84% of participants and we called this group
“moderate smokers”. Participants from this class had a high
initial probability of being a non-smoker and then a rapid
decreasing trend until the late 20s. The initial level of smok-
ing was low in adolescence and then increased rapidly until
the middle 20s. Only 11.84% of the participants were in class
4, which we described it as “heavy smokers”. This class had
a relatively stable and low probability of being a non-smoker
from adolescence to adulthood (as shown in Table 3, both
linear age (α42) and quadratic age effects (α43) were not sig-
nificant for the heavy smokers class). The level of smoking
was the highest among all classes.

While examining risk factors’ influence on class member-
ship probabilities, we found that gender, ethnicity, house-
hold smoking, and peer smoking all had significant effects
on class assignment and smoking level. Figure 4 shows
the weighted average cigarette smoking trajectories by dif-
ferent gender, ethnicity, and household smoking. Having
household smoking clearly shifted up the cigarettes smok-
ing level. Different ethnic groups also had different av-
erage levels of smoking throughout the whole age range.
In particular, Caucasian and Native American/Other par-
ticipants tend to smoke more cigarettes and African de-
scent participants tend to smoke the least number of cig-
arettes.

Table 4 shows the predicted class membership probabili-
ties for different covariate profiles. Compared with females,
males had higher probabilities of being in the moderate and
heavy smoking classes and lower probabilities of being in
the non/experimental and light smoking classes. Ethnic dis-
parities also exist in the probability of engaging in different
smoking patterns. Native American/Other participants had
the highest probability of belonging to the heavy smoking
group and the lowest probability of belonging to the non-
smoking group. Caucasian participants had the second high-
est probability of being in the heavy smoking group and the
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Figure 4. Weighted average cigarettes smoking trajectories by
gender, ethnicity, and household smoking.

second lowest probability of being in the non-smoking group.
Asian and African descent participants are more likely to be
in the non-smoking class and less likely to be in the heavy
smoking class. Hispanic participants had a high probabil-
ity of being light smokers. These findings are consistent
with White et al. [43] and Evans-Polce et al. [8]. Having
smokers in the household increased participants’ probabil-
ity of smoking and level of smoking. In particular, those
who reported having smokers in the household had a 0.109
decreased probability, a 0.136 increased probability, and a
0.055 increased probability of being non-smokers, moder-
ate smokers, and heavy smokers, respectively. Participants
who had peers who smoke were much less likely to be non-
smokers and more likely to engage in light and occasional
smoking.

6. DISCUSSION

We described latent class models for analyzing longitudi-
nal count data that exhibit an excess of zeros. The model-
ing approach has several advantages over other commonly
used methods. First, since the latent class variable can effec-
tively summarize distinctive patterns of change in longitudi-
nal data and the latent binary variable can identify whether
an observation comes from a zero-inflation process or a reg-
ular count process at each time point, this modeling choice
is very flexible to take into account both unobserved static
and time varying heterogeneity. Second, it allows individual
characteristic factors to be included in the model by influ-
encing the latent class membership and time varying covari-
ates, such as time and age, to be directly associated with the
outcome. In addition, the joint estimation of the class mem-
bership and risk factors is more general than the traditional
two-stage approach which does not take into account of the
uncertainty in class membership. The method was applied
to developmental trajectories of cigarette smoking behavior

Table 4. Predicted Class Membership Probabilities

Covariates Non or Experimental Light or Occasional Moderate Heavy

Gender
Male 0.364 0.248 0.244 0.143
Female 0.399 0.338 0.149 0.114

Race
Caucasian 0.309 0.247 0.239 0.204
Asian 0.419 0.333 0.228 0.021
African 0.560 0.199 0.216 0.026
Hispanic 0.352 0.400 0.127 0.121
Native/Other 0.268 0.288 0.173 0.271

Household Smoking
Yes 0.327 0.252 0.224 0.197
No 0.436 0.335 0.169 0.061

Peer Smoking
3 peers 0.064 0.575 0.054 0.307
None 0.593 0.206 0.191 0.010
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from early adolescence to adulthood. We were able to iden-
tify four distinct groups of age-varying smoking trajectories:
non/experimental smokers, light/occasional smokers, mod-
erate smokers, and heavy smokers. Class specific smoking
patterns differ not only by the probability of being a smoker
and level of smoking but also by characteristics related to
onset, escalation, and leveling off of smoking. Our results
provide insights into gender and ethnic disparities on smok-
ing patterns. In addition, we found that having smokers as
peers and/or in the household was significantly correlated
with higher levels of cigarette smoking, especially among
heavy smokers. Although many educational and prevention
programs exist focusing on smoking reduction, our findings
suggest that more effective strategies may need to be age,
gender, and ethnicity specific. Initiatives could also target
the reduction of adolescents’ exposure to smoking by en-
couraging household indoor smoking restrictions. Rodriguez
et al. [35] suggested that indoor smoking restrictions, even
when parents themselves smoke, could decrease exposure to
peer smoking and decrease adolescents’ smoking risk at a
higher level.

This paper compared ZIP-LCM and ZINB-LCM with and
without random effects. The flexibility of a mixed model is
very appealing; however, such a complex model might occa-
sionally lead to overfit of the data and offer less meaning-
ful interpretation. As a result, for this dataset a four-class
fixed effects ZINB model is the most useful, because of its
parsimony in estimating the number of latent classes and
ensuring enough flexibility to model the zero-inflation and
over-dispersion within different smoking patterns. An alter-
native approach to model zero-inflated count data is using
“two-part models”, which include a Poisson hurdle model
and a negative binomial hurdle model [22, 17]. The main dif-
ference between zero-inflated models and two-part models is
how they deal with different types of zeros: while the count
process of a two-part model is a zero-truncated Poisson or
zero-truncated negative binomial model (i.e. the distribu-
tion of the response variable cannot have a value of zero),
the count process of a mixture model can produce zeros
[45]. Min and Agresti [21] suggested that zero-inflated mod-
els tend to be unstable when zero-deflation exists at some
levels of the covariates. Although we did not encounter this
problem from the simulation study, our proposed models
can be easily adapted to the more robust hurdle latent class
formulation. We intend to investigate hurdle models in fu-
ture research. Another aspect worthy of consideration is a
direct estimation of the number of classes, treating it as an
unknown parameter. For simpler mixtures transdimensional
algorithms like reversible jumps MCMC (see Richardson and
Green [33]) or the birth and death processes MCMC by
Stephens [40] have been proposed. These methods are usu-
ally very complex to implement, and the mixing can be very
slow, especially with more structured likelihoods like the
ones we considered in our work. Although mixtures with in-
dependent weights lose the connection to demographic vari-

ables, they allow for a certain level of simplification in esti-
mating the number of classes, and in the case of zero inflated
distributions are the subject of ongoing research.

A limiting aspect of the dataset we used is that obser-
vations were collected using a cohort sequential design. The
baseline age ranged from 13 to 21 years and each participant
only had four measurements with different time intervals.
Though there was overlapping in age between different co-
horts, each age cohort only contributes a different segment
of the overall curve. It is possible that a trajectory for the
whole age range is biased due to the small number of mea-
surements. As for future analysis of the smoking data, the
baseline age (i.e. the cohort effect) could be considered in
the model by either affecting the class membership proba-
bility or as a random effect. On the applied side, our model
can also be extended to accommodate multiple outcomes,
with dual trajectory models linking the trajectory patterns
of two behaviors [15]. As a more general consideration, zero-
inflated latent class models can be used for a wide variety of
applications when the interest is to model rare events or be-
haviors that are less commonly endorsed. In addition, there
is a growing interest in studying multiple health risky be-
haviors and implementing specific interventions that target
multiple co-occurrence of such behaviors. At the moment
there is still surprisingly little understanding of the basic
principles of multiple health behavior change, as discussed
in Prochaska et al. [29].

APPENDIX A. MIXED EFFECTS ZINB-LCM
MODEL LIKELIHOOD

We present the likelihood function for the mixed ef-
fects ZINB-LCM model as mentioned in Section 3, where
ΘZINBMixed = {αk, βk, γk, Ci, φk, bki}.

P (Y |ΘZINBMixed)
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APPENDIX B. MODEL SELECTION
DETAILS

The DIC was introduced by Spiegelhalter et al. [39] for
comparing complex hierarchical models and it has the fol-
lowing form,

DIC = D(θ) + pD

= E[D(θ)|y] + (E[D(θ)|y]−D(E[θ|y]))
= 2D(θ)−D(θ̃)

= −4E[log f(y|θ)|y] + 2 log f(y|θ̃),

where θ̃ is an estimate of parameters depending on the dis-
tributional form of y. The posterior mean θ = E[θ|y] is of-
ten used for θ̃. With D(θ) we indicate the posterior mean
of the deviance and it offers summary information on how
much discrepancy exists between the model and the data.
pD measures the difference between the posterior mean of
the deviance (i.e. D(θ)) and the deviance evaluated at the
posterior mean of the parameters (i.e. D(θ̃)). It provides a
way of assessing effective number of parameters. Thus, the
DIC assesses both a Bayesian measure of a model fit and
the complexity of the model. Similarly to AIC and BIC, a
model with a smaller DIC is usually preferred.

Celeux et al. [4] provided an extension of DIC in the case
of finite mixture models, which they referred to as DIC3.
DIC3 has the same form as the traditional DIC except
that it estimates D(θ̃) by using the MCMC predictive den-
sity, which is a weighted average of the posterior mean of
the marginal likelihood from all classes. We call this new
deviance of the mean as D(θ̃)3 and the new effective size of
parameters as pD3. Both D(θ) and D(θ̃)3 can be approxi-
mated using M simulated values θ(1), . . . , θ(M) from MCMC
chains. For ZIP latent class models, θ(m) = (μ(m), p(m)) and
for ZINB latent class models, θ(m) = (μ(m), p(m), and φ(m)).
In particular,

D(θ) = −2
1

M

M∑
m=1

log

N∏
i=1

K∑
k=1

π
(m)
ik f(yik|θ(m)

ik ),

D(θ̃)3 = −2 log
1

M

M∑
m=1

N∏
i=1

K∑
k=1

π
(m)
ik f(yik|θ(m)

ik ).

In the simulation study and real data application, we used
both the original DIC and the DIC3 as criteria for model
selection.
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