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In many studies, limited or censored data are collected.
This occurs, in several practical situations, for reasons such
as limitations of measuring instruments or due to experi-
mental design. So, the responses can be either left, inter-
val or right censored. On the other hand, partially linear
models are considered as a flexible generalizations of linear
regression models by including a nonparametric component
of some covariates in the linear predictor. In this paper, we
discuss estimation and diagnostic procedures in partially lin-
ear censored regression models with errors following a scale
mixture of normal (SMN) distributions. This family of dis-
tributions contains a group of well-known heavy-tailed dis-
tributions that are often used for robust inference of sym-
metrical data, such as Student-t, slash and contaminated
normal, among others. A simple EM-type algorithm for it-
eratively computing maximum penalized likelihood (MPL)
estimates of the parameters is presented. To examine the
performance of the proposed model, case-deletion and local
influence techniques are developed to show its robustness
against outlying and influential observations. This is per-
formed by sensitivity analysis of the maximum penalized
likelihood estimates under some usual perturbation schemes,
either in the model or in the data, and by inspecting some
proposed diagnostic graphs. We evaluate the finite sample
performance of the algorithm and the asymptotic proper-
ties of the MPL estimates through empirical experiments.
An application to a real dataset is presented to illustrate
the effectiveness of the proposed methods. Both estimation
procedure and diagnostic tools were implemented in the R
PartCensReg package.

Keywords and phrases: Censored regression model, EM-
type algorithm, Partially linear models, Local influence,
Scale mixtures of normal distributions.

1. INTRODUCTION

The problem of estimation of a regression model where
the dependent variable is censored has been studied in differ-
ent fields, such as econometric analysis and clinical testing,
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among many others. For example, in AIDS research, the vi-
ral load measures may be subject to some lower and upper
detection limits, below or above which they are not quantifi-
able. As a result, the viral load responses are either left or
right censored depending on the diagnostic assays used [see,
for instance, 32].

In the framework of censored regression (CR) models,
the random errors are routinely assumed to follow a nor-
mal distribution for mathematical convenience. However, if
the random error distribution is non-normal, in particular,
if its tails are heavier than normal ones, then the accu-
racy of the ordinary least squares solutions is lost, intro-
ducing biases in the parameter estimates. For more accu-
rate models, a large number of parametric models to ex-
tend well-known distributions and to provide flexibility in
modeling data have been investigated in recent years. For
instance, [1] advocated the use of the Student-t distribu-
tion in the context of CR models. More recently, [23] devel-
oped diagnostic measures for CR models using the Student-t
distribution, including the implementation of an interesting
(and simple) expectation-maximization (EM) algorithm for
maximum likelihood (ML) estimation. [8, 9] proposed a CR
model with observational errors following a SMN distribu-
tion (SMN-CR model) from Bayesian and likelihood based
perspectives, respectively. They demonstrated the robust-
ness of the SMN-CR model against outliers through exten-
sive simulations.

Partially linear regression (PLR) models belong to the
class of semiparametric regression models [see, for instance,
13]. They are quite flexible since the nonparametric com-
ponent can model nonlinear behavior introduced by some
covariates in the model. Linear regression models can be
seen as a limiting case of PLR models when the nonparamet-
ric component is not considered. Comprehensive surveys are
available in [12] and [13]. In the past few years, several works
on PLR under flexible error distributions have been pub-
lished. For instance, [16] developed diagnostic measures for
PLR models using the Student-t distribution, [30] derived
an iterative estimation process and some diagnostic proce-
dures in PLR with AR(1) symmetrical errors. [7] proposed
a PLR model allowing the errors to follow a skew-normal [2]
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distribution. In the context of partial linear censored re-
gression (PCR) models, [31] proposed the log-symmetric re-
gression model, where the presence of non-informative cen-
sored observations is admitted. [3] advocated the use of the
SMN class of distributions in PCR (SMN-PCR) models and
adopted a Bayesian framework to carry out posterior in-
ference. Although some works involving PCR models with
symmetrical distributions have been published recently, so
far, to the best of our knowledge, no attempt has been made
to study the SMN-PCR model from a likelihood based per-
spective. In this paper, a fully likelihood-based approach is
presented, including the implementation of an efficient EM-
type algorithm, the ECME algorithm, for iteratively com-
puting the MPL estimates of the parameters.

Since the classic normal model is very sensitive to outly-
ing observations, the assessment of robustness of the pa-
rameter estimates is an important concern. The deletion
method, which consists of studying the impact on the pa-
rameter estimates after dropping individual observations, is
probably the most employed technique to detect influen-
tial observations (see [6] and the references therein). Never-
theless, research on the influence of small perturbations in
the model(or data) on the parameter estimates has received
increasing attention in recent years. This can be achieved
by performing local influence analysis, a general statistical
technique used to assess the stability of the estimation out-
puts with respect to the model inputs. This research area
has received considerable attention in the statistical liter-
ature for linear regression models since the seminal work
of [5]. However, for the SMN-PCR model, the marginal log-
likelihood function is too complex for many applications
and a direct application of Cook’s approach may be cum-
bersome, since first and second partial derivatives of this
function are involved. [33] presented an approach to per-
form local influence analysis for general statistical models
with missing (or incomplete) data by working with a Q-
displacement function, closely related to the conditional ex-
pectation of the complete-data log-likelihood used at the
E-step of the ECME algorithm. This approach produces re-
sults very similar to those obtained from Cook’s method.
Moreover, case-deletion can be also studied by using the Q-
displacement function following the approach of [34]. These
methods, and their variants, have been applied successfully
to perform influence analysis in several CR models, as seen
in [25] and [23], among others. In this work, we develop a lo-
cal influence method using this approach for the SMN-PCR
model, showing that it leads to simple influence measures.
The proposed estimation and diagnostic method are imple-
mented in the R package PartCensReg [20] available in the
CRAN repository.

The rest of the paper is organized as follows. The SMN-
PCR model is defined in Section 2 after a brief introduction
of the SMN class and related properties. In Section 3, we de-
velop an ECME algorithm [21] to perform MPL estimation
for the parameters of the proposed model. In Section 4 we

present some influence diagnostic techniques, based on case
deletion and local influence approaches. Sections 5 and 6
are dedicated to the analysis of real and simulated datasets,
respectively. Section 7 concludes with a short discussion of
the issues raised by our study and some avenues directions
for future research.

2. FORMULATION OF THE MODEL

2.1 Preliminaries

We begin by defining some notation and presenting the
basic concepts which are used throughout this work. A nor-
mal distribution with mean μ and variance σ2 is denoted
by N(μ, σ2),where φ

(
·|μ, σ2

)
denotes its probability density

function (pdf). Also, φ(·) and Φ(·) denote, respectively, the
pdf and the cumulative distribution function (cdf) of the
standard normal distribution; and FSMN (.), FPV II(·), FSL(·)
and FCN(·) represent the cdf of the standard SMN distribu-
tion, standard slash, standard Pearson type VII and the
standard contaminated normal distribution, respectively.
When X follows a Gamma(a, b) distribution, we will con-
sider the shape-rate parameterization, i.e., with mean a/b
and variance a/b2, where a > 0 and b > 0. We use the
traditional convention of denoting a random variable (or a
random vector) by an upper-case letter and its realization
by the corresponding lower-case letter. Random vectors and
matrices are denoted by boldface letters. I denotes the in-
dicator function.

A random variable Y is said to have a SMN distribution
with location parameter μ ∈ R, scale parameter σ2 ∈ (0,∞)
and an auxiliary vector of parameters ν ∈ Rk, denoted by
Y ∼ SMN(μ, σ2,ν), if it has the following stochastic repre-
sentation:

(1) Y
d
= μ+ U−1/2Z,

where Z and U are independent random variables, Z ∼
N(0, σ2), U is a mixing positive random variable with cdf
H(·|ν), with ν being a scalar or vector parameter index-

ing the distribution of U and
d
= means “has the same dis-

tribution as”. It is easy to see from (1) that Y |U = u ∼
N(μ, u−1σ2). Using conditional distribution, the pdf of (1)
is:

fSMN (y|μ, σ2,ν)

= (2πσ2)−1/2

∫ ∞

0

u1/2 exp

[
−u

(y − μ)2

2σ2

]
dH(u|ν).

The following result is very important for the develop-
ment of our proposed ECME algorithm. It was provided
and proved by Garay et al. [9, Proposition 1], and is an
extension of Theorem 1 and Corollary 1 in Genç [10]. Let
Y ∼ SMN(0, 1,ν) with scale factor U and mixture distri-
bution H(·|ν). Thus for a < b, E [UrY s|Y ∈ A ] for r ≥ 1,
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Table 1. Eφ (r, h) and EΦ (r, h) for some members of the
SMN family of distributions

Distribution Eφ (r, h)

Student-t
Γ( ν+2r

2 )
Γ( ν

2 )
√
2π

(
ν
2

)ν/2
(

h2+ν
2

)− (ν+2r)
2

Slash ν√
2π

(
h2

2

)−(ν+1)

Γ
(
ν + r, h2

2

)
Contaminated Normal ϕγrφ(h

√
γ) + (1− ϕ)φ(h)

Distribution EΦ (r, h)

Student-t
Γ( ν+2r

2 )
Γ( ν

2 )

(
ν
2

)−r
FPV II(h|ν + 2r, ν)

Slash
(

ν
ν+1

)
FSL(h|ν + r)

Contaminated Normal γrFCN(h|ϕ, γ) + (1− γr)Φ(h)

A = (a, b) and s = 0, 1, 2 are given by:

E [Ur|Y ∈ A ] = τ(a, b) [EΦ (r, b)− EΦ (r, a)] ,

(2)

E [UrY |Y ∈ A ] = τ(a, b) [Eφ (r − 0.5, a)− Eφ (r − 0.5, b)] ,
(3)

E
[
UrY 2|Y ∈ A

]
= τ(a, b) [EΦ (r − 1, b)− EΦ (r − 1, a)

(4)

+ aEφ (r − 0.5, a)− bEφ (r − 0.5, b)] ,

with τ(a, b) = (FSMN (b)− FSMN (a))
−1

and

Eφ (r, h) = E
[
Urφ

(
hU0.5

)]
=

∫ ∞

0

urφ
(
hu0.5

)
dH (u|ν) ,

EΦ (r, h) = E
[
UrΦ

(
hU0.5

)]
=

∫ ∞

0

urΦ
(
hu0.5

)
dH (u|ν) .

The class of SMN distributions includes as particular
cases well-known distributions like the Pearson type VII,
Student-t, slash, contaminated normal distributions, among
others. The normal distribution is a special case when U
is degenerate in 1, i.e., P(U = 1) = 1. Therefore, the cal-
culation of Eφ (r, h) and EΦ (r, h) will depend on the type
of distribution (see Table 1). We refer to [9] for proofs and
additional properties.

2.2 The model

Let us consider a partially linear model, where the re-
sponses Y1, . . . , Yn are random variables with independent
and identically distributed errors according to a SMN dis-
tribution. To be more precise, let us write:

Yi = x�
i β + f(ti) + εi,(5)

εi
iid∼ SMN(0, σ2,ν),

where Yi is the response for subject i, i = 1, . . . , n, β =
(β1, . . . , βp)

� is a vector of regression parameters of dimen-
sion (p× 1), xi = (x1i

, . . . , xpi
)� is a vector of explanatory

variable values p×1, ti is a scalar that can represent a value
of a continuous covariate, for example time, and f(·) is a
smoothing function.

In this work, we are interested in the case where left-
censored observations might occur. That is, the observations
are of the form:

Yobsi =

{
κi if Yi ≤ κi;
Yi if Yi > κi,

(6)

i = 1, . . . , n, for some threshold point κi for the i-th subject.
We have chosen to work with the left censored case, but the
results are easily extendable to other censoring types. We
call the model defined in Equations (5)–(6) the SMN-PCR
model.

Alternatively, the model (5) can be written as:

Yi = x�
i β + n�

i f + εi,(7)

where f = (f(t01), . . . , f(t
0
r))

� is an r×1 vector with t01, . . . , t
0
r

being the distinct and ordered values of ti; ni is an (r × 1)
incidence vector with the s-th element equal to the indicator
function I(ti = t0s) for s = 1, . . . , r. In matrix form, model
(7), can be written as:

Y = Xβ +Nf + ε,(8)

whereY = (Y1, . . . , Yn)
� is the response vector of dimension

n×1, X is an (n×p) design matrix, N is an (n×r) incidence
matrix with the (i, s)-th element equal to the indicator func-
tion I(ti = t0s), for s = 1, . . . , r and ε = (ε1, ε2, . . . , εn)

� is
an (n× 1) vector of random errors with elements belonging
to the SMN class of distributions.

2.3 The log-likelihood function

Let yobs = (y1, . . . , yn)
� be an observed sample of Y =

(Y1, . . . , Yn)
�, containing m censored values of the charac-

teristic of interest. We can partition the observed sample
yobs into two subsamples of m censored and n −m uncen-
sored values, such that yobs = {κ1, . . . , κm, ym+1, . . . , yn}.
Then, the log-likelihood function of the parameter vector
θ = (β�, f�, σ2,ν�)� considering left-censored observa-
tions is given by:

	(θ) = log

[
n∏

i=1

[
FSMN

(
κi − μi

σ

)]Ii[
fSMN(yi|μi, σ

2,ν)
]1−Ii

]
,

(9)

=

m∑
i=1

log

[
FSMN

(
κi − μi

σ

)]

+

n∑
i=m+1

log
[
fSMN (yi|μi, σ

2,ν)
]
,

where μi = x�
i β + n�

i f , and Ii = 1 if yi ≤ κi and Ii = 0
otherwise.
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Maximization of Equation (9) without imposing restric-
tions on the function f(·) may cause over-fitting and non-
identification of β [see, for instance, 11]. A well-known pro-
cedure is based on the penalized log-likelihood, which con-
sists of incorporating a penalty function in the log-likelihood
function, such that:

	p(θ, α) = 	(θ)− α

2
J(f),(10)

where 	p(θ, α) denotes the penalized log-likelihood function,
J(f) is the penalty function over f(·) and α is a smooth-
ing parameter that controls the tradeoff between goodness-
of-fit and the estimated function’s smoothness. The maxi-
mum penalized likelihood (MPL) estimates are obtained by
maximizing the penalized log-likelihood defined in (10). The
MPL estimation problem based on an efficient ECME algo-
rithm is considered in the next section.

3. PARAMETER ESTIMATION VIA AN
ECME ALGORITHM

To implement the EM method, we require a representa-
tion of the model in terms of missing data. First, observe
that by Equation (1), if Yi ∼ SMN(μi, σ

2,ν) then:

Yi|Ui = ui ∼ N(μi, u
−1
i σ2),(11)

Ui ∼ H(·|ν).

This relationship is a convenient hierarchical representa-
tion of the SMN-PCR model, and will be useful in the E-step
of the algorithm.

The key to the development of our ECME algorithm is to
consider the augmented dataset z = {κ1, . . . , κm, ym+1, . . . ,
yn, u1, . . . , un}. As a consequence, we can use the represen-
tation in (11) to obtain the complete-data penalized log-
likelihood, given by:

	cp(θ|z) = −n

2
log σ2 +

1

2

n∑
i=1

log ui −
1

2σ2

n∑
i=1

ui(yi − μi)
2

+

n∑
i=1

log h(ui|ν)−
α

2
J(f) + cte,

where 	cp(θ|z) is the complete penalized log-likelihood func-
tion, h(·|ν) is the density of the mixing variable U and cte
is a constant independent of the parameter vector θ. In the
E-step of the algorithm, we must obtain the so-called Q-
function,

Q(θ|θ(k)) = Eθ(k) [	cp(θ|z)|yobs],

in which the superscript (k) indicates the estimate of the
related parameter at stage k of the algorithm and Eθ(k) is
the conditional expectation of the complete penalized log-
likelihood function given the current estimate θ = θ̂(k). Like

[16] and [7], we consider the following penalty function:

J(f) =

∫ b

a

[f ′′(t)]2dt,

where [f ′′(t)] denotes the second derivative of f(t) with [a,
b] containing the values t0j , for all j = 1, . . . , r. As in [12], we
use the natural cubic spline as a solution for the smoothing
function f(·), therefore J(f) = f�Kf , where K ∈ Rr×r is a
non-negative definite matrix that depends only on the knot
differences. A complete expression of K may be found, for
instance, in [12].

Thus, dropping the constants and given θ = θ(k), the
Q-function can be written as:

Q(θ|θ̂(k))

(12)

∝ −n

2
log σ̂2

(k)

− 1

2σ̂2
(k)

n∑
i=1

[
ξ2i

(θ̂(k))− 2ξ1i
(θ̂(k))μ̂(k)

i

+ ξ0i
(θ̂(k))μ̂(k)2

i

]
− α

2
f̂ (k)�Kf̂ (k)

∝ −n

2
log σ̂2

(k)

− 1

2σ̂2
(k)

(1�
n ξ

(k)

2 − 2μ̂(k)�ξ(k)

1

+ μ̂(k)�Ω(k)μ̂(k))− α

2
f̂ (k)�Kf̂ (k),

where Ω is a diagonal matrix with elements ξ0i
(θ̂(k)) of di-

mension n× n, ξ(k)

1 ξ(k)

2 are vectors of dimension n× 1 with

elements ξ1i
(θ̂(k)), ξ2i

(θ̂(k)) respectively, μ̂(k+1) is the n× 1

vector of means at the k-th iteration and 1n a (n×1) vector
of ones.

Therefore, it is clear that the expression of the Q-function
depends completely on the knowledge of the expectations

ξsi
(θ(k)) = Eθ(k) [UiY

s
i |yobsi ], s = 0, 1, 2.

Thus, for a censored observation i, we have

ξsi
(θ(k)) = Eθ(k) [UiY

s
i |Yi ≤ κi],(13)

which was obtained in Garay et al. [9, Proposition 1] with
expressions given by. On the other hand, for an uncensored
observation i, we have

(14) ξsi
(θ(k)) = ysiEθ(k) [Ui|Yi].

The values of Eθ(k) [Ui|Yi] were computed before by Oso-
rio et al. [27] and are presented in Table 2, with d(θ(k), yi) =
(yi − μ(k)

i )/σ(k). Here, ξ(k)
s will denote the vector contain-

ing the ξsi
(θ̂(k)) elements in which, if the observation i is

censored, it will be computed using ξsi
(θ̂(k)) given in (13),

or else using ξsi
(θ̂(k)) as in (14), for s = 0, 1, 2. Note that,
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Table 2. Eθ(k) [Ui|Yi] for some members of the SMN family of
distributions

Distribution Eθ(k) [Ui|yi]
Student-t

(ν + 1)
ν + d2(θ(k), yi)

Slash
Γ

(
ν + 1.5, d2(θ(k), yi)/2

)
Γ

(
ν + 0.5, d2(θ(k), yi)/2

)
Contaminated normal

1− ϕ+ ϕγ1.5e0.5(1−γ)d2(θ(k),yi)

1− ϕ+ ϕγ0.5e0.5(1−γ)d2(θ(k),yi)

Eθ(k) [log h(Ui|ν)|yobsi ] and Eθ(k) [log (Ui) |yobsi ] depend only
on ν, which is assumed known at this stage.

Thus, the proposed ECME algorithm can be summarized
in the following steps:

1. E-step: Given θ = θ̂(k), compute ξsi
(θ̂(k)) for s =

0, 1, 2.
2. CM-step: Update θ̂(k) by maximizing Q(θ|θ̂(k)) over

θ, which leads to the following expressions:

β̂(k+1) =

[
n∑

i=1

ξ0i
(θ̂(k))xix

�
i

]−1

×
n∑

i=1

xi

[
ξ1i

(θ̂(k))− ξ0i
(θ̂(k))n�

i f̂
(k)

]
=

(
X�Ω(k)X

)−1

X�
(
ξ(k)

1 −Ω(k)N�f̂ (k)

)
,

f̂ (k+1) =

[
n∑

i=1

ξ0i
(θ̂(k))nin

�
i + α̂(k)σ̂2

(k)

K

]−1

×
n∑

i=1

ni

[
ξ1i

(θ̂(k))− ξ0i
(θ̂(k))x�

i β̂
(k+1)

]
=

(
N�Ω(k)N+ α̂(k)σ̂2

(k)

K
)−1

×N�
(
ξ(k)

1 −Ω(k)Xβ̂(k+1)

)
,

σ̂2
(k+1)

=
1

n

n∑
i=1

[
ξ2i

(θ̂(k))− 2ξ1i
(θ̂(k))μ̂(k+1)

i

+ ξ0i
(θ̂(k))μ̂i

(k+1)2
]

=
1

n

(
1�
n ξ

(k)

2 −2μ̂(k+1)�ξ(k)

1 +μ̂(k+1)�Ω(k)μ̂(k+1)
)
,

3. CML-step: Update ν(k) by maximizing the actual
marginal log-likelihood function, obtaining

ν(k+1) = arg max
ν

{
m∑
i=1

log

[
FSMN

(
κi − μ̂(k+1)

i

σ̂(k+1)

)](15)

+

n∑
i=m+1

log
[
fSMN(yi|μ̂(k+1)

i , σ̂2
(k+1)

,ν)
]}

.

The vector of parameters ν is just a scalar (degrees
of freedom) for the Student-t and slash cases, while ν =
(ϕ, γ)� for the contaminated normal case. A more effi-
cient CML-step (15) can be easily accomplished by using,
for instance, the optimize or optimx routines in the R
software [29]. The algorithm iterates between the E- and
CML-steps until reaching convergence, i.e., until some dis-
tance involving two successive evaluations of the actual log-
likelihood, like ||	(θ(k+1))−	(θ(k))|| or ||	(θ(k+1))/	(θ(k))−1||,
is small enough. A set of reasonable starting values can

be obtained by computing β̂(0) and σ̂2
(0)

as the solution
of the least squares regression model of Y on X, consid-
ering the censoring values as observed and f̂ (0) = (N�N +

ασ̂2
(0)

K)−1N�(y −Xβ̂(0)).

3.1 Estimation of smoothing parameter α

In additive models, the Akaike information criterion
(AIC) can be applied to select an appropriate α. Following
[7], the AIC for PLR models is defined by:

AIC(α) = −2	cp(θ̂, α) + 2[p+ q + df(α)],

where p is the dimension of the regression parameters β,
q the number of parameters of the SMN distribution being
considered and 	cp(θ̂, α) is evaluated at θ̂ for a fixed α. The
degrees of freedom (df) is defined as the number of effective
parameters involved in modeling the nonparametric effects
and can be approximated by [14]:

df(α) = tr{Ir + αL},

where L = σ̂2B−1/2KB−1/2, with B = N�N.

3.2 Standard error approximation

Analogously to the parametric case, the approximate
variance-covariance matrix of θ = (β�, f�, σ2)� is de-
rived from the inverse of the observed information ma-
trix [22]. In effect, V̂ ar(θ̂) = I−1

θθ (θ|y)|θ̂, where Iθθ(θ|y) =

−
∑n

i=1
∂2�cpi (θ)

∂θ∂θ� and 	cpi(θ) is the penalized log-likelihood
function of the SMN-PCR model, given by:

	cp(θ) =

n∑
i=1

	cpi(θ)

=

m∑
i=1

log [Ψi(θ)]

+

n∑
i=m+1

{
−1

2
log 2π − 1

2
log σ2 + log[ψi(θ)]

}
− α

2
f�Kf ,

with Ψi(θ) =
∫ ∞
0

Φ [k−1/2(ui)Di] dH(ui|ν) and ψi(θ) =∫ ∞
0

k−1/2(ui) exp
[
−k−1(ui)di

2

]
dH(ui|ν), where di = (yi−μi)

2

σ2
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and Di =
√
di. Thus, the matrix of second derivatives

Iθθ(θ|y) can be represented as:

Iθθ(θ|y) = −
n∑

i=1

∂2	cpi(θ)

∂θ∂θ�
= I1(θ) + I2(θ) + I3(θ),

where

I1(θ) = −
m∑
i=1

{
∂2

∂θ∂θ� log[Ψi(θ)]

}

=

m∑
i=1

[
1

Ψ2
i (θ)

∂Ψi(θ)

∂θ

∂Ψi(θ)

∂θ� − 1

Ψi(θ)

∂2Ψi(θ)

∂θ∂θ�

]
,

I2(θ) = −
n∑

i=m+1

{
∂2

∂θ∂θ�

[
−1

2
log(2π)− 1

2
log(σ2)

− α

2(n−m)
f�Kf

]}
,

I3(θ) = −
n∑

i=m+1

{
∂2

∂θ∂θ� log[ψi(θ)]

}

=

m∑
i=1

[
1

ψ2
i (θ)

∂ψi(θ)

∂θ

∂ψi(θ)

∂θ� − 1

ψi(θ)

∂2ψi(θ)

∂θ∂θ�

]
.

The calculation of ψi(θ) and Ψi(θ) involves, respectively,
the pdf and cdf of the normal, Student-t, slash and contam-
inated normal distributions, thus

∂Ψi(θ)

∂θ
= I

Φ
i (1/2)

∂Di

∂θ
,(16)

∂2Ψi(θ)

∂θ∂θ� = −1

2
I
Φ
i (3/2)

∂D2
i

∂θ

∂Di

∂θ
+ I

Φ
i (1/2)

∂2Di

∂θ∂θ� ,

∂ψi(θ)

∂θ
= −1

2
I
φ
i (3/2)

∂di
∂θ

,(17)

∂2ψi(θ)

∂θ∂θ� =
1

4
I
φ
i (5/2)

∂di
∂θ

∂di
∂θ� − 1

2
I
φ
i (3/2)

∂2di
∂θ∂θ� .

See Appendix A for the calculation of derivatives. Using
the same notation as in Lachos et al. [17], we have that:

(18) I
φ
i (ω) =

∫ ∞

0

k−ω(ui) exp

[
−k−1(ui)di

2

]
dH(ui|ν).

Since IΦi (ω) =
1√
2π

I
φ
i (ω), for each distribution considered,

the integral defined in (18) can be written as:

• Student-t distribution

I
φ
i (ω) =

νν/22ωΓ(ω + ν
2 )

Γ
(
ν
2

)
(ν + di)ω+ν/2

;

• Slash distribution

I
φ
i (ω) = ν

∫ 1

0

uω+ν−1
i exp

(
−ui

2
di

)
dui;

• Contaminated normal distribution

I
φ
i (ω) =

√
2π

[
ϕγω−1/2φ(

√
di; 0, 1/γ)

+ (1− ϕ)φ(
√

di; 0, 1)
]
.

4. DIAGNOSTIC ANALYSIS

After the estimation procedure, the next step is evalua-
tion of model results to detect outlying and influential ob-
servations in addition to possible deviations in the model,
because in some cases the character of the regression can
be determined only by a few observations. For example,
in the context of simple linear regression, it is well known
that inferences based on ordinary least squares regression
can be strongly influenced by only a few outlying observa-
tions in the data. In these circumstances, [6] stated there
are two alternatives to handle this situation. The first con-
sists of the development of robust estimation methods that
require few assumptions and the second is related to the
development of diagnostic tools to detect possible influen-
tial observations. So, we have the case-deletion approach
[4], a traditional method for identifying influential obser-
vations, and the local influence approach, with the aim
of investigating the behavior of some influence measures
when we introduce small perturbations in the data and
then monitor their impact on the outcome of the analy-
sis.

4.1 Case deletion

Case-deletion is a widely used approach that studies the
effect on the final inferential results of dropping the i-th
case from the dataset. Hereafter, any subscript [−i] refers
to the original dataset with the i-th case deleted. In gen-
eral, we consider y[−i] = (y1, y2, .., yn−1)

� as the complete
dataset with the i-th observation deleted. The complete-
data penalized log-likelihood calculated after eliminating
the i-th observation is denoted by 	cp(θ|z[−i]), therefore

let θ̂[−i] = (β̂�
[−i], f̂

�
[−i], σ̂

2
[−i])

� be the argument that max-

imizes the function Q[−i](θ|θ̂) = E[	cp(θ|z[−i])|yobs[−i], θ̂],

where θ̂ = (β̂�, f̂�, σ̂2)� are the MPL estimates obtained
through ECME algorithm for θ.

To measure the influence of i-th observation in the MPL
estimates of θ, we compare the difference between θ̂[−i]

and θ̂. If this difference is large, then the i-th case can be
considered influential, so it will require special attention.
Since θ[−i] must be performed considering each individual
separately for i = 1, . . . , n, the computational effort can be
high for large sample sizes. To circumvent this, [33] proposed
the following one-step pseudo approximation:

θ̂∗
[−i] = θ̂ + {−Q̈(θ̂|θ̂)}−1Q̇[−i](θ̂|θ̂),(19)

where

170 M. Nuñez Lemus et al.



Q̈(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂θ∂θ�

∣∣∣
θ=θ̂

and(20)

Q̇[−i](θ̂|θ̂) =
∂Q[−i](θ|θ̂)

∂θ

∣∣∣
θ=θ̂

(21)

are the Hessian matrix and the individual score vector eval-
uated at θ̂ respectively. Thus, Q̇[−i](θ̂|θ̂) = (Q̇[−i]β

(θ̂|θ̂),
Q̇[−i]f

(θ̂|θ̂), Q̇[−i]
σ2
(θ̂|θ̂))� has the elements as:

Q̇[−i]β
(θ̂|θ̂) = ∂Q[−i](θ|θ̂)

∂β

∣∣∣
θ=θ̂

=
1

σ̂2

∑
i �=j

[
ξ1j

(θ̂)xj − ξ0j
(θ̂)xj μ̂j

]
,

Q̇[−i]f
(θ̂|θ̂) = ∂Q[−i](θ|θ̂)

∂f

∣∣∣
θ=θ̂

=
1

σ̂2

∑
i �=j

[
ξ1j

(θ̂)nj − ξ0j
(θ̂)nj μ̂j

]
− α̂

n
Kf̂ ,

Q̇[−i]
σ2
(θ̂|θ̂) = ∂Q[−i](θ|θ̂)

∂σ2

∣∣∣
θ=θ̂

= − 1

2σ̂2

∑
i �=j

{
1− 1

σ̂2

[
ξ2j

(θ̂)− 2ξ1j
(θ̂)μ̂j

+ ξ0j
(θ̂)μ̂2

j

]}
.

Following [33], to measure the distance between θ̂[−i] and

θ̂ and therefore to assess influential observations, we com-
pute the generalized Cook’s distance as follows:

GD i =
(
θ̂[−i] − θ̂

)�{
−Q̈(θ̂|θ̂)

}(
θ̂[−i] − θ̂

)
, i = 1, . . . , n,

(22)

and by substituting Equation (22) into (19), we obtain the
approximation of the generalized Cook’s distance

GD1
i = Q̇[−i](θ̂|θ̂)�

{
−Q̈(θ̂|θ̂)

}−1

Q̇[−i](θ̂|θ̂), i = 1, . . . , n.

(23)

The Hessian matrix, Q̈(θ̂|θ̂)

After some rearrangement of terms and evaluation of the
derivatives at θ = θ̂, we obtain the Hessian matrix Q̈(θ̂|θ̂)
with elements given by:

Q̈β(θ̂|θ̂) =
∂2Q(θ|θ̂)
∂β∂β�

∣∣∣
θ=θ̂

= − 1

σ̂2

n∑
i=1

ξ0i
(θ̂)xix

�
i ,

Q̈f (θ̂|θ̂) =
∂2Q(θ|θ̂)
∂f∂f�

∣∣∣
θ=θ̂

= − 1

σ̂2

n∑
i=1

ξ0i
(θ̂)nin

�
i − α̂K,

Q̈σ2(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂σ2∂σ2

∣∣∣
θ=θ̂

= − n

2σ̂2
+

1

(σ̂2)3

n∑
i=1

[
ξ2i

(θ̂)−2ξ1i
(θ̂)μ̂i+ξ0i

(θ̂)μ̂2

i

]
,

Q̈βf (θ̂|θ̂) =
∂2Q(θ|θ̂)
∂β∂f�

∣∣∣
θ=θ̂

= − 1

σ̂2

n∑
i=1

ξ0i
(θ̂)xin

�
i ,

Q̈βσ2(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂β∂σ2

∣∣∣
θ=θ̂

= − 1

(σ̂2)2

n∑
i=1

[
ξ1i

(θ̂)xi − ξ0i
(θ̂)xiμ̂i

]
,

Q̈fσ2(θ̂|θ̂) = ∂2Q(θ|θ̂)
∂f∂σ2

∣∣∣
θ=θ̂

= − 1

(σ̂2)2

n∑
i=1

[
ξ1i

(θ̂)ni − ξ0i
(θ̂)niμ̂i

]
.

4.2 Local influence

Local influence analysis seeks to verify if small pertur-
bations in the model or in the data affect the parameter
estimates. Hence, to study the behavior of some influence
measures, we will follow the approach proposed by [33],
where the Q-function is perturbed to assess the influence
of this perturbation on the estimation. [15] and [7] applied
this method successfully in the context of PLR models.

Consider a perturbation vector ω = (ω1, . . . , ωn)
� re-

stricted to some open subset Ω ∈ Rn. Let 	cp(θ,ω|z) be
the complete-data penalized log-likelihood function of the
perturbed model. Thus, we assume that a ω0 ∈ Ω ex-
ists such that 	cp(θ,ω|z) = 	cp(θ|z) for all θ. Also, let

θ̂(ω) = (β̂(ω)�, f̂(ω)�, σ̂2(ω))� denote the maximum of

the function Q(θ,ω|θ̂) = E[	cp(θ,ω|z)|Yobs, θ̂]. Then, the
influence graph is defined as α(ω) = (ω�, fQ(ω))�, where
fQ(ω) is the Q-displacement function, defined as:

fQ(ω) = 2
[
Q(θ̂|θ̂)−Q(θ̂(ω)|θ̂)

]
.

To approximate the Q-displacement function, the normal
curvature CfQ,h(θ) of α(ω) at ω0 in the direction of a unit
vector h (|| h ||= 1) is used to summarize the local behavior
of fQ(ω). It can be shown that:

CfQ,h(θ) = −2h�Q̈ω0h = 2h�Δ�
θ,ω0

{Q̈(θ̂|θ̂)}−1Δθ,ω0h,

leading to

−Q̈ω0 = Δ�
θ,ω0

{Q̈(θ̂|θ̂)}−1Δθ,ω0 .

Additionally, Q̈(θ̂|θ̂) is the Hessian matrix of dimension

(p+ r+1)× (p+ r+1) and Δθ,ω0 = ∂2Q(θ,ω|θ̂)/∂θ∂ω� =
(Δ�

β,ω0
,Δ�

f ,ω0
,Δ�

σ2,ω0
)� is the matrix of dimension (p +

r + 1) × n evaluated at θ = θ̂. The information provided
by −Q̈ω0 is fundamental for detecting influential observa-
tions [5]. From the spectral decomposition of a symmetric
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matrix

− 2Q̈ω0 =

n∑
k=1

λkvkv
�
k ,

where (λ1,v1), · · · , (λn,vn) are the eigenvalue-eigenvector
pairs of −2Q̈ω0 with λ1 ≥ . . . ≥ λr, λr+1 = . . . = λn =
0 and orthonormal eigenvectors {vk, k = 1, .., n}. [33] and
[19] proposed to examine all eigenvectors corresponding to
nonzero eigenvalues to capture more information. For this
end, we have the expressions

λ̃k =
λk

λ1 + . . .+ λr
, v2

k = (v2

k1, . . . , v
2

kn)
� and

M(0) =
r∑

k=1

λkv
2

k.

Let M(0)l =
∑r

k=1 λ̃kv
2
kl denote the l-th component of

M(0). The evaluation of influential observations is based
on the visual inspection of M(0)l plotted against the l-th
index, for l = 1, . . . , n. There are some disadvantages in us-
ing the normal curvature for influence analysis, since this
measure may assume any value (not bounded), meaning it
is not invariant under uniform scaling changes. Instead, we
use the conformal normal curvature [28], given by:

BfQ,h(θ) =
CfQ,h(θ)

tr
[
−2Q̈ω0

]
(24)

⇒ BfQ,hl
(θ) =

Δ�
lθ,ω0

{Q̈(θ̂|θ̂)}−1Δlθ,ω0

tr
[
Δ�

θ,ω0
{Q̈(θ̂|θ̂)}−1Δθ,ω0

] , l = 1, . . . , n,

where hl is a column vector in Rn with the l-th entry equal
to one, and zeros in the remaining positions. Here, Δ�

lθ,ω0

corresponds to h�
l Δ

�
θ,ω0

. The conformal normal curvature
defined in (24) has the property that 0 ≤ BfQ,hl

(θ) ≤ 1 and
the calculation is computationally easier. Based on the work
of [33], M(0)l can be obtained via BfQ,hl

(θ) for all l.
Currently, there is no general rule for determining a

benchmark value to indicate whether an observation is in-
fluential or not. Let M(0) and SM(0) be the mean and
standard error of {M(0)l, l = 1, . . . , n} respectively. [33]
showed that M(0) = 1/n and proposed M(0) + 2SM(0) as
benchmark value for M(0)l. On the other hand, [19] pre-
sented a generalization and also proposed to use M(0)l >
M(0) + c∗SM(0), with c∗ being a selected constant greater
than 2. The choice of c∗ depends on the context of the ap-
plication [7], where the l-th case is considered as influential
if M(0)l is larger than the benchmark.

4.2.1 Perturbation schemes

We now evaluate the matrix Δθ,ω0 under four different
perturbation schemes for the SMN-PCR model.

(a) Case-weight perturbation

This case of perturbation is appropriate to detect ob-
servations with large contribution to the penalized log-
likelihood function and that may exercise strong influence
on the maximum penalized likelihood estimates. From Equa-
tion (12), the so-called perturbed Q-function, considering an
arbitrary attribution of weights, we have:

Q(θ,ω|θ̂) =
n∑

i=1

ωiE[	cpi
(θ|z)|Yobs, θ̂](25)

=

n∑
i=1

ωiQi(θ|θ̂)−
α̂

2
f̂�Kf̂ ,

where ω = (ω1, . . . ,ωn)
� ∈ Rn. The original expected value

of the penalized complete-data log-likelihood corresponds to
ω0 = (1, . . . , 1)�. In this perturbation scheme, the matrix
Δθ,ω0 derived from (25) has elements given by:

Δβ,ω0 =
∂2Q(θ|θ̂)
∂β∂ωi

∣∣∣
ω=ω0

=
xi

σ̂2

[
ξ1i

(θ̂)− ξ0i
(θ̂)μ̂i

]
,

Δf ,ω0 =
∂2Q(θ|θ̂)
∂f∂ωi

∣∣∣
ω=ω0

=
ni

σ̂2

[
ξ1i

(θ̂)− ξ0i
(θ̂)μ̂i

]
and

Δσ2,ω0
=

∂2Q(θ|θ̂)
∂σ2∂ωi

∣∣∣
ω=ω0

= − 1

2σ̂2
+

1

2(σ̂2)2

[
ξ2i

(θ̂)− 2ξ1i
(θ̂)μ̂i + ξ0i

(θ̂)μ̂2
i

]
.

(b) Scale perturbation

In order to study the behavior of the estimates when there
are possible deviations from the assumption of homogeneity,
we assume that Yi ∼ SMN(μi, σ

2(ωi),ν), with σ2(ωi) =
ω−1
i σ2, ωi > 0 for i = 1, . . . , n. The perturbed Q-function

under this scheme is expressed as:

Q(θ,ω|θ̂) =
n∑

i=1

{
−1

2
log

(
σ̂2

ωi

)
(26)

− ωi

2σ̂2

[
ξ2i

(θ̂)− 2ξ1i
(θ̂)μ̂i + ξ0i

(θ̂)μ̂2
i

]}
− α̂

2
f̂�Kf̂ ,

where ω = (ω1, . . . ,ωn)
� ∈ Rn is the vector of perturba-

tions such that the non-perturbed model is obtained when
ω0 = (1, . . . , 1)�. After some algebraic manipulations in
(26), we obtain the elements of the matrix Δθ,ω0 as:

Δβ,ω0 =
∂2Q(θ|θ̂)
∂β∂ωi

∣∣∣
ω=ω0

=
xi

σ̂2

[
ξ1i

(θ̂)− ξ0i
(θ̂)μ̂i

]
,

Δf ,ω0 =
∂2Q(θ|θ̂)
∂f∂ωi

∣∣∣
ω=ω0

=
ni

σ̂2

[
ξ1i

(θ̂)− ξ0i
(θ̂)μ̂i

]
and

Δσ2,ω0
=

∂2Q(θ|θ̂)
∂σ2∂ωi

∣∣∣
ω=ω0
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=
1

2(σ̂2)2

[
ξ2i

(θ̂)− 2ξ1i
(θ̂)μ̂i + ξ0i

(θ̂)μ̂2
i

]
.

(c) Explanatory variable perturbation

Here, we are interested in perturbing a specific continuous

explanatory variable. Let ω = (ω1, . . . ,ωn)
� be the vector

of perturbations, i = 1, . . . , n. So, the r-th explanatory vari-
able of the design matrix is perturbed as x�

iω
= x�

i +ωiSre
�
r

for r = 1, . . . , p, where Sr is the standard deviation of the
r-th explanatory variable and er is a vector of dimension
p × 1, with a one in the r-th position and zero elsewhere.
Under this scheme, we have that the perturbed Q-function
is

Q(θ,ω|θ̂)

(27)

= −n

2
log σ̂2 − 1

2σ̂2

n∑
i=1

[
ξ2i

(θ̂)− 2ξ1i
(θ̂)μ̂∗

i + ξ0i
(θ̂)μ̂2∗

i

]
− α̂

2
f̂�Kf̂ ,

where ω = (ω1, . . . ,ωn)
� ∈ Rn and μ̂∗

i = x�
iω
β̂ + n�

i f̂ .

The vector of non-perturbations is ω0 = (0, . . . , 0)� ∈ Rn.
Taking the second derivative of (27) we find

Δβ,ω0 =
∂2Q(θ|θ̂)
∂β∂ωi

∣∣∣
ω=ω0

=
Sr

σ̂2

{
ξ1i

(θ̂)er − ξ0i
(θ̂)

[
μ̂ier + e�r β̂xi

] }
,

Δf ,ω0 =
∂2Q(θ|θ̂)
∂f∂ωi

∣∣∣
ω=ω0

= −Sr

σ̂2
ξ0i

(θ̂)e�r β̂ ni and

Δσ2,ω0
=

∂2Q(θ|θ̂)
∂σ2∂ωi

∣∣∣
ω=ω0

=
Sr

(σ̂2)2

[
ξ0i

(θ̂)μ̂ie
�
r β̂ − ξ1i

(θ̂)e�r β̂
]
.

(d) Response variable perturbation

In this case, to perturb the response variable values we
replace Yobsi by Yobsi(ωi) = Yobsi + Syωi for i = 1, . . . , n,

where Sy is the standard deviation of Yobsi . For the SMN-
PCR model presented in Equations (5) and (6) we have:

Yobsi(ωi) =

{
κi(ωi) if Yi ≤ κi;
Yi(ωi) if Yi > κi.

Therefore Yi(ωi) = Yi − Syωi [25]. So, the perturbed Q-
function it is obtained replacing Yobsi values by Yobsi(ωi),
where ω = (ω1, . . . ,ωn)

� ∈ Rn denotes the vector of per-
turbations and ω0 = (0, . . . , 0)� is the corresponding non-

Figure 1. PSID-1975 dataset. Wage rates vs. number of years
worked (Experience).

perturbation vector such that Q(θ,ω|θ̂) = Q(θ, |θ̂), with

Q(θ,ω|θ̂) = −n

2
log(σ̂2)− 1

2σ̂2

n∑
i=1

[
ξ2i

(θ̂)− 2ξ1i
(θ̂)Syωi

(28)

+ ξ0i
(θ̂)S2

yω
2
i − 2ξ1i

(θ̂)μ̂i + 2ξ0i
(θ̂)Syωiμ̂i

+ ξ0i
(θ̂)μ̂2

i

]
− α̂

2
f̂�Kf̂ .

The matrix Δθ,ω0 has elements given by:

Δβ,ω0 =
∂2Q(θ|θ̂)
∂β∂ωi

∣∣∣
ω=ω0

= −Sy

σ̂2
ξ0i

(θ̂)xi,

Δf ,ω0 =
∂2Q(θ|θ̂)
∂f∂ωi

∣∣∣
ω=ω0

= −Sy

σ̂2
ξ0i

(θ̂)ni and

Δσ2,ω0
=

∂2Q(θ|θ̂)
∂σ2∂ωi

∣∣∣
ω=ω0

=
Sy

(σ̂2)2

[
ξ0i

(θ̂)μ̂i − ξ1i
(θ̂)

]
.

5. APPLICATION: WAGE RATE DATA

In this section, we illustrate the performance of the pro-
posed method by analyzing the wage rate dataset described
in Mroz [26], previously analyzed by Arellano-Valle et al.
[1], Castro et al. [3] and [23].

The dataset comes from the University of Michigan Panel
Study of Income Dynamics (PSID) and describes the aver-
age hourly earnings or wage rates (the dependent variable
used in this application) of 753 married white women be-
tween the ages of 30 and 60, with 428 working at some
time during the year 1975. For those who did not work in
1975, the wage rate is zero, so the variable can be classified
as censored-uncensored, i.e., it follows Equation (13) with
κi = 0 for i = 1, . . . , 753. This dataset presents left cen-
sored observations, since we can only observe its real value
if a woman worked for pay during 1975. Thus, our purpose
is to model the wage rate as a function of a set of control
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Figure 2. PSID-1975 dataset. Estimated weights ui vs
Mahalanobis distance d2

i for: a) T-PCR, b) SL-PCR and
c) CN-PCR models, respectively.

variables such as the wife’s age (x1i
), her years of school-

ing (x2i
), husband’s hours worked (x3i

), husband’s wage in

dollars (x4i
), tax rate faced by the wife (x5i

), number of

children younger than six years old in the household (x6i
)

and number of children between the ages of six and nine-
teen (x7i

). We also consider a nonlinear relation between the

wage rates and the number of years the wife worked since
age 18 (see Figure 1).

5.1 Analyses of the fitted models

The data were analyzed using the SMN-PCR models con-
sidering the Student-t (T-PCR), slash (SL-PCR), contam-
inated normal (CN-PCR), and of course the normal distri-
bution (N-PCR) for comparative purposes.

Table 3 contains the MPL estimates of the parameters
for the four fitted models, together with their corresponding
standard errors calculated via the observed information ma-
trix as presented in Subsection 3.2. Note from this table that
the estimated values of ν are small, indicating a heavy-tailed
behavior and consequently the lack of adequacy of the N-
PCR model for this dataset. Further, we compare the results
among the SMN-PCR models using the AIC value defined
in Subsection 3.1 and the log-likelihood values (	(θ̂)). As ex-
pected, we can see that the SMN distributions with heavy
tails have a better performance compared with the normal
one, evidencing once again a clear departure from the nor-
mality assumption, with the SL-PCR model significantly
better. Finally, the values of the respective standard errors
(SE) of the heavy tails models are smaller than those un-
der the normal assumption, indicating that the SMN-PCR
models produce more precise estimates.

Figure 3. PSID-1975 dataset. Approximate generalized
Cook’s distance GD1

i . a) N-PCR, b) T-PCR, c) SL-PCR and
d) CN-PCR models respectively.

5.2 Diagnostics analysis

For the purpose of identifying possible observations that
can affect the MPL estimates, we use the diagnostic mea-
sures presented in Section 4 for the PSID-1975 dataset.
From the results of the ECME algorithm, Figure 2 shows
the estimated weights ui = ξ0i

(θ̂), i = 1, . . . , 753, ver-

sus the Mahalanobis distance, which is defined by d2
i =

(yi − x�
i β̂ − n�

i f̂)
2/σ̂2. For the normal case, we have that

ui = 1, ∀i (segmented red lines). We can observe from this
figure that ui is inversely proportional to d2

i , i.e., large d2
i

values imply smaller ui weights. Hence, using distributions
with heavier tails than the normal leads to smaller weights
being attributed to possible influential observations (see also
Figure 7, Appendix B.1).

To identify influential observations in a global context
and following the approach described in Subsection 4.1, the
index plots for the generalized Cook’s distance GD1

i are
shown in Figure 3. High values of GD1

i suggest that the i-th
observation has an impact on the MPL estimates. We can
note that, women #185, #210, #349, #357, #366, #369,
#394, #408 and #692 are potentially influential in the MPL
estimates under the N-PCR (panel a), but for distributions
with heavy tails these women are no longer influential (pan-
els b to d). Comparison of Figures 2 and 3 reveals, women
who were considered influential in the normal case obtained
small weights in the Student-t, slash and contaminated nor-
mal cases.

Next, we study the local influence based on M(0) from
the conformal normal curvature BfQ,hl

(θ) defined in Equa-
tion (24), considering the four perturbation schemes: case-
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Table 3. PSID-1975 dataset. Parameter estimates and standard errors (SE) for various fits of the SMN-PCR models

Model

N-PCR T-PCR SL-PCR CN-PCR
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 0.7688 (0.0881) 0.6672 (0.0783) 0.6620 (0.0757) 0.6682 (0.0730)
β2 −0.0634 (0.0269) −0.0743 (0.0204) −0.0745 (0.0201) −0.0746 (0.0207)
β3 −0.0008 (0.0004) −0.0004 (0.0003) −0.0004 (0.0003) −0.0005 (0.0003)
β4 −0.1801 (0.0742) −0.1321 (0.0642) −0.1403 (0.0622) −0.1527 (0.0605)
β5 −8.6192 (3.8726) −5.7045 (3.3936) −6.0435 (3.2619) −6.3471 (3.1808)
β6 −1.8132 (0.4056) −1.7666 (0.3136) −1.7829 (0.3103) −1.7874 (0.3254)
β7 0.3257 (0.1456) 0.1986 (0.1136) 0.2038 (0.1098) 0.2145 (0.1126)
σ2 15.8854 (1.2320) 5.4806 (0.6375) 3.4223 (0.3788) 7.2270 (0.7089)
ν – – 2.8655 – 1.1248 – – –
ϕ – – – – – – 0.1 –
γ – – – – – – 0.1 –

�(θ̂) −1378.2 – −1305.8 – −1303.3 – −1303.8 –
AIC 2852.2 – 2709.6 – 2704.5 – 2707.6 –

weight perturbation, scale perturbation, explanatory vari-
able perturbation and response variable perturbation. We
compute the matrix Δθ,ω0 for each perturbation scheme

to analyze the respective local influence measures for θ̂
obtained from the best fitted model, that is the SL-PCR
model. As benchmark, we use the criterion M(0)l > M(0)+
c∗SM(0), with c∗ = 4, to classify i-th observation as poten-
tially influential.

Examining Figure 4, we have that for the three first per-
turbation schemes (see panels a to f) women #185, #210,
#349, #357, #366, #369, #394, #408 and #692 in the N-
PCR model are considered influential. In addition, it is note-
worthy that observations that were considered influential in
the case-weight perturbation were also found influential with
scale perturbation. No observation has a significant influence
on the MPL estimates under the SL-PCR model, indicat-
ing the robustness of the MPL estimates against potentially
influential observations. However, for the response variable
perturbation (panels g to h), it was found that women #27,
#55, #57, #87, #271, #298, #397 and #598 have a mod-
erate influence in both models (normal and slash). We infer
that this is because the “experience” values in those cases
are high, which naturally leads to a moderate effect on the
estimates of M(0)l. For comparison, we use normal bench-
marks for all local influence graphs. The influence analyses
for the remaining fitted models are shown in Figure 8 (Ap-
pendix B.1).

5.3 Relative change in the MPL estimates

To detect the impact of the observations identified as po-
tentially influential on the MPL estimates, we define the
relative change (RC) as

RCj (θ̂) = |
θ̂ − θ̂[−Ij ]

θ̂
| × 100%,

Figure 4. PSID-1975 dataset. Index plots of M(0)l for
assessing local influence. Different perturbations schemes

(case-weight, scale, explanatory variable and response variable
perturbation) are shown in the rows from top to bottom. The
N-PCR and SL-PCR models correspond to the columns from

left to right.

where θ̂ = (β̂, σ̂2), and θ̂[−Ij ]
is the estimate of the parame-

ters after the observations indexed by the set Ij have been
removed. From all possible combinations, we drop influential
cases, one by one and from all observations at the same time.
Then, the sets of interest are Ij = {ej}, for j = 1, . . . , J and
IJ+1 = E, where E is the set of all J influential case indexes.
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Table 4. PSID-1975 dataset. Relative change (%) of maximum penalized likelihood estimates of β̂ and σ̂2 in N-PCR and
SL-PCR models

Model Dropped RC β̂1
RC β̂2

RC β̂3
RC β̂4

RC β̂5
RC β̂6

RC β̂7
RC

σ̂2

185 1.908 7.551 11.70 7.446 2.109 6.693 4.575 8.718
210 0.855 2.244 3.378 0.163 0.216 3.675 6.568 3.235
349 1.218 20.28 6.792 2.789 7.210 0.485 12.48 8.291
357 2.260 9.032 4.944 4.104 0.002 3.061 6.400 3.677

N-PCR 366 0.030 14.11 5.085 11.98 4.974 0.348 4.735 4.481
369 0.425 8.584 5.543 13.18 2.333 3.420 3.465 1.614
394 3.525 8.433 3.675 2.474 0.257 2.077 2.860 5.467
408 0.335 3.442 2.979 1.401 5.536 7.793 13.77 9.524
692 0.709 0.713 1.587 1.687 0.390 0.231 0.921 0.576
E 11.24 1.558 19.32 6.239 14.59 10.10 10.33 46.95

185 0.015 0.182 7.375 1.812 0.923 0.280 0.537 4.376
210 0.138 0.179 6.497 0.733 0.421 0.564 1.806 2.526
349 0.047 1.004 7.762 1.114 0.277 0.026 0.163 4.353
357 0.396 1.195 8.373 1.625 0.503 0.458 2.160 2.235

SL-PCR 366 0.137 1.293 8.811 0.662 0.130 0.062 1.466 2.854
369 0.262 2.375 9.181 5.238 1.036 1.063 2.470 0.883
394 0.355 0.678 8.331 0.735 0.566 0.309 1.166 3.046
408 0.073 0.257 8.894 1.216 0.412 0.468 0.205 4.542
692 0.358 0.213 5.980 1.120 0.103 0.044 0.534 0.355
E 1.445 8.358 42.01 25.55 12.68 5.076 24.97 10.29

For our example, Table 4 presents the relative change of
the MPL estimates after removing the observations indexed
by Ij and refitting the N-PCR and SL-PCR models, respec-
tively. Note that the biggest changes occur in the N-PCR
model, particularly for the parameter σ2. As expected, the
results indicate smaller changes in the MPL estimates under
SL-PCR model, confirming the robust aspects when distri-
butions with heavier tails than the normal one are used.
Although some relative changes are significant, particularly
with the normal distribution, most of times the SL-PCR
model presented much smaller RCs. In addition, the RC for
the set of observations identified as influential under the re-
sponse variable perturbation schema were small and quite
similar in both models.

6. SIMULATION STUDY

This section reports the results of a Monte Carlo (MC)
experiment designed to evaluate the performance of the pro-
posed model to analyze the behavior of MPL estimates,
the approximated standard errors, as well as its asymp-
totic properties. These computational procedures were im-
plemented using the R software [29]. In particular, we con-
sider the following PLR model:

(29) Yi = x�
i β + f(ti) + εi, i = 1, . . . , n,

where εi
iid∼ SMN(0, σ2,ν). We generated left-censored

samples from the model given in (29) considering cen-
soring levels 0%, 10%, 20% and 30% and sample sizes
n = 200, 300, 400 and 600. For each combination of cen-
soring level and sample size, we generated 500 samples

from the SMN-PCR model, in four different situations: N-
PCR, T-PCR (ν = 4), SL-PCR (ν = 2) and CN-PCR
(ν� = (0.1, 0.1)).

We performed all MC simulations setting β = (2, 4)� and
σ2 = 2, with xi = (x1i

, x2i
)� generated independently from

uniform distributions on the intervals U(0, 1) and U(1, 2),
respectively. The true nonparametric function was chosen
as f(t) = 10 sin(2πt), with t ∈ (0, 1.5). We also assumed
different values for t, so the incidence matrix N was the
identity matrix of order n × n. We computed for each pa-

rameter θk, its MC mean (θ̂k) and MC standard deviation
(MC-SD) for its MPL estimates. Also, the average values of
the approximate standard errors obtained following subsec-
tion 3.2 (OM-SD), were recorded for comparison purposes.
So, we have that:

θ̂k =
1

500

500∑
j=1

θ̂(j)

k , MC-SD =

√∑500
j=1(θ̂

(j)

k − θ̂k)
2

499
,

OM-SD =
1

500

500∑
j=1

SE(θ̂(j)

k ).

Table 5 presents the MPL estimates of θk in the different
scenarios considered. This table shows that the model fits
provide estimates that are close to the true values of the
parameters and are less sensitive to the variation of the cen-
soring level. Besides this, the empirical standard deviations
(MC-SD) are close to the MC standard errors (OM-SD) and
the difference tends to zero as the sample size increases, indi-
cating that the result of the standard errors (Subsection 3.2)
is reliable.
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Table 5. Simulated data. MC Mean value, MC standard deviation (MC-SD) and mean approximated standard errors

N-PCR T-PCR SL-PCR CN-PCR

Parameter C.L.
¯̂
θk MC-SD OM-SD

¯̂
θk MC-SD OM-SD

¯̂
θk MC-SD OM-SD

¯̂
θk MC-SD OM-SD

n = 200

0% 1.986 0.373 0.339 2.060 0.448 0.405 2.008 0.459 0.449 2.045 0.421 0.381
β1 10% 1.983 0.384 0.347 2.070 0.446 0.412 2.010 0.459 0.456 2.035 0.434 0.390

20% 1.990 0.410 0.367 2.080 0.487 0.438 2.013 0.490 0.483 2.055 0.470 0.414
30% 2.008 0.429 0.393 2.080 0.506 0.468 2.028 0.535 0.516 2.082 0.493 0.441

0% 4.072 0.360 0.327 4.134 0.420 0.391 4.087 0.444 0.435 4.115 0.397 0.369
β2 10% 4.080 0.385 0.345 4.146 0.457 0.412 4.086 0.462 0.454 4.114 0.420 0.389

20% 4.087 0.406 0.359 4.174 0.468 0.428 4.117 0.492 0.476 4.151 0.446 0.405
30% 4.116 0.402 0.385 4.224 0.471 0.460 4.168 0.504 0.507 4.188 0.433 0.434

0% 1.712 0.199 0.175 1.689 0.232 0.231 1.740 0.231 0.210 1.687 0.238 0.212
σ2 10% 1.702 0.213 0.183 1.674 0.243 0.239 1.727 0.241 0.219 1.677 0.242 0.221

20% 1.691 0.218 0.192 1.663 0.253 0.252 1.727 0.252 0.231 1.673 0.254 0.234
30% 1.704 0.233 0.206 1.672 0.263 0.270 1.721 0.259 0.246 1.675 0.273 0.251

n = 300

0% 1.985 0.290 0.279 2.048 0.355 0.333 2.000 0.353 0.369 2.032 0.335 0.315
β1 10% 1.980 0.291 0.286 2.052 0.360 0.341 2.001 0.365 0.378 2.033 0.339 0.323

20% 1.983 0.304 0.302 2.054 0.387 0.362 2.016 0.390 0.397 2.037 0.354 0.342
30% 1.998 0.325 0.323 2.084 0.402 0.385 2.041 0.412 0.425 2.063 0.374 0.365

0% 4.096 0.294 0.271 4.104 0.348 0.323 4.082 0.394 0.358 4.079 0.327 0.305
β2 10% 4.093 0.312 0.283 4.116 0.366 0.337 4.084 0.416 0.371 4.085 0.353 0.319

20% 4.113 0.327 0.299 4.142 0.388 0.357 4.098 0.444 0.392 4.101 0.384 0.338
30% 4.140 0.321 0.317 4.200 0.375 0.378 4.151 0.431 0.416 4.141 0.378 0.358

0% 1.796 0.163 0.149 1.788 0.197 0.198 1.815 0.188 0.177 1.785 0.190 0.181
σ2 10% 1.788 0.171 0.156 1.781 0.208 0.206 1.810 0.198 0.186 1.784 0.203 0.191

20% 1.782 0.181 0.164 1.787 0.224 0.218 1.802 0.209 0.196 1.786 0.215 0.202
30% 1.790 0.195 0.177 1.785 0.244 0.248 1.805 0.225 0.209 1.786 0.230 0.217

n = 400

0% 1.998 0.247 0.238 2.039 0.298 0.284 2.011 0.305 0.315 2.033 0.275 0.268
β1 10% 1.997 0.253 0.245 2.041 0.298 0.291 2.008 0.309 0.323 2.026 0.280 0.275

20% 2.004 0.268 0.261 2.066 0.327 0.311 2.022 0.336 0.344 2.050 0.298 0.294
30% 2.012 0.292 0.280 2.072 0.365 0.333 2.053 0.361 0.368 2.065 0.318 0.315

0% 4.087 0.279 0.249 4.127 0.316 0.296 4.115 0.355 0.328 4.065 0.296 0.280
β2 10% 4.080 0.289 0.260 4.133 0.319 0.309 4.104 0.370 0.341 4.081 0.304 0.292

20% 4.113 0.305 0.277 4.184 0.338 0.329 4.117 0.397 0.363 4.117 0.323 0.312
30% 4.123 0.300 0.293 4.229 0.314 0.347 4.186 0.390 0.384 4.152 0.314 0.330

0% 1.842 0.138 0.132 1.832 0.165 0.174 1.855 0.163 0.156 1.829 0.164 0.160
σ2 10% 1.839 0.147 0.138 1.827 0.173 0.182 1.851 0.170 0.164 1.818 0.166 0.167

20% 1.836 0.157 0.147 1.823 0.184 0.192 1.849 0.178 0.173 1.824 0.186 0.178
30% 1.839 0.167 0.157 1.837 0.197 0.207 1.848 0.195 0.185 1.830 0.194 0.191

n = 600

0% 1.996 0.206 0.196 2.027 0.239 0.232 2.021 0.253 0.258 2.012 0.214 0.220
β1 10% 2.001 0.214 0.204 2.040 0.238 0.241 2.018 0.262 0.266 2.006 0.226 0.230

20% 2.004 0.226 0.217 2.061 0.264 0.259 2.030 0.277 0.284 2.028 0.244 0.244
30% 2.010 0.244 0.232 2.062 0.287 0.275 2.053 0.295 0.304 2.027 0.261 0.261

0% 4.061 0.220 0.203 4.076 0.257 0.241 4.085 0.277 0.268 4.087 0.230 0.228
β2 10% 4.062 0.233 0.211 4.091 0.265 0.252 4.096 0.301 0.278 4.076 0.242 0.236

20% 4.105 0.255 0.225 4.110 0.275 0.266 4.109 0.319 0.297 4.111 0.253 0.256
30% 4.118 0.250 0.240 4.164 0.277 0.286 4.160 0.327 0.317 4.151 0.263 0.270

0% 1.891 0.117 0.110 1.880 0.138 0.145 1.892 0.134 0.130 1.882 0.136 0.134
σ2 10% 1.882 0.121 0.116 1.882 0.150 0.152 1.885 0.138 0.136 1.870 0.144 0.140

20% 1.881 0.129 0.122 1.873 0.156 0.161 1.878 0.146 0.143 1.881 0.156 0.149
30% 1.885 0.136 0.131 1.883 0.165 0.172 1.882 0.156 0.153 1.867 0.162 0.158
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Figure 5. Simulated data. Asymptotic properties. MC mean
of bias for β1, β2 and σ2 for different sample sizes and levels

of censoring in SMN-PCR models.

The results of the coverage probability are presented in
Table 7 (see Appendix B.2), where 95% confidence inter-
vals were computed for each scenario using the OM-SD. As
expected, the “coverage probability” is stable and around
90% for the regression parameters β1 and β2, but the per-
centage of coverage is somewhat impaired for the intervals
built for σ2. Overall, the ECME algorithm produces satis-
factory estimates for the SMN-PCR fitted models. For the
estimates of the nonparametric component, Figure 9 (Ap-
pendix B.2) presents the behavior of the 500 MC samples
under the T-PCR model. We can note from this figure that
when the censoring level increases, the variability among the
nonparametric estimates functions increases, however as the
sample size increases, the variability decreases. Similar re-
sults were obtained for the other models.

Now, to provide empirical evidence about the consistency
of the MPL estimates, we analyze the absolute bias (Bias)
and mean square error (MSE) of MPL estimates obtained
from the fitted models in the simulation study. The Bias and
MSE measures are given by:

Bias(θk) =
1

500

500∑
j=1

|θ̂(j)

k − θk| and

MSE(θk) =
1

500

500∑
j=1

(θ̂(j)

k − θk)
2,

where θ̂(j)

k is the MPL estimate of the parameter θk for the j-
th sample, j = 1, . . . , 500. From Figures 5 and 6 we can see

Figure 6. Simulated data. Asymptotic properties. MC mean of
the Mean square error (MSE) for β1, β2 and σ2 for different
sample sizes and levels of censoring in SMN-PCR models.

that Bias and MSE decrease as the sample size increases.
Also, we can see that the estimates obtained between the
uncensored and most censored (30%) cases are quite similar.
This gap is tolerably small and it becomes smaller when
simple size increases. For instance, σ2 estimates for a 600
sample size, are almost equal regardless of the censoring
level and model. Hence, as a general rule the MPL estimates
based on the proposed ECME algorithm for the SMN-PCR
models, do show desirable asymptotic properties.

Additionally, we illustrate the capacity of the proposed
diagnostic measures to identify possible influential observa-
tions. The diagnostic measures were computed from 200 MC
simulations from a N-PCR model considering a sample size
n = 200, 10% censoring level, same nonparametric function
f(t) as before and the benchmark setting at c∗ = 3.5. In this
scenario, we contaminated observation #82 by replacing in
the parametric component β with 2β, 4β and 8β in order
to generate three new contaminated responses y82.

Table 6 presents the percentage of times that obser-
vation #82 was correctly identified as the most influen-
tial under different perturbation schemes considering the
N-PCR model, and the percentage of times that a lower
weight u82 was assigned with heavy-tailed models, such as,
Student-t (T), slash (SL) and contaminated normal (CN).
As expected, all percentages increase for higher contami-
nation rates. First group (success percentages) represents
the ability to identify influential observations in the normal
model and the second one (preference percentages) indicates
the robustness of heavy-tailed distributions, since a smaller
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Table 6. Simulated data. Success percentages for different perturbation schemes in the N-PCR model and preference
percentages under the T, SL and CN models, for different contamination schemes

Normal Heavy-tailed
Contamination Case-weight Scale Explanatory Response T SL CN

2β 71.5 71.5 72.5 70.5 71.5 70.5 71.5
4β 95.5 95.5 94.5 89.0 94.0 94.0 94.0
8β 97.5 97.5 96.5 96.5 96.5 96.5 95.5

weight is attributed to influential observations and it in-
creases due to the high contamination rate.

7. CONCLUSIONS

This article proposes a maximum penalized likelihood im-
plementation for partially censored linear models consider-
ing heavy-tailed errors following a scale mixtures of normal
distribution. Thus, this paper generalizes the work by [9]
and [23] by incorporating a nonparametric component in
the model that permits an easy and flexible modeling of
possible nonlinear patterns introduced by some covariate.
We also propose influence diagnostic tools for detecting in-
fluential observations in the context of PCR models with
heavy-tailed distribution errors. The diagnostic analysis is
based on local influence techniques presented in [33] and
[34]. We carried out extensive simulation studies, and the
results showed that the proposed model has good asymp-
totic properties and is very robust to outlying observations,
outperforming the traditional normal errors model. Further,
we applied our method to a real dataset to illustrate how
the procedure developed can be used to evaluate model as-
sumptions, identify outliers and obtain robust parameter es-
timates. To the best of our knowledge, this paper provides
a first attempt to incorporate censoring in the context of
partially linear models with heavy-tailed distributions from
a likelihood-based perspective.

A natural extension would be to incorporate skewness
and heavy tailedness simultaneously using scale mixtures of
skew-normal (SMSN) distributions, as proposed in [18]. The
proposed model can be extended in a full nonparametric way
by using, for instance, Dirichlet process mixtures (DPMs)
with a SMN or SMSN basal distribution. Other extensions of
the current work include considering semiparametric mixed
effects models with censored data, following the same lines
of ideas proposed by [25] and [24]

APPENDIX A. COMPLEMENTARY
RESULTS: STANDARD

ERROR APPROXIMATION

Let x∗
i = (x�

i ,n
�
i )

�, η = (β�, f�)�, for the Equa-
tions (16) and (17), the first and second derivatives of Di,
di for θ = (η, σ2), using the notation D̈θ(Di) = ∂Di

∂θ ,

Dθ(di) =
∂di

∂θ , D̈2
θθ�(Di) =

∂2Di

∂θ∂θ� and D2
θθ�(di) =

∂2di

∂θ∂θ� ,

are given by:

D̈η(Di) = −x∗
i

σ
, D̈σ2(Di) =

1

2(σ2)3/2
(yi − x∗�

i η),

D̈2
ηη�(Di) = 0, D̈2

σ2σ2(Di) =
3

4(σ2)5/2
(yi − x∗�

i η),

D̈2
ησ2(Di) =

x∗
i

(σ2)3/2
, Dη(di) = − 1

σ2
(x∗

iyi − x∗
ix

∗�
i η),

Dσ2(di) = − 1

(σ2)2
(yi − x∗�

i η)2, D2
ηη�(di) =

2

σ2
x∗
ix

∗�
i ,

D2
σ2σ2(di) =

2

(σ2)3
(yi − x∗�

i η)2 and

D2
ησ2(di) =

2

(σ2)2
(x∗

iyi − x∗
ix

∗�
i η).

For I2(θ), it is straightforward to find that I2ηη� = αK∗,

I2ησ2 = 0 and I2σ2σ2 = − n−m
2(σ2)2 , where K∗ is a block diagonal

matrix of dimension (p+ r)× (p+ r), given by:

K∗ =

[
0 0
0 K

]
.

APPENDIX B. ADDITIONAL RESULTS

B.1 Application: wage rate data

Figure 7. PSID-1975 dataset. Estimated weights ui for:
a) T-PCR, b) SL-PCR and c) CN-PCR models.
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Figure 8. PSID-1975 dataset. Index plots of M(0)l for
assessing local influence. Different perturbations schemes

(case-weight, scale, explanatory variable and response variable
perturbation) are shown in the rows from top to bottom. The
T-PCR and CN-PCR model correspond to the columns from

left to right.

B.2 Simulation study

Table 7. Simulated data. Coverage probability (%) based on
500 samples from the SMN-PCR model, considering different

left censoring levels (C.L)

Model
N-PCR T-PCR SL-PCR CN-PCR

n C.L. β1 β2 σ2 β1 β2 σ2 β1 β2 σ2 β1 β2 σ2

0% 92.4 91.2 88.8 93.4 92.6 89.0 95.6 94.2 89.6 93.0 92.0 81.8
200 10% 93.0 90.6 88.0 93.2 90.6 87.0 95.2 93.8 88.0 92.2 92.6 82.8

20% 93.4 91.0 88.2 91.8 91.0 86.0 95.6 91.2 89.8 92.8 91.6 85.0
30% 93.2 93.2 83.0 93.2 93.0 80.6 94.8 92.0 81.6 92.2 93.0 87.0
0% 94.2 92.2 88.8 93.2 93.0 86.6 97.2 92.2 85.8 93.2 93.0 84.8

300 10% 93.8 91.4 90.2 94.0 92.0 88.4 96.8 92.0 86.8 94.6 92.0 84.6
20% 95.2 91.4 81.2 93.2 91.6 89.2 95.8 91.4 88.0 95.2 90.0 85.0
30% 96.2 93.2 84.0 93.0 92.6 88.4 96.6 92.2 87.0 94.6 92.8 87.6
0% 94.6 91.0 83.4 94.6 90.4 93.6 95.6 91.2 91.8 94.8 93.2 88.0

400 10% 95.0 90.8 85.0 94.8 93.8 92.2 95.2 92.6 90.6 95.4 94.0 87.2
20% 96.0 90.0 84.6 92.6 90.6 90.6 96.2 92.2 91.6 94.8 93.0 88.6
30% 95.2 92.4 87.6 93.2 91.0 90.8 95.2 92.2 91.4 95.6 93.6 91.2
0% 94.6 92.6 92.4 95.2 91.8 90.5 96.2 94.0 93.6 96.0 95.2 92.2

600 10% 95.8 92.2 90.2 96.6 94.4 95.6 96.2 92.8 92.2 95.8 93.4 91.8
20% 93.6 91.0 88.8 94.8 93.4 95.8 96.6 92.8 95.2 94.6 94.4 92.4
30% 92.6 91.8 91.4 95.2 92.8 90.4 95.6 92.0 94.6 94.2 93.6 94.8

Figure 9. Simulated data. Behavior of the nonparametric
component based on 500 samples from the T-PCR model.
True curve (blue line) and adjusted curves (gray lines).
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Campus Gustavo Galindo Km. 30.5 V́ıa Perimetral
P.O. Box 09-01-5863
Guayaquil
Ecuador
E-mail address: chedgala@espol.edu.ec

Larissa A. Matos
Departamento de Estat́ıstica
Universidade Estadual de Campinas
Rua Sérgio Buarque de Holanda, 651, Cidade Universitária
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