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Estimating equation estimators of quantile
differences for one sample with length-biased and
right-censored data

Li Xun, Guangchao Zhang, Dehui Wang, and Yong Zhou
∗

This paper estimates quantile differences for one sam-
ple with length-biased and right-censored (LBRC) data. To
ensure the asymptotic unbiasedness of the estimator, the es-
timating equation method is adopted. To improve the effi-
ciency of the estimator, in the sense of having a lower mean
squared error, the kernel-smoothed approach is employed.
To make full use of the features of LBRC data, the aug-
mented inverse probability complete case weight is investi-
gated in detail. Moreover, the consistency and asymptotic
normality of the proposed estimators are established. The
numerical simulations are conducted to examine the perfor-
mance of the estimators.

Keywords and phrases: Quantile difference, Length bias,
Informative censoring, Estimating equation, Kernel func-
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1. INTRODUCTION

For one population, its quantile difference, denoted by
θpq, is the difference between its two quantiles ξp and ξq for
0 < q < p < 1. The quantile difference describes a range of
the values of the population corresponding to the probability
pair (p, q). Thanks to the complete flexibility of the pair
(p, q), quantile differences are versatile in the sense that it
encompasses a variant of probability levels. For example, the
quantile differences express characteristics of the right tail
of the distribution with q large, and those of the left tail of
the distribution with p small.

For one sample, its quantile difference, denoted by θ̂pq,
can be interpreted as a measure of the statistical dispersion
of the observations. For example, taking (p, q) to be (0.75,
0.25), it retrieves the interquartile range (25% trimmed
range). Taking (p, q) to be (0.90, 0.10), it becomes the inter-
decile range (10% trimmed range). Taking (p, q) to be (0.93,
0.07), it generalizes the 7% trimmed range. Taking p close

to 1 and q close to 0, θ̂pq represents the sample range.
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It is worthy noting that quantile differences for one sam-
ple are more robust than the sample standard deviation
which is greatly influenced by outliers. For one population,
quantile differences always exist regardless of the types of
distributions.

As a robust measure of scale, quantile differences for one
population deserve an investigation in great detail. From
a statistical viewpoint, a natural estimator of the quantile
difference is the difference between two sample quantiles,
like spacing, see for example, Chapters 6 and 8 in [16]. In
particular, if ξq denotes an observing time point of a life
population, then θpq is said to be the quantile residual life.
As a special case of quantile differences, quantile residual
lifetime has been studied widely, see for instance, Chapter 3
in [6]. Actually, quantile differences are receiving increasing
attention in the recent literature, including [26, 34, 19, 7,
33, 11, 27, 31, 30] among others.

The majority of the works above were motivated by dif-
ferent data types, such as the complete data, right-censored
(RC) data, and left-truncated and right-censored (LTRC)
data. To date, however, little scholarly work has been done
on the estimators of quantile differences for one sample with
length-biased and right-censored (LBRC) data.

LBRC data are popular in many practical applications,
such as the studies of prevalent cohort, cancer screening tri-
als, and labor economics. These studies can be found in the
literature, see for instance, [20, 23, 24, 25, 2, 3, 32], and so
on.

For LBRC data, there are some especially noteworthy fea-
tures. On the one hand, the probability of being observed
for a variable of interest is proportional to its length, such
as the duration of unemployment. That means LBRC data
type is a subtype of LTRC data. It is worth mentioning that
the truncation variable under LBRC data follows a uniform
distribution because of an assumption of stationarity, see for
example [28, 5]. Meanwhile, the residual lifetime has just the
same distribution as the truncation variable. That provides
more information to the statistical inference. On the other
hand, LBRC data type is a subtype of RC data. Particularly,
the censoring under LBRC data is informative because the
censoring variable shares the common truncation variable
with the failure time. Therefore, the traditional nonpara-
metric methods for the independent censoring aren’t suit-
able to LBRC data. In a word, it is obvious that making full
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use of the aforementioned characteristics should contribute
significantly to the statistical inference.

For these reasons, it is important to utilize the features
of LBRC data to estimate quantile differences. Because of
the complexity of LBRC data, it is also significant to effi-
ciently and effectively estimate quantile differences for one
population. Motivated by these, we pursue the estimating
equation estimators of quantile differences and establish the
consistency and asymptotic normality of these estimators
under LBRC data.

The numerical simulations are conducted to examine the
performance of these estimators. In the sense of having a
lower mean squared error, the smoothed estimating equation
estimator is more efficient than the nonsmooth estimating
equation estimators. That profits from the contribution of
a kernel smoother. In the sense of having a lower asymp-
totic variance, the augmented inverse probability weighted
complete-case estimating equation estimator is the most ef-
fective. It benefits from the features of LBRC data.

The rest of the paper is organized as follows. In Section
2, we introduce the notations, describe the estimating meth-
ods, and establish the asymptotic properties of the estima-
tors of quantile differences. In Section 3, we conduct the
simulations to examine the performance of these estimators,
and apply the proposed methods to a real example. Finally,
we delay the proofs of the theorems in Appendix A.

2. MODEL AND ESTIMATION

Let X̃ be a variable of interest with the unknown distribu-
tion function F (·), the density function f(·), and the survival
function S(·). Denote by ξp the p-quantile of the distribu-
tion function F (·), then ξp = F−1(p) = inf{x : F (x) ≥ p}
for 0 < p < 1, and the quantile difference is

θpq = F−1(p)− F−1(q) = ξp − ξq,

for 0 < q < p < 1.
In a prevalent cohort study, X̃ represents the lifetime of

the subjects. In fact, the failure events before the examina-
tion time are not observed. Meanwhile, at the end of the
experiment some subjects are still alive, or in the process of
the experiment some individuals drop out because of other
unrelated events. Therefore, the observed sample is subject
to a left truncation variable A and a right censoring vari-
able C. Moreover, if the disease incidence is stationary over
time, then A follows a uniform distribution, and the sam-
pling generates a length-biased data set.

Denote by T the residual lifetime. The length-biased time
X0 = A+T is obtained only when X̃ > A. Then the density
function of the length-biased variable X0 is given by

(1) fX0(x) =
xf(x)

μ
,

where μ =
∫∞
0

xf(x)dx.

Let δ = I(T ≤ C) be the censoring indicator, and
X = min{X0, A + C}. Assume that C is independent of
(A, T ), and the observed sample is independent and iden-
tically distributed triples (Xi, Ai, δi), i = 1, · · · , n, where
Xi = min{X0

i , Ai + Ci} and δi = I(X0
i ≤ Ai + Ci).

Under the above-mentioned LBRC data, we estimate θpq
by constructing the following systems of estimating equa-
tions.

2.1 Estimating equation

Denote by ST (·) and SC(·) the survival functions of T and
C, respectively, by ΛC(·) the cumulative hazard function of
C, and by λC(·) the derivative of ΛC(·).

To construct estimating equations of the quantile differ-
ence θpq, we use the probability of observing the length-
biased failure time during the period (t, t+ dt) as presented
by [14], that is,

Pr{X ∈ (t, t+ dt), A ∈ (a, a+ da), δ = 1}

=
f(t)SC(t− a)

μ
dadt.

For the true value Δ0 = (ξp, θ0)
T and an arbitrary function

g(·, ·) satisfying EF [g(X̃,Δ0)] = 0, it can be deduced that

E

[
δ

XSC(X −A)
g(X,Δ0)

]

=

∫ ∞

0

∫ t

0

g(t,Δ0)f(t)SC(t− a)

tSC(t− a)μ
dadt

=
1

μ

∫ ∞

0

g(t,Δ0)f(t)dt

= 0.

Therefore, based on the function δ
XSC(X−A)g(X,Δ) and

Δ = (ξ, θ)T , one system of estimating equations is con-
structed as follows.

(2)
1

n

n∑
i=1

δi
XiSC(Xi −Ai)

v(Xi,Δ) = 0,

where

v(X,Δ) =

(
I(X ≤ ξ)− p
I(X ≤ ξ − θ)− q

)
, 0 < q < p < 1.

Then the solution of the system of equations (2) is one esti-
mator of Δ0.

Unfortunately, the survival function SC(·) is unknown.
A preferred approach is to replace SC(·) with its Kaplan–
Meier estimator (see [9]). That is,

ŜC(t) =
∏
s≤t

(
1− dNC(s)

Y (s)

)
,
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where NC(t) =
∑n

i=1 N
C
i (t), NC

i (t) = I(Xi − Ai ≤ t, δi =
0), Y (t) =

∑n
i=1 Yi(t), Yi(t) = I(Xi − Ai ≥ t). Thus the

system of equations (2) can be replaced with

ψ̂(Δ) :=
1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ) = 0.(3)

That is because

E
[
ψ̂(Δ0)

]
=

1

μ
EF [v(X̃,Δ0)] + op(1)

=
1

μ

(
F (ξp)− p
F (ξp − θ0)− q

)
+ op(1)

= op(1).

For simplicity, for any differentiable function l(x, y), let
l̇x(x, y) = ∂l(x, y)/∂x. Denote by

ψ(Δ) =
1

μ
EF [v(X̃,Δ)],

then

ψ̇Δ(Δ) =
∂ψ(Δ)

∂Δ
=

1

μ

(
f(ξ) 0
f(ξ − θ) −f(ξ − θ)

)
.

Denote by Δ̂ = (ξ̂, θ̂)T the solution of the system of equa-
tions (3), we have the following theorem.

Theorem 2.1. Assume that the conditions (C1)-(C3) in

Appendix A hold, then Δ̂ is consistent and asymptotically
normal with

√
n(Δ̂−Δ0)

D→ N(0,Σ),

where Σ = Γ−1
0 Γ(Γ−1

0 )T , and

Γ0 =
1

μ

(
f(ξp) 0
f(ξq) −f(ξq)

)
, Γ =

(
γ1 γ3
γ3 γ2

)
,

γ1 = E

(
δ

XSC(X −A)
[I(X ≤ ξp)− p]

)2

+

∫ τC

0

b21(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

γ2 = E

(
δ

XSC(X −A)
[I(X ≤ ξq)− q]

)2

+

∫ τC

0

b22(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

γ3 = E

(
δ2

X2S2
C(X −A)

[I(X ≤ ξp)− p] [I(X ≤ ξq)− q]

)

+

∫ τC

0

b1(s)b2(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

b1(t) =
1

μ
EF

[
X̃ − t

X̃

[
I
(
X̃ ≤ ξp

)
− p

]
I
(
X̃ ≥ t

)]
,

b2(t) =
1

μ
EF

[
X̃ − t

X̃

[
I
(
X̃ ≤ ξq

)
− q

]
I
(
X̃ ≥ t

)]
,

φ(t) = SC(t)ST (t).

The conclusion of Theorem 1 can be used to construct a
confidence region for Δ0. For this purpose, denote by

Γ̂0(Δ) =
1

nhf

n∑
i=1

δi

XiŜC(Xi −Ai)
vf (Xi,Δ),

Γ̂(Δ) =
1

n

n∑
i=1

[
δi

XiŜC(Xi −Ai)
v(Xi,Δ)

+

∫ τC

0

B̂(t,Δ)

φ̂(t)
dM̂C

i (t)

]

×
[

δi

XiŜC(Xi −Ai)
v(Xi,Δ) +

∫ τC

0

B̂(t,Δ)

φ̂(t)
dM̂C

i (t)

]T

,

vf (Xi,Δ) =

⎛
⎝ u

(
ξ−Xi

hf

)
0

u
(

ξ−θ−Xi

hf

)
−u

(
ξ−θ−Xi

hf

)
⎞
⎠ ,

B̂(t,Δ) =
1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ)I(Xi −Ai ≥ t),

φ̂(t) = 1
n

∑n
i=1 I(Xi − Ai ≥ t), M̂C

i (t) = I(Xi − Ai ≤
t, δi = 0) −

∫ t

0
I(Xi − Ai ≥ s)dΛ̂C(s), and Λ̂C(·) the

Nelson–Aalen estimator of ΛC(·). Therefore, one of the
consistent estimators of the covariance matrix Σ is Σ̂ =
Γ̂0(Δ̂)−1Γ̂(Δ̂)(Γ̂0(Δ̂)−1)T , where Γ̂0(Δ̂) and Γ̂(Δ̂) are the
consistent estimators of Γ0 and Γ, respectively. Here, the
estimator of the density function f is obtained by a kernel
smoother with the kernel function u(·) and the bandwidth
sequence {hf}.

Corollary 2.1. Assume that the conditions (C1)-(C3) in

Appendix A hold, then θ̂ is consistent and asymptotically
normal with

√
n(θ̂ − θ0)

D→ N(0, σ2),

where σ2 = μ2γ1/f
2(ξp).

2.2 Smooth method

Another method, to estimate θ0, is to construct one
system of smooth estimating equations. Here the non-
differentiable indicator functions are smoothed by the kernel
function K(·) with a bandwidth sequence {h}. Denote by

ϕ(X,Δ) =

⎛
⎝ K

(
ξ−X
h

)
− p

K
(

ξ−θ−X
h

)
− q

⎞
⎠ ,

where K(t) =
∫ t

−∞ k(u)du, and the function k(·) is a kernel
density. Assume that the kernel k(·) is bounded and com-
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pactly supported, k(2)(·) exists and is bounded, and

∫
ujk(u)du =

⎧⎨
⎩

1, j = 0,
0, 1 ≤ j ≤ γ − 1,
c0, j = γ,

where γ ≥ 2 is an integer, c0 is some finite constant, and
c0 �= 0. Then the smooth estimating vector function is

δ

XŜC(X −A)
ϕ(X,Δ).

It can be verified that

E

[
δ

XŜC(X −A)
ϕ(X,Δ)

]
→ 0.

Then the smooth system of estimating equations is

1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ) = 0.(4)

The solution Δ̃ = (ξ̃, θ̃)T of (4) is one of the smoothed es-
timators of Δ0. We derive that Δ̃ is consistent and asymp-
totically normal as follows.

Theorem 2.2. Assume that the conditions (C1)-(C5) in
Appendix A hold, then Δ̃ is consistent and asymptotically
normal with

√
n(Δ̃−Δ0)

D→ N(0,Σ).

Note that, by the conclusions of Theorems 2.1 and 2.2,
Δ̃ is asymptotically equivalent to Δ̂. For a large sample
size, they have similar performance. For a small sample
size, however, the estimator Δ̃ with an appropriate band-
width is more efficient than Δ̂ in the sense of having a lower
mean squared error. That is an advantage of using the kernel
method.

Because the choice of the smoothness parameter h can af-
fect the values of the mean squared error of Δ̃, the optimal
bandwidth is required. In data analysis, the optimal band-
width can be derived by minimizing the asymptotic mean
squared error of the estimator. It can also be obtained by
minimizing the asymptotic mean integrated squared error
of the estimator. As the optimal bandwidth of the kernel
distribution function introduced by [4], h = O(n−1/3).

One confidence region for Δ0 can also be con-
structed by using the result of Theorem 2. Here, Σ̃ =
Γ̂0(Δ̃)−1Γ̂(Δ̃)(Γ̂0(Δ̃)−1)T .

Corollary 2.2. Assume that the conditions (C1)-(C5) in
Appendix A hold, then θ̃ is consistent and asymptotically
normal with

√
n(θ̃ − θ0)

D→ N(0, σ2),

where σ2 is defined in Corollary 2.1.

2.3 Efficiency improvement

The aforementioned estimators Δ̂ and Δ̃ are all obtained
by using the incomplete information of the observed data.
To make the most of the features of the data and gain much
more efficiency, an augmented inverse probability weighted
complete-case (AIPWCC) system of estimating equations is
constructed.

As we know, LBRC data type is a special type of RC
data because the truncation variable A can be observed.
Note that the censored data are monotone coarsening at
random (CAR). For the monotone CAR data, there exists
the explicit form of the most efficient estimator.

Moreover, it is easy to see that the estimator Δ̂ satisfies
the conditions of Theorem 2.2 in [12], hence it is a regu-

lar estimator. By the proof of Theorem 2.1, Δ̂ is also an
asymptotically linear estimator. That is,

√
n(Δ̂−Δ0)

= −Γ−1
0

1√
n

n∑
i=1

[
δi

XiSC(Xi −Ai)
v(Xi,Δ0)

+

∫ τC

0

B(s,Δ0)

φ(s)
dMC

i (s)

]
+ op(1),

where

B(t,Δ) = E

[
δ

XSC(X −A)
v(X,Δ)I(X −A ≥ t)

]
.

Therefore, the influence function of ith observation
(Xi, δi, Ai) of the estimator Δ̂ is

hi = −Γ−1
0

[
δi

XiSC(Xi −Ai)
v(Xi,Δ0)

+

∫ τC

0

B(s,Δ0)

φ(s)
dMC

i (s)

]
, i = 1, 2, · · · , n.

Based on the result of [17], it is true that

δi
SC(Xi −Ai)

= 1−
∫ τC

0

dMC
i (s)

SC(s)
.

Denote by

Vi(Δ) =
v(X0

i ,Δ)

X0
i

, U(s,V ) =
E[V (Δ0)I(X

0 −A ≥ s)]

ST (s)
.

According to Theorem 10.1 of [22], the efficient influence
function is in the class of influence functions

−Γ−1
0

[
Vi(Δ0)−

∫ τC

0

[Vi(Δ0)−U(s,V )]
dMC

i (s)

SC(s)
(5)

+

∫ τC

0

[Li(s)−U(s,L)]
dMC

i (s)

SC(s)

]
,

where Li(s) is an arbitrary function of the observed cen-
soring data (Xi − Ai = s, δi = 0, Ai), i = 1, · · · , n. When
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L(s) = E[V (Δ0)|X0 − A ≥ s,A], the variance of the influ-
ence function is the smallest. The corresponding estimator
is the most efficient estimator.

Nevertheless, we still do not know the explicit form of the
conditional expectation E[V (Δ0)|X0 − A ≥ s,A]. To deal
with this problem, one of the methods is to posit a model for
the distribution of the full data X0. Note that the estimator
may not be the most efficient if the model is misspecified.

For simplicity, we use another method. Multiplying the
augmented term in (5) by a 2× 2 coefficient matrix D leads
to the following class of influence functions

−Γ−1
0

[
Vi(Δ0)−

∫ τC

0

[Vi(Δ0)−U(s,V )]
dMC

i (s)

SC(s)
(6)

+D

∫ τC

0

[Li(s)−U(s,L)]
dMC

i (s)

SC(s)

]
.

The problem is transformed to find the optimal D that
makes the variance matrix of the influence functions in (6)
smallest. The optimal choice Dopt of D can be derived by
using the ordinary least squares. After a little algebra, we
have Dopt = D1D

−1
2 , where

D1 = E

[∫ τC

0

[V (Δ0)−U(s,V )][L(s)−U(s,L)]T

×I(X −A ≥ s)
dΛC(s)

S2
C(s)

]
,

D2 = E

[∫ τC

0

[L(s)−U(s,L)][L(s)−U(s,L)]T

×I(X −A ≥ s)
dΛC(s)

S2
C(s)

]
.

That is because the first term Vi(Δ0) is independent of the
third term in the square brackets of (6). Then the small-
est variance of the influence functions in the class (6) is
Σ − Γ−1

0 D1D
−1
2 DT

1 (Γ
−1
0 )T which is smaller than Σ when

Γ−1
0 D1D

−1
2 DT

1 (Γ
−1
0 )T �= 0.

Finally, the AIPWCC system of estimating equations can
be constructed as the form

n∑
i=1

δi

ŜC(Xi −Ai)
Vi(Δ)(7)

+

n∑
i=1

D̂

∫ τC

0

[Li(s)− Û(s,L)]
dMC

i (s)

ŜC(s)
= 0,

where

D̂ = D̂1D̂
−1
2 , Û(s,L) =

∑n
i=1 Li(s)I(Xi −Ai ≥ s)∑n

i=1 I(Xi −Ai ≥ s)
,

D̂1 =
1

n

n∑
i=1

[∫ τC

0

[Vi(Δ̂)− Û(s, V̂ )][Li(s)− Û(s,L)]T

×I(Xi −Ai ≥ s)
dΛ̂C(s)

Ŝ2
C(s)

]
,

D̂2 =
1

n

n∑
i=1

[∫ τC

0

[Li(s)− Û(s,L)][Li(s)− Û(s,L)]T

×I(Xi −Ai ≥ s)
dΛ̂C(s)

Ŝ2
C(s)

]
,

Û(s, V̂ ) =

∑n
i=1 Vi(Δ̂)I(Xi −Ai ≥ s)∑n

i=1 I(Xi −Ai ≥ s)
.

Let L(s) = A, then the solution Δ∗ = (ξ∗, θ∗)T

of the improved system of estimating equations (7)

is more efficient than the estimators Δ̂ and Δ̃ in
the sense of having a lower asymptotic variance.
Here, the asymptotic variance of Δ∗ is estimated by

Γ̂0(Δ
∗)−1

[
Γ̂(Δ∗)− D̂1D̂

−1
2 D̂T

1

]
(Γ̂0(Δ

∗)−1)T .

3. SIMULATION STUDIES AND REAL
DATA EXAMPLE

3.1 Simulation studies

In this subsection, we conduct simulations to assess the
performance of the proposed methods.

Assume that the random variable X̃ follows Gamma
distribution Γ(α, β), α = 2, β = 1/2, the probability
pair (p, q) = (0.75, 0.25), then the true value of Δ is
(5.385, 3.463). Let the sample size n = 200, 400, 800, and
the censoring rate C% = 15%, 30%. According to [10], a
LBRC sample {(Xi, Ai, δi), i = 1, 2, · · · , n} is generated by
the steps as follows.

Step 1. Generate {X0
i , i = 1, 2, · · · , n} from the density

function fX0(x) which is introduced in equation (1).
Step 2. Generate Ai from the continuous uniform distri-

bution U(0, X0
i ), i = 1, 2, · · · , n.

Step 3. Generate {Ci, i = 1, 2, · · · , n} from the survival
distribution SC(·). Here, we take an exponential distribution
with the parameter corresponding to the censoring rate.

Step 4. Obtain Xi and δi from Xi = min{X0
i , Ai + Ci}

and δi = I(X0
i ≤ Ai + Ci).

Let the value of the confidence level be 0.95, the asymp-
totic variance be estimated by using the plug-in method,
and the density function be estimated by using a Gaus-
sian kernel function with the bandwidth sequence {hf}.
As the optimal bandwidth introduced by [18, 8], the or-
der of the optimal bandwidth is O(n−1/5). Here, we observe
the results with different bandwidths hf = cn−1/5, c =
2.0, 2.1, 2.2, · · · , 3.6, 3.7, 3.8. Then we find that the result is
better when hf = 2.8n−1/5. In addition, for ϕ(x,Δ), as-
sume that the kernel function is Gaussian with the band-
width sequence {h}. Similar to the above-mentioned steps,
we select the bandwidth h = chn

−1/3, ch = 2.0. Each study
consists of 500 replications. The corresponding results are
summarized in Table 1. Similarly, the results of the case
(p, q) = (0.90, 0.10) are presented in Table 2.

Tables 1 and 2 show that the censoring rate does not
affect the performance of the estimators. As we see, for
each estimator, the standard errors (SE), mean squared er-
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Table 1. The comparison of the estimates for (p, q) = (0.75, 0.25), hf = 2.8n−1/5, and h = 2.0n−1/3

C% n Est Bias SE MSE SD CP Length

15% 200 (ξ̂, θ̂) (0.014, -0.006) (0.336, 0.329) (0.113, 0.109) (0.337, 0.347) (95.2, 95.6) (1.319, 1.359)

(ξ̃, θ̃) (0.034, 0.015) (0.328, 0.302) (0.109, 0.091) (0.338, 0.347) (95.2, 97.0) (1.325, 1.361)
(ξ∗, θ∗) (0.014, -0.006) (0.335, 0.330) (0.112, 0.109) (0.335, 0.346) (94.8, 95.4) (1.315, 1.355)

400 (ξ̂, θ̂) (0.008, -0.002) (0.246, 0.237) (0.061, 0.056) (0.241, 0.240) (94.2, 95.4) (0.945, 0.942)

(ξ̃, θ̃) (0.019, 0.009) (0.241, 0.221) (0.059, 0.049) (0.242, 0.241) (95.0, 96.8) (0.948, 0.943)
(ξ∗, θ∗) (0.009, -0.001) (0.245, 0.237) (0.060, 0.056) (0.240, 0.240) (93.2, 94.8) (0.942, 0.939)

800 (ξ̂, θ̂) (0.001, -0.013) (0.178, 0.167) (0.032, 0.028) (0.172, 0.168) (94.4, 94.0) (0.676, 0.660)

(ξ̃, θ̃) (0.009, -0.004) (0.172, 0.155) (0.030, 0.024) (0.173, 0.168) (94.8, 95.8) (0.677, 0.660)
(ξ∗, θ∗) (0.001, -0.012) (0.178, 0.167) (0.032, 0.028) (0.172, 0.168) (94.4, 94.8) (0.674, 0.658)

30% 200 (ξ̂, θ̂) (0.022, -0.003) (0.350, 0.346) (0.123, 0.120) (0.359, 0.372) (95.0, 95.6) (1.407, 1.457)

(ξ̃, θ̃) (0.041, 0.015) (0.338, 0.317) (0.116, 0.100) (0.360, 0.372) (95.6, 96.8) (1.413, 1.458)
(ξ∗, θ∗) (0.028, 0.001) (0.347, 0.343) (0.122, 0.117) (0.356, 0.369) (94.8, 96.0) (1.396, 1.445)

400 (ξ̂, θ̂) (0.001, 0.003) (0.256, 0.251) (0.066, 0.063) (0.258, 0.261) (95.0, 95.0) (1.012, 1.023)

(ξ̃, θ̃) (0.013, 0.010) (0.245, 0.231) (0.060, 0.053) (0.259, 0.261) (95.8, 97.0) (1.015, 1.023)
(ξ∗, θ∗) (0.003, 0.004) (0.255, 0.250) (0.065, 0.063) (0.257, 0.259) (94.8, 95.2) (1.007, 1.016)

800 (ξ̂, θ̂) (0.010, -0.003) (0.192, 0.187) (0.037, 0.035) (0.182, 0.180) (94.4, 94.6) (0.712, 0.705)

(ξ̃, θ̃) (0.017, 0.004) (0.187, 0.174) (0.035, 0.030) (0.182, 0.180) (95.0, 95.6) (0.714, 0.706)
(ξ∗, θ∗) (0.013, 0.000) (0.191, 0.185) (0.037, 0.034) (0.181, 0.179) (94.2, 94.6) (0.709, 0.701)

(p, q): the probability pair; hf : the bandwidth of the Gaussian kernel density function; h: the bandwidth of the Gaussian kernel distribution

function; C%: the censoring rate; n: sample size; Est: the type of the estimators; ξ̂: the estimator of pth quantile based on the nonsmooth
estimating equation; ξ̃: the estimator of pth quantile based on the smooth estimating equation; ξ∗: the estimator of pth quantile based on the
AIPWCC estimating equation; θ̂: the estimator of quantile difference based on the nonsmooth estimating equation; θ̃: the estimator of quantile
difference based on the smooth estimating equation; θ∗: the estimator of quantile difference based on the AIPWCC estimating equation; Bias:
the biases of the estimator; SE: the standard errors of the estimator; MSE: the mean squared errors of the estimator; SD: the average of the
estimators of the standard deviation; CP: the empirical 95% coverage probability; Length: the average length of the confidence intervals.

Table 2. The comparison of the estimates for (p, q) = (0.90, 0.10), hf = 2.8n−1/5, and h = 2.0n−1/3

C% n Est Bias SE MSE SD CP Length

15% 200 (ξ̂, θ̂) (0.031, 0.002) (0.428, 0.479) (0.184, 0.229) (0.415, 0.507) (95.4, 95.4) (1.627, 1.988)

(ξ̃, θ̃) (0.049, 0.035) (0.417, 0.435) (0.176, 0.190) (0.417, 0.506) (95.6, 97.4) (1.634, 1.984)
(ξ∗, θ∗) (0.026, -0.003) (0.422, 0.474) (0.179, 0.225) (0.408, 0.501) (94.6, 95.4) (1.599, 1.963)

400 (ξ̂, θ̂) (0.005, -0.014) (0.308, 0.330) (0.095, 0.109) (0.295, 0.355) (94.6, 95.4) (1.156, 1.391)

(ξ̃, θ̃) (0.018, 0.010) (0.300, 0.308) (0.090, 0.095) (0.296, 0.355) (94.8, 97.2) (1.159, 1.393)
(ξ∗, θ∗) (0.001, -0.018) (0.302, 0.327) (0.091, 0.107) (0.290, 0.351) (93.8, 96.4) (1.138, 1.375)

800 (ξ̂, θ̂) (0.009, 0.014) (0.209, 0.243) (0.044, 0.059) (0.210, 0.250) (95.2, 95.6) (0.824, 0.979)

(ξ̃, θ̃) (0.016, 0.027) (0.205, 0.229) (0.042, 0.053) (0.211, 0.250) (95.2, 96.8) (0.825, 0.979)
(ξ∗, θ∗) (0.006, 0.011) (0.207, 0.241) (0.043, 0.058) (0.207, 0.247) (95.4, 95.2) (0.812, 0.969)

30% 200 (ξ̂, θ̂) (0.001, -0.040) (0.492, 0.526) (0.242, 0.278) (0.459, 0.551) (93.0, 95.2) (1.798, 2.160)

(ξ̃, θ̃) (0.023, 0.002) (0.476, 0.481) (0.227, 0.231) (0.460, 0.551) (93.0, 95.6) (1.805, 2.161)
(ξ∗, θ∗) (-0.002, -0.045) (0.492, 0.518) (0.242, 0.270) (0.433, 0.528) (91.4, 93.6) (1.699, 2.071)

400 (ξ̂, θ̂) (-0.009, -0.032) (0.344, 0.374) (0.118, 0.141) (0.330, 0.388) (93.4, 95.8) (1.295, 1.522)

(ξ̃, θ̃) (0.008, -0.007) (0.331, 0.347) (0.110, 0.121) (0.332, 0.389) (95.0, 96.8) (1.301, 1.524)
(ξ∗, θ∗) (-0.009, -0.033) (0.337, 0.369) (0.114, 0.137) (0.317, 0.376) (92.8, 94.8) (1.243, 1.474)

800 (ξ̂, θ̂) (-0.013, -0.015) (0.249, 0.259) (0.062, 0.067) (0.236, 0.275) (94.0, 94.6) (0.924, 1.076)

(ξ̃, θ̃) (-0.004, 0.001) (0.241, 0.243) (0.058, 0.059) (0.236, 0.275) (94.2, 96.8) (0.927, 1.077)
(ξ∗, θ∗) (-0.021, -0.024) (0.241, 0.256) (0.058, 0.066) (0.228, 0.267) (92.6, 94.8) (0.892, 1.045)

(p, q): the probability pair; hf : the bandwidth of the Gaussian kernel density function; h: the bandwidth of the Gaussian kernel distribution

function; C%: the censoring rate; n: sample size; Est: the type of the estimators; ξ̂: the estimator of pth quantile based on the nonsmooth
estimating equation; ξ̃: the estimator of pth quantile based on the smooth estimating equation; ξ∗: the estimator of pth quantile based on the
AIPWCC estimating equation; θ̂: the estimator of quantile difference based on the nonsmooth estimating equation; θ̃: the estimator of quantile
difference based on the smooth estimating equation; θ∗: the estimator of quantile difference based on the AIPWCC estimating equation; Bias:
the biases of the estimator; SE: the standard errors of the estimator; MSE: the mean squared errors of the estimator; SD: the average of the
estimators of the standard deviation; CP: the empirical 95% coverage probability; Length: the average length of the confidence intervals.
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rors (MSE), standard deviations (SD), and average length
(Length) of the confidence intervals all decrease as the sam-
ple size increases from 200, 400 to 800. Meanwhile, the confi-
dence intervals of Δ0 have good coverage probabilities (CP)
which are very close to the nominal level 0.95. The SD of
Δ∗ are smaller than those of Δ̂ and Δ̃. That is to say, Δ∗ is
more efficient than Δ̂ and Δ̃ in the sense of having a lower
asymptotic variance.

Moreover, the biases (Bias) of Δ̃may be larger than those

of Δ̂ andΔ∗. That is because the advantage of the unbiased-
ness is sacrificed by using the smooth method. Nevertheless,
the MSE of the smoothed estimator are smaller than those
of the estimators Δ̂ and Δ∗. It means that the estimator Δ̃
is more efficient than the estimators Δ̂ and Δ∗ in the sense
of having a lower mean squared error. It is also confirmed
by the results of the improved efficiency shown in Tables 3
and 4. For simplicity, denote by

R1ξ = 100 ∗
(√

MSE(ξ̂)−
√
MSE(ξ̃)

)/√
MSE(ξ̂) ,

R1θ = 100 ∗
(√

MSE(θ̂)−
√

MSE(θ̃)

)/√
MSE(θ̂) ,

R2ξ = 100 ∗
(√

MSE(ξ∗)−
√

MSE(ξ̃)

)/√
MSE(ξ∗) ,

R2θ = 100 ∗
(√

MSE(θ∗)−
√
MSE(θ̃)

)/√
MSE(θ∗) .

Furthermore, to analyze the characteristics of a distribu-
tion, some comparisons of the quantile differences from the
same distribution are of great significance. Assume that the
censoring rate is 57.31% and n = 766 as those of the real
data which will be introduced in the next subsection. The
bandwidths are chosen as hf = 2.8n−1/5 and h = 0.3n−1/3,
respectively. The results for (0.75, 0.25), (0.75, 0.50), and
(0.50, 0.25) are summarized in Table 5.

Table 5 shows that the Bias of the estimators of θ(0.75,0.50)
are larger than those of θ(0.50,0.25). The SE and SD are
very close to each other. Meanwhile, the CP are close to
the nominal level. It is confirmed that hf = 2.8n−1/5 and
h = 0.3n−1/3 are appropriate to the cases with probability
pairs (0.75, 0.25) and (0.75, 0.50). For the case with proba-
bility pair (0.50, 0.25), the performance is a bit worse than
that for the other cases. That is because measuring a less
dispersion requires a smaller bandwidth. The MSE of θ̃ are
all smaller than those of θ̂ and θ∗. The SD of θ∗ are all
smaller than those of θ̂ and θ̃. It is indicated that θ∗ is more
efficient in the sense of having a lower asymptotic variance.

In addition, we compare one of the proposed method with
a method that fails to adjust left truncation, in order to con-
sider how much gain we have by using the proposed method.
For one sample with RC data, the estimator θ̂w of the quan-
tile difference is the solution of the estimating equation

n∑
i=1

δi

ŜA+C(Xi)
v(Xi,Δ) = 0,

where ŜA+C(·) is the Kaplan–Meier estimator of the survival
function of the right censoring variable A+ C. In the sense
of having a lower mean squared error, we calculate the ratio

Rw = 100 ∗
(√

MSE(θ̂w)−
√

MSE(θ̂)

)/√
MSE(θ̂w) .

The comparison of the results is exhibited in Table 6.
Table 6 illustrates that much more information, like the

distribution type of the truncation variable, indeed con-
tributes to the statistical inference.

3.2 Real data example

In this subsection, the proposed methods are used to an-
alyze Oscar data (see for instance, [15, 21]).

Oscar data include 1670 performers, who were identified
as nominees and non-nominees at the year from 1928 to
2001. Here, we focus on the lifetime distribution of the nom-
inees. In the data, two nominees (ID number 1075 and 1430)
are excluded because of the wrong information. Then there
are 766 nominees left, in which the censoring rate is 57.31%.
According to [29], the observed lifetime of the nominees is a
length-biased data set if we regard the age at nomination as
the truncation time. Moreover, according to the formal test
proposed by [1], the lifetime data of the nominees satisfy
the stationarity assumption. It is a precondition to use our
methods.

Specifically, let the variable of interest X̃ be the lifetime
of the nominees, and the truncation variable A be the age at
nomination. The observed sample is the triples (Xi, Ai, δi),
i = 1, · · · , 766. To derive the asymptotic variance, the plug-
in method is used. Let (p, q) = (0.75, 0.25), the kernel func-
tion all be Gaussian, hf = 2.8n−1/5, and h = 0.3n−1/3.
The corresponding results are presented in Table 7. Table
7 shows that the SD of Δ∗ are smaller than those of Δ̂
and Δ̃ which implies that Δ∗ is more efficient than Δ̂ and
Δ̃ in the sense of having a lower asymptotic variance. All
estimates illustrate that the difference between the 75%th
quantile and the 25%th quantile is about 21 years.

APPENDIX A. APPENDIX SECTION

To establish the asymptotic properties of the estimators
of quantile differences, the following conditions are required.

(C1) The parameter space Ω of Δ is compact, and the true
value Δ0 is an interior point of Ω.

(C2) Δ0 is the unique value such that ψ(Δ) = 0.
(C3) Let τ1 = sup{t : S(t)SC(t) > 0}, τT = sup{t : ST (t) >

0} ≤ sup{t : SC(t) > 0} = τC , and Pr(δ = 1) > 0.
(C4) The kernel function K(·) is continuous, differentiable

and bounded in the neighborhood ofΔ0. The function
f(·) is continuous, and f(ξp)f(ξq) > 0.

(C5) For some integer γ ≥ 2, f (γ−1)(x) exists in a neigh-
borhood of ξp and ξq, and is continuous at ξp and ξq,
respectively.

Estimating equation estimators of quantile differences for one sample with length-biased and right-censored data 189



Table 3. The comparison of the efficiencies for n = 200 and hf = 2.8n−1/5

p = 0.75 q = 0.25 p = 0.90 q = 0.10
C% ch R1ξ R1θ R2ξ R2θ R1ξ R1θ R2ξ R2θ
15% 1.6 2.449 7.022 2.182 6.827 3.151 6.802 2.806 5.802

1.7 2.405 7.014 3.009 6.375 3.501 7.392 1.578 6.043
1.8 2.723 8.093 2.284 7.901 2.804 6.191 1.041 6.186
1.9 2.527 8.643 1.714 8.656 3.850 10.045 4.393 9.845
2.0 4.609 10.763 3.604 9.721 4.528 11.372 4.551 11.185
2.1 5.002 9.549 4.382 9.610 4.706 10.078 5.200 10.175
2.2 2.735 12.170 1.958 11.359 4.864 11.073 3.350 10.702
2.3 5.076 11.030 5.147 10.479 5.490 11.268 3.522 10.215
2.4 1.306 11.299 0.376 11.015 3.627 9.310 1.924 8.195

30% 1.6 2.520 8.929 2.294 8.766 3.495 7.873 6.884 11.351
1.7 4.069 8.532 3.531 6.001 3.973 8.402 4.936 9.368
1.8 2.517 9.102 2.175 9.865 4.442 8.325 4.037 7.950
1.9 3.656 10.319 3.244 9.924 4.888 9.908 11.990 14.810
2.0 4.072 6.607 4.365 7.686 5.647 9.169 8.676 12.026
2.1 4.176 12.314 3.849 11.567 3.406 8.558 3.189 8.064
2.2 3.452 13.197 3.024 10.385 6.493 10.769 9.134 11.432
2.3 2.512 10.772 2.241 10.804 5.602 9.513 6.561 10.374
2.4 6.926 13.529 17.279 21.009 7.720 11.357 8.851 12.558

n: sample size; hf : the bandwidth of the Gaussian kernel density function; (p, q): the probability pair; C%: the censoring rate; ch: the coefficient

of the bandwidth sequence of the Gaussian kernel distribution function; R1ξ: the improved efficiency of ξ̃ with respect to ξ̂; R1θ: the improved

efficiency of θ̃ with respect to θ̂; R2ξ: the improved efficiency of ξ̃ with respect to ξ∗; R2θ: the improved efficiency of θ̃ with respect to θ∗; ξ̂:

the estimator of pth quantile based on the nonsmooth estimating equation; ξ̃: the estimator of pth quantile based on the smooth estimating
equation; ξ∗: the estimator of pth quantile based on the AIPWCC estimating equation; θ̂: the estimator of quantile difference based on the
nonsmooth estimating equation; θ̃: the estimator of quantile difference based on the smooth estimating equation; θ∗: the estimator of quantile
difference based on the AIPWCC estimating equation.

Table 4. The comparison of the efficiencies for n = 400 and hf = 2.8n−1/5

p = 0.75 q = 0.25 p = 0.90 q = 0.10
C% ch R1ξ R1θ R2ξ R2θ R1ξ R1θ R2ξ R2θ
15% 1.6 2.807 6.293 2.343 6.795 1.712 6.982 0.106 6.885

1.7 2.941 6.620 2.478 7.121 1.777 7.291 0.172 7.196
1.8 3.072 6.944 2.609 7.443 1.839 7.579 0.234 7.484
1.9 3.195 7.266 2.733 7.764 1.893 7.844 0.289 7.749
2.0 3.308 7.580 2.846 8.076 1.944 8.088 0.342 7.993
2.1 3.411 7.886 2.950 8.380 1.996 8.311 0.394 8.216
2.2 3.508 8.186 3.047 8.678 2.039 8.506 0.438 8.412
2.3 3.599 8.484 3.139 8.975 2.078 8.678 0.478 8.583
2.4 3.680 8.770 3.220 9.260 2.113 8.822 0.513 8.728

30% 1.6 0.011 0.059 0.266 0.304 0.004 0.031 0.312 0.344
1.7 0.011 0.062 0.267 0.307 0.006 0.022 0.254 0.268
1.8 0.012 0.064 0.267 0.310 0.007 0.023 0.254 0.269
1.9 0.012 0.067 0.268 0.312 0.007 0.025 0.255 0.271
2.0 0.013 0.069 0.268 0.315 0.008 0.026 0.255 0.272
2.1 0.013 0.072 0.269 0.317 0.008 0.027 0.256 0.273
2.2 0.014 0.074 0.269 0.319 0.009 0.028 0.256 0.274
2.3 0.014 0.076 0.270 0.322 0.009 0.029 0.257 0.275
2.4 0.015 0.079 0.270 0.324 0.010 0.030 0.257 0.276

n: sample size; hf : the bandwidth of the Gaussian kernel density function; (p, q): the probability pair; C%: the censoring rate; ch: the coefficient

of the bandwidth sequence of the Gaussian kernel distribution function; R1ξ: the improved efficiency of ξ̃ with respect to ξ̂; R1θ: the improved

efficiency of θ̃ with respect to θ̂; R2ξ: the improved efficiency of ξ̃ with respect to ξ∗; R2θ: the improved efficiency of θ̃ with respect to θ∗; ξ̂:

the estimator of pth quantile based on the nonsmooth estimating equation; ξ̃: the estimator of pth quantile based on the smooth estimating
equation; ξ∗: the estimator of pth quantile based on the AIPWCC estimating equation; θ̂: the estimator of quantile difference based on the
nonsmooth estimating equation; θ̃: the estimator of quantile difference based on the smooth estimating equation; θ∗: the estimator of quantile
difference based on the AIPWCC estimating equation.
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Table 5. The comparison of the estimates for C% = 57.31%, n = 766, hf = 2.8n−1/5, and h = 0.3n−1/3

(p, q) Est Bias SE MSE SD CP Length

(0.75, 0.25) θ̂ -0.049 0.246 0.063 0.251 95.2 0.986

θ̃ -0.049 0.244 0.062 0.251 94.8 0.985
θ∗ -0.036 0.250 0.064 0.247 94.4 0.967

(0.75, 0.50) θ̂ -0.034 0.214 0.047 0.215 93.6 0.842

θ̃ -0.033 0.210 0.045 0.215 95.0 0.842
θ∗ -0.023 0.218 0.048 0.212 92.8 0.830

(0.50, 0.25) θ̂ -0.015 0.152 0.023 0.163 95.6 0.638

θ̃ -0.016 0.150 0.023 0.163 96.6 0.638
θ∗ -0.018 0.156 0.025 0.161 95.2 0.633

C%: the censoring rate; n: sample size; hf : the bandwidth of the Gaussian kernel density function; h: the bandwidth of the Gaussian kernel

distribution function; (p, q): the probability pair; Est: the type of the estimators; θ̂: the estimator of quantile difference based on the nonsmooth
estimating equation; θ̃: the estimator of quantile difference based on the smooth estimating equation; θ∗: the estimator of quantile difference
based on the AIPWCC estimating equation; Bias: the biases of the estimator; SE: the standard errors of the estimator; MSE: the mean squared
errors of the estimator; SD: the average of the estimators of the standard deviation; CP: the empirical 95% coverage probability; Length: the
average length of the confidence intervals.

Table 6. The comparison of the estimates for C% = 57.31%, n = 766, and hf = 2.8n−1/5

θ̂w θ̂
(p, q) Bias SE MSE Bias SE MSE Rw

(0.75, 0.25) 0.095 0.376 0.150 -0.049 0.246 0.063 35.3
(0.80, 0.20) 0.130 0.442 0.212 -0.064 0.281 0.083 37.4
(0.90, 0.10) 0.215 0.656 0.477 -0.151 0.493 0.266 25.4

C%: the censoring rate; n: sample size; hf : the bandwidth of the Gaussian kernel density function; θ̂w: the estimator of quantile difference

when reviewing LBRC data only as RC data; θ̂: the estimator of quantile difference based on the nonsmooth estimating equation; (p, q): the
probability pair; Bias: the biases of the estimator; SE: the standard errors of the estimator; MSE: the mean squared errors of the estimator;
Rw: the improved efficiency of θ̂ with respect to θ̂w.

Table 7. The estimates on Oscar data for
(p, q) = (0.75, 0.25), hf = 2.8n−1/5, and h = 0.3n−1/3

Est (ξ̂, θ̂) (ξ̃, θ̃) (ξ∗, θ∗)

est (85.0, 21.0) (84.9, 21.0) (85.0, 21.0)
SD (3.1, 2.4) (3.1, 2.4) (0.2, 0.1)

(p, q): the probability pair; hf : the bandwidth of the Gaussian kernel
density function; h: the bandwidth of the Gaussian kernel distribu-
tion function; Est: the type of the estimators; ξ̂: the estimator of pth
quantile based on the nonsmooth estimating equation; ξ̃: the estima-
tor of pth quantile based on the smooth estimating equation; ξ∗: the
estimator of pth quantile based on the AIPWCC estimating equation;
θ̂: the estimator of quantile difference based on the nonsmooth esti-
mating equation; θ̃: the estimator of quantile difference based on the
smooth estimating equation; θ∗: the estimator of quantile difference
based on the AIPWCC estimating equation; est: the estimates of the
quantile difference; SD: the average of the estimators of the standard
deviation.

The condition (C4) implies that the functions ϕ(x,Δ)
and ϕ̇Δ(x,Δ) are continuous and bounded by some inte-
grable function g(x) in a neighborhood of the true value Δ0

with
∫
g(u)dF (u) < ∞, and EF [ϕ̇Δ(X̃,Δ0)] �= 0.

Proof of Theorem 2.1. Firstly, we prove the consistency of
the estimator Δ̂. Based on the condition (C2), to prove the

consistency of Δ̂, it is required to prove that

sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ)−ψ(Δ)

∥∥∥∥∥(8)

= op(1).

In actuality,

sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
≤ sup

Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

[
δi

XiŜC(Xi −Ai)
− δi

XiSC(Xi −Ai)

]

×v(Xi,Δ)‖

+ sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi
XiSC(Xi −Ai)

v(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
:= I1 + I2.

From the condition (C3), we have

sup
0≤t≤τ1

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ ≤ 1 + sup
0≤t≤τ1

∣∣∣∣∣SC(t)− ŜC(t)

SC(t)

∣∣∣∣∣ sup
0≤t≤τ1

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ .
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The uniform consistency of the Kaplan–Meier estimator

ŜC(t) implies that sup0≤t≤τ1

∣∣∣SC(t)

ŜC(t)

∣∣∣ ≤ M for some constant

M . Combining the law of large numbers with the condition
(C1), we get

I1 ≤ 2

μ
sup

0≤t≤τ1

∣∣∣∣∣SC(t)− ŜC(t)

SC(t)

∣∣∣∣∣ sup
0≤t≤τ1

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ = op(1).

From the uniform law of large numbers, it is easy to see that

I2
P→ 0. Hence (8) holds. That leads to, for any r > 0 and

neighborhood N (Δ0, r) of Δ0,

sup
Δ/∈N (Δ0,r)

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
= op(1).

It follows that

inf
Δ/∈N (Δ0,r)

‖ψ(Δ)‖(9)

≥ inf
Δ/∈N (Δ0,r)

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ)

∥∥∥∥∥− op(1)

> 0 = ‖ψ(Δ0)‖.

By the conditions (C1) and (C2), and the conclusions (8)

and (9), the estimator Δ̂ is consistent.
To prove the asymptotic normality, denote by F(t) =

σ{I(Xi − Ai ≤ u, δi = 0), I(Xi − Ai ≥ u), i =
1, 2, · · · , n, 0 ≤ u ≤ t}, then MC

i (t) = NC
i (t) −∫ t

0
Yi(s)dΛC(s) is a martingale with respect to F(t), i =

1, 2, · · · , n. Meanwhile,

√
n
SC(t)− ŜC(t)

SC(t)
=

1√
n

n∑
j=1

∫ τC

0

I(s ≤ t)

φ(s)
dMC

j (s) + op(1),

where φ(s) = ST (s)SC(s).

By the consistency of Δ̂ and the mean value theorem, we
have

ψ̂(Δ̂)− ψ̂(Δ0)

= ψ̂(Δ̂)−ψ(Δ̂) +ψ(Δ̂)− ψ̂(Δ0) +ψ(Δ0)−ψ(Δ0)

= βn +ψ(Δ̂)−ψ(Δ0)

= βn + [ψ̇Δ(Δ0) + op(1)](Δ̂−Δ0),

where βn = αn(Δ̂)−αn(Δ0), αn(Δ) = ψ̂(Δ)−ψ(Δ). The
function class {v(·,Δ),Δ ∈ Ω} is Euclidean with a square-
integrable envelope, and it is L2(p) continuous atΔ0. Hence,
by Lemma 2.17 of [13], for each sequence of positive numbers
{εn} converging to zero, we get

sup
‖Δ̂−Δ0‖<εn

‖αn(Δ̂)−αn(Δ0)‖ = op(n
− 1

2 ),

that is to say,

sup
‖Δ̂−Δ0‖<εn

‖βn‖ = op(n
− 1

2 ).

Let

Γ0 =
1

μ

(
f(ξp) 0
f(ξq) −f(ξq)

)
.

It is derived that

√
n(Δ̂−Δ0)

= −
√
n[ψ̇Δ(Δ0) + op(1)]

−1[ψ̂(Δ0) + βn]

= −Γ−1
0

1√
n

n∑
i=1

δi

XiŜC(Xi −Ai)
v(Xi,Δ0) + op(1)

= −Γ−1
0

1√
n

n∑
i=1

δi
XiSC(Xi −Ai)

v(Xi,Δ0)

×
(
1 +

SC(Xi −Ai)− ŜC(Xi −Ai)

SC(Xi −Ai)

)
+ op(1)

= −Γ−1
0

1√
n

n∑
i=1

δi
XiSC(Xi −Ai)

v(Xi,Δ0)

−Γ−1
0

1√
n

n∑
i=1

∫ τC

0

B(s,Δ0)

φ(s)
dMC

i (s) + op(1),

where

B(t,Δ0) = E

[
δ

XSC(X −A)
v(X,Δ0)I(t ≤ X −A)

]

=
1

μ
EF

[
X̃ − t

X̃
v(X̃,Δ0)I(t ≤ X̃)

]
.

By the central limit theorems of the martingale and the sum
of i.i.d. random variables, we have

√
n(Δ̂−Δ0)

D→ N(0,Σ),

where Σ = Γ−1
0 Γ(Γ−1

0 )T , and

Γ = E

([
δ

XSC(X −A)
v(X,Δ0)+

∫ τC

0

B(s,Δ0)

φ(s)
dMC(s)

]

×
[

δ

XSC(X −A)
v(X,Δ0)+

∫ τC

0

B(s,Δ0)

φ(s)
dMC(s)

]T)

=

(
γ1 γ3
γ3 γ2

)
,

γ1 = E

(
δ

XSC(X −A)
[I(X ≤ ξp)− p]

)2

+

∫ τC

0

b21(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

γ2 = E

(
δ

XSC(X −A)
[I(X ≤ ξq)− q]

)2
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+

∫ τC

0

b22(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

γ3 = E

(
δ2

X2S2
C(X −A)

[I(X ≤ ξp)− p][I(X ≤ ξq)− q]

)

+

∫ τC

0

b1(s)b2(s)

φ2(s)
I(X −A ≥ s)dΛC(s),

b1(t) =
1

μ
EF

[
X̃ − t

X̃

[
I
(
X̃ ≤ ξp

)
− p

]
I
(
t ≤ X̃

)]
,

b2(t) =
1

μ
EF

[
X̃ − t

X̃

[
I
(
X̃ ≤ ξq

)
− q

]
I
(
t ≤ X̃

)]
,

φ(t) = SC(t)ST (t).

The proof is completed.

Proof of Theorem 2.2. Firstly, we prove the consistency of
the estimator Δ̃. Based on the condition (C2), it is required
to prove that

sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)−ψ(Δ)

∥∥∥∥∥(10)

= op(1).

Actually,

sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
≤ sup

Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)

− 1

n

n∑
i=1

δi
XiSC(Xi −Ai)

ϕ(Xi,Δ)

∥∥∥∥∥
+ sup

Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi
XiSC(Xi −Ai)

ϕ(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
:= J1 + J2.

By the uniform consistency of the Kaplan–Meier estimator
ŜC(t), it is easy to deduce that

J1 = sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)

− 1

n

n∑
i=1

δi
XiSC(Xi −Ai)

ϕ(Xi,Δ)

∥∥∥∥∥
= sup

Δ∈Ω

∥∥∥∥∥
(
1

n

n∑
i=1

SC(Xi −Ai)− ŜC(Xi −Ai)

[SC(Xi −Ai)]2

+
1

n

n∑
i=1

[SC(Xi −Ai)− ŜC(Xi −Ai)]
2

ŜC(Xi −Ai)[SC(Xi −Ai)]2

)

× δi
Xi

ϕ(Xi,Δ)

∥∥∥∥

≤ sup
Δ∈Ω

∥∥∥∥∥ 1n
n∑

i=1

SC(Xi −Ai)− ŜC(Xi −Ai)

[SC(Xi −Ai)]2

× δi
Xi

ϕ(Xi,Δ)

∥∥∥∥+ op(1)

= op(1).

From the uniform law of large numbers and the condition
(C5), it is easy to get

J2 ≤ sup
Δ∈Ω

∥∥∥∥∥F
(γ)(Δ

′
)

γ!
c0h

γ

∥∥∥∥∥+ op(1)
P→ 0,

where

F (γ)(Δ
′
) =

(
F (γ)(ξ

′
)

F (γ)(ξ
′′ − θ

′′
)

)
,

for any t > 0 and fixed h, the point ξ
′
is between ξ and ξ−ht,

and ξ
′′ −θ

′′
is between ξ−θ and ξ−θ−ht. Hence (10) holds.

Then for any r > 0 and the neighborhood N ∗(Δ0, r) of Δ0,
we have

sup
Δ/∈N∗(Δ0,r)

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)−ψ(Δ)

∥∥∥∥∥
= op(1).

It follows that

inf
Δ/∈N∗(Δ0,r)

‖ψ(Δ)‖(11)

≥ inf
Δ/∈N∗(Δ0,r)

∥∥∥∥∥ 1n
n∑

i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ)

∥∥∥∥∥− op(1)

> 0 = ‖ψ(Δ0)‖.

By the conditions (C1) and (C2), and the conclusions (10)

and (11), the estimator Δ̂ is consistent.
The asymptotic normality is proved as follows, and some

notations are identical to those in the proof of Theorem 2.1.
Combining the consistency of Δ̃ and the condition (C4)
with Taylor’s formula, we have

0 =
1√
n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi, Δ̃)

=
1√
n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ0)

+
1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
[ϕ̇Δ(Xi,Δ0) + op(1)]

×
√
n(Δ̃−Δ0).

By Bernstein inequality and Borel–Cantelli Lemma, we have

1

nh

n∑
i=1

δi

XiŜC(Xi −Ai)
k

(
ξp −Xi

h

)
→ f(ξp)

μ
, a.s..
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Therefore,

1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ̇Δ(Xi,Δ0)

→ 1

μ

(
f(ξp) 0
f(ξq) −f(ξq)

)
= Γ0 a.s.,

then we get

√
n(Δ̃−Δ0)

= −
(
1

n

n∑
i=1

δi

XiŜC(Xi −Ai)
[ϕ̇Δ(Xi,Δ0) + op(1)]

)−1

× 1√
n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ0)

= −Γ−1
0

1√
n

n∑
i=1

δi

XiŜC(Xi −Ai)
ϕ(Xi,Δ0) + op(1)

= −Γ−1
0

1√
n

n∑
i=1

δi
XiSC(Xi −Ai)

ϕ(Xi,Δ0)

×
(
1 +

SC(Xi −Ai)− ŜC(Xi −Ai)

SC(Xi −Ai)

)
+ op(1)

= −Γ−1
0

1√
n

n∑
i=1

δi
XiSC(Xi −Ai)

ϕ(Xi,Δ0)

−Γ−1
0

1√
n

n∑
i=1

∫ τC

0

Bϕ(s,Δ0)

φ(s)
dMC

i (s) + op(1),

where

Bϕ(t,Δ0) = E

[
δ

XSC(X −A)
ϕ(X,Δ0)I(t ≤ X −A)

]

→ 1

μ
EF

[
X̃ − t

X̃
v(X̃,Δ0)I(t ≤ X̃)

]
, h → 0.

By the central limit theorems of the martingale and the sum
of i.i.d. random variables, we have

√
n(Δ̃−Δ0)

D→ N(0,Σ).

The proof is completed.

DISCUSSION

Theoretically and numerically, the three estimating equa-
tion estimators of quantile differences perform well. In the
sense of having a lower mean squared error, the smoothed
estimator is more efficient than the others. Meanwhile, in
the sense of having a lower asymptotic variance, the AIP-
WCC estimating equation estimator is more efficient than
the others.

Note that, in the sense of having a lower mean squared er-
ror, the smoothed estimator is more efficient than the differ-
ence between the estimators of quantiles based on the non-

parametric maximum likelihood estimator of the survival
function. That benefits from the smoother but sacrifices a
little unbiasedness.

It is also worthy noting that the proposed methods are
appropriate to LBRC data. The stationarity assumption is
a precondition to use these estimators. If the stationarity
assumption fails, the observations may be LTRC data or
RC data. Some approaches appropriate to these data types
have been explored in the literature mentioned in Section 1.
Note that neglecting the features of LBRC data will lead to
lower efficiency of the estimation under LBRC data.
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