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A non-marginal variable screening method for the
varying coefficient Cox model

Lianqiang Qu and Liuquan Sun
∗

The varying coefficient model has become a very popular
statistical tool for describing the dynamic effects of covari-
ates on the response. In this article, we develop a new vari-
able screening method for the varying coefficient Cox model
based on the kernel smoothing and group learning methods.
The sure screening property is established for ultrahigh-
dimensional settings. In addition, an iterative groupwise
hard-thresholding algorithm is developed to implement our
method. Simulation studies are conducted to evaluate the
finite sample performances of the proposed method. An ap-
plication to an ovarian cancer dataset is provided.
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1. INTRODUCTION

The Cox proportional hazards model is one of the most
popular semiparametric regression models for analyzing sur-
vival data, which assumes that the regression coefficients
are constant over time. In reality, however, the regression
coefficients may vary over time [31, 38, 45]. Varying coef-
ficient models provide more flexibility in modelling covari-
ate effects, and also can reveal deep insights into functional
and complex interactive effects of covariates [14, 25, 27].
This study is motivated by an analysis of an ovarian cancer
dataset from the Cancer Genome Atlas [30]. Some prelimi-
nary analysis on this data indicates that the effects of genes
on the patient’s survival time are age-dependent (see Sec-
tion 5.3 for more details). In this article, we consider the
following varying coefficient Cox model for the analysis:

λ
(
t|Z, V

)
= λ0(t) exp{β(V )TZ},(1)

where Z is a p × 1 vector of candidate covariates, V is an
exposure variable, λ0(t) is an unknown baseline hazard func-
tion, and β(V ) is a vector of unspecified smooth functions,
which characterizes the varying effects of Z with respect
to V .

With the advancement in technology for data collection
and storage, the ultrahigh-dimensional data are frequently
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encountered in many research areas, such as genetic microar-
ray, biomedical imaging and economics. The penalized meth-
ods have been available for the standard Cox model, such
as Lasso [32], SCAD [11] and adaptive Lasso [42]. For Cox
models with time-varying coefficients, the group penalized
methods have also been extensively studied. For example,
[38] proposed an adaptive Lasso procedure for variable se-
lection and structure identification. [16] considered variable
selection by using the group SCAD-type and adaptive group
Lasso estimators. For other related works, we can refer to
[17, 24, 36] and the references within. However, when the
number of covariates is larger than the sample size, the pe-
nalized variable selection methods may be computationally
infeasible, and challenging to achieve model selection con-
sistency [13]. Thus, a variable screening step is necessary
before variable selection is carried out.

[13] proposed the sure independence screening (SIS)
method to select important variables for the ultrahigh-
dimensional linear regression model. Because of its good
numerical performance and novel theoretical properties, the
SIS idea has been extensively studied in varying coefficient
regression models [9, 10, 25, 29, 35]. In addition, the SIS
idea has been quickly adapted in survival analysis. Exam-
ples include [15, 18, 23, 28, 41, 43]. [19] gave a selective re-
view of variable screening procedures for survival data with
ultrahigh-dimensional covariates.

However, the simple SIS methods face a number of chal-
lenges. For example, it may miss some important variables
that are marginally unrelated but jointly related to the re-
sponse, and may give misleading results when there exist
strongly correlations among the covariates. To overcome
these issues, [39] proposed a sure joint screening procedure
for the Cox model. [1] suggested a sure group joint screening
method for clustered survival data. [20] considered a condi-
tional screening method by computing the marginal contri-
bution of each covariate. [21] introduced a forward variable
selection procedure based on the partial likelihood. Since
these methods consider the joint effects of candidate co-
variates in the variable screening process rather than the
marginal effect of individual variable, we call them as the
non-marginal variable screening (NOVAS) methods. How-
ever, these existing NOVAS methods, without considering
the dynamic effects of covariates, can not be directly applied
to model (1). Recently, [40] proposed a non-marginal vari-
able screening procedure for the ultrahigh-dimensional vary-
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ing coefficient Cox model, in which the spline-based method
was employed.

In this article, we develop a NOVAS approach for model
(1), which naturally combines the kernel smoothing and
group learning methods. Although our method shares the
same spirit as the work of [40], it is not a trivial extension
of the existing methods. Specifically, we approximate the
varying coefficient vector β(·) using a local constant fitting
method, and estimate β(·) by applying a mixture of local
partial likelihood with a group sparse constraint. Then we
select the important variables based on the proposed esti-
mator. This procedure can be regarded as a nonparametric
version of the group variable screening [10]. Moreover, we
show that the proposed method enjoys the sure screening
property [13] without assuming the asymptotic stability and
Lindeberg conditions that were adopted by [40]. The sure
screening property guarantees that with probability tend-
ing to 1, the selected model includes the true model. In
addition, an efficient iterative groupwise hard-thresholding
(IGHT for short) algorithm is developed to carry out our
screening method, and the convergence properties of the
IGHT algorithm is also established. The high efficiency of
our method is demonstrated through extensive simulation
studies.

The rest of this article is organized as follows. Section 2
presents our NOVAS approach for model (1), and an IGHT
algorithm is proposed. Section 3 establishes the sure screen-
ing properties. Section 4 discusses some tuning parameter
selection issues for implementation of the proposed method.
Section 5 presents simulation studies to evaluate the em-
pirical performance of the proposed method. Also, an ap-
plication to an ovarian cancer dataset is provided, and a
screening-based penalized method is developed. Section 6
concludes the article with discussion. Proofs and technical
details are given in the Appendix.

2. NON-MARGINAL VARIABLE SCREENING
METHOD

2.1 Screening method

Let T be the failure time and C be the censoring time. De-
fine X = min(T,C), and Δ = I(T ≤ C), where I(·) is the
indictor function. Assume that T and C are independent
given Z and V . The observed data consist of n indepen-
dent and identically distributed replicates of (X,Δ, Z, V ),
denoted by (Xi,Δi, Zi, Vi) (i = 1, . . . , n). Define the count-
ing process Ni(t) = I(Xi ≤ t,Δi = 1), and the at-risk
process Yi(t) = I(Xi ≥ t). For model (1), following [12], for
each given v, the logarithm of the local partial likelihood is
given by

�n{β(v)}(2)

=
1

n

n∑
i=1

∫ τ

0

Kh(Vi − v)β(v)TZidNi(t)

− 1

n

n∑
i=1

∫ τ

0

Kh(Vi − v)

× log

( n∑
j=1

Kh(Vj − v)Yj(t) exp{β(v)TZj}
)
dNi(t),

where Kh(·) = K(·/h)/h, K(·) is a kernel function, h is
a bandwidth, and τ is a prespecified constant such that
P (Xi ≥ τ) > 0.

When p (< n) is fixed, we can estimate β(v) using
the maximizer of (2). However, it is challenging to maxi-
mize (2) when p is larger than n. To overcome this diffi-
culty, we assume that the true parameter vector β∗(v) =
(β∗

1(v), . . . , β
∗
p(v))

T is sparse. That is, the cardinality of the
set M∗ = {j : β∗

j (v) �≡ 0, 1 ≤ j ≤ p} is less than n. Let

D = (β(V1), . . . , β(Vn)) = (d1, . . . , dp)
T ∈ Rp×n, and define

L(D) ≡ 1

n

n∑
i=1

�n
{
β(Vi)

}
.

Based on the sparsity assumption on β∗(v), we propose
to minimize the following objective function with a group
sparse constraint:

−L(D) subject to ||D||row ≤ k,(3)

where k < n is a pre-specified positive integer, ||A||row =∑p
j=1 I(‖aj‖2 �= 0) for any matrix A = (a1, . . . , ap)

T ∈
Rp×n, and ‖aj‖2 denotes the Euclidean norm, i.e., ‖aj‖2 =
(aTj aj)

1/2 for 1 ≤ j ≤ p. Because the objective function (3)
is constructed via the kernel smoothing technique, we refer
to the proposed method as the kernel non-marginal vari-
able screening (KNOVAS for short) method. Let D̂ be the
minimizer of (3) for a given k.

2.2 Iterative groupwise hard thresholding
algorithm

Let ḟ(x) denote the first derivative of any function f(·).
For an arbitrary matrix A, denote the trace by tr(A), and
the Frobenius norm by ||A||F . For each given D and B
around D, consider a quadratic approximation of L(B):

Qt(B|D) = L(D) +
1

n
tr{(B −D)T L̃(D)} − t

2n
||B −D||2F ,

where t is a pre-specified positive constant, and L̃(D) =
(�̇n{β(V1)}, . . . , �̇n{β(Vn)}) ∈ Rp×n. It can be seen that
Qt(D|D) = L(D), and thus Qt(B|D) approximates L(D)
well for B close to D. Based on Qt(B|D), we can obtain an
iterative algorithm to solve (3):

B̂ =arg min
B∈Rp×n

{−Qt(B|D)}(4)

subject to ||B||row ≤ k.
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After ignoring constant terms, (4) can be rewritten as

B̂ =arg min
B∈Rp×n

t

2n
||B − (D + t−1L̃(D))||2F(5)

subject to ||B||row ≤ k.

Proposition 2.1. Let D̃ = (d̃1, . . . , d̃p)
T ∈ Rp×n be any

matrix with d̃j = (d̃j1, . . . , d̃jn)
T ∈ Rn. If B̂ = (b̂1, . . . , b̂p)

T

is an optimal solution to the following problem:

min
B∈Rp×n

||B − D̃||2F subject to ||B||row ≤ k,

then it has a closed form and its jth row is defined as

b̂j = d̃jI(d̃
∗
j ≥ d̃∗(k)), 1 ≤ j ≤ p,(6)

where d̃∗j = n−1
∑n

i=1 d̃
2
ji, and d̃∗(k) is the kth largest value

of d̃∗1, . . . , d̃
∗
p.

This proposition is a groupwise version of Proposition 3
in [4]. The proof is given in the Appendix. From Proposi-
tion 1, we see that (6) yields a sparse solution by a hard-
thresholding rule. In addition, (6) suggests that the KNO-
VAS first ranks the importance of covariates in a decreasing
order according to the current estimates of E{βj(V )2}, and
then it filters out the covariates whose corresponding esti-
mates are smaller than d̃∗(k). This procedure is similar to

the nonparametric variable screening procedure [10], which
fitted p marginal regressions of the response against each co-
variate separately. However, (6) is based on the joint effect
estimates of candidate covariates, which makes our method
differ from the marginal screening methods.

Based on Proposition 2.1 and (5), we propose an IGHT
algorithm to solve (3). To be specific, define D[l] as the esti-
mate obtained at the lth iteration. Let L be the maximum
iterative number. Our proposed IGHT algorithm is summa-
rized below.

Algorithm 1 IGHT algorithm

Step 1. Choose the initial value D[0] = 0;
Step 2. For each l ∈ {0, 1, . . . , L},

Step 2a. Choose an initial step size t[l];
Step 2b. Compute D[l+1] by replacing D̃ with[

D[l] + t−1L̃(D[l])
]
in (6);

Step 2c. Stop Step 2 while the following linear search
criterion is met:

L(D[l+1]) ≥ L(D[l]) +
σt[l]

2n
||D[l+1] −D[l]||2F ,(7)

where σ ∈ (0, 1). Otherwise, let t[l] ← 2t[l], and return to
Step 2b;
Step 3. Stop the algorithm if ||D[l+1] − D[l]||2F < ε||D[l]||2F ;
Otherwise, let l ← l + 1.

The estimate D̂ is obtained at the convergence. The
IGHT algorithm involves no heavy-duty operations such

as [�̈n{β(V )}]−1, and thus it is computationally efficient.
Step 2c is a backtracking method to find one value of t[l]

such that L(D) monotonically increases with steps. The de-
tails about the setups of tuning parameters can be found in
Section 4.2. Next, we turn to the convergence properties of
the IGHT algorithm. Assume that the function �n{β(·)} is
Lipschitz continuous:

‖�̇n{β̃(v)} − �̇n{β(v)}‖2 ≤ φ‖β̃(v)− β(v)‖2,

where φ > 0 is a constant free of v, which is satisfied if the
largest eigenvalue of �̈n{β(v)} is uniformly bounded in v.
The Lipschitz condition is used to guarantee the bounded-
ness of the step size t[l]. Let D∗ be the true value of D. The
convergence properties of the IGHT algorithm are given in
the following theorem.

Theorem 2.1. Let {D[l]} be the sequence generated by the
IGHT algorithm. If t[l] ≥ φ/(1− σ), then

(a) There exists a subsequence S such that {D[l] : l ∈ S} is
convergent;

(b) After L iterations, the sequence {D[l]} satisfies that

min
0≤l≤L

1

n
||D[l+1] −D[l]||2F ≤ t∗

L
{L(D∗)− L(D[0])},

where t∗ = 2(1 − σ)/(φσ), and L(D[l]) → L(D∗) as
l → ∞.

The proof of Theorem 2.1 can be found in the Appendix.
The part (a) describes the asymptotic convergence property
of the IGHT algorithm. The part (b) implies that for any
ε > 0, there exists L = O(1/ε) such that for some 1 ≤
l∗ ≤ L, n−1‖D[l∗+1] − D[l∗]‖2F ≤ ε. In other words, the
IGHT algorithm stops in a finite number of steps. Let s =
card(M∗), where card(A) is the cardinality of a set A. The
next theorem gives an upper bound for the estimation error
in each iteration.

Theorem 2.2. If s ≤ k and φ < t[l] < ρ/(1− 1/
√
32), then

‖D[l] −D∗‖F ≤ 2−l‖D[0] −D∗‖F +
√
8/φ ‖L̃(D∗)‖F ,

where ρ is defined in Condition (C4) of Section 3.

Theorem 2.2, combining with the part (a) of Theorem 2.1,
implies that there exists at least one subsequence such
that the difference between the limit point and D∗ can
be bounded by a scaled version of ‖L̃(D∗)‖F . Moreover,
if we take the initial value D[0] = 0, then after at most
l = log2(‖D∗‖F /‖L̃(D∗)‖F ) iterations, D[l] satisfies that
‖D[l]−D∗‖F ≤ (1+

√
8/φ)‖L̃(D∗)‖F . Thus, the estimation

error can also be controlled by a scaled version of ‖L̃(D∗)‖F
in a finite number of steps.
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3. SURE SCREENING PROPERTY

Let M̂ denote the submodel index set given by

M̂ =

{
1 ≤ j ≤ p :

1

n

n∑
i=1

β̂j(Vi)
2 �= 0

}
.

Define the collections of the under-fitted models and the
over-fitted models as

Mk
− = {M : M∗ �⊂ M, card(M) ≤ k}, and

Mk
+ = {M : M∗ ⊂ M, card(M) ≤ k},

respectively. The following conditions are imposed to estab-
lish the sure screening properties.

(C1) The kernel function K(·) is a symmetric density with
a compact support, and has bounded variation. In
addition,

∫
v2K(v)dv < ∞, and h = O(n−γ) with

1/6 < γ < 1/2.
(C2) The density function of V , denoted by fV (v), is twice

continuously differentiable and positively bounded
away from 0 on its support J . Moreover, β∗(v) is twice
continuously differentiable on J .

(C3) inft∈[0,τ ] infβ(v)∈C infv∈J s(0)(t;β(v), v) > 0, where

C ⊆ Rp is a convex and compact set, s(0)(t;β(v), v) =
fV (v)E{ST (t;Z, v)Z|V = v}, and ST (t;Z, V ) is the
survival function of T conditional on the covariates Z
and V .

Conditions (C1) and (C2) are mild conditions on the den-
sity function fV (·) and the kernel function K(·), which are
satisfied by most commonly used distributions and kernels.
These two conditions also imply that fV (v) and K(v) are
uniformly bounded on their supports. Condition (C3) is a
standard assumption in the context of survival analysis [12].
Let βM (v) be a subvector of β(v) associated with the compo-
nents in an arbitrary subset M of {1, . . . , p}. The following
conditions are required for the sure screening properties.

(C4) There exist ρ and δ > 0 such that for sufficiently
large n,

inf
v∈J

inf
βM (v)∈M(v)

λmin[−�̈n{βM (v)}] > ρ,

where M(v) = {βM (v) : ||βM (v) − β∗
M (v)||2 < δ}

with M ∈ M2k
+ , and λmin[A] denotes the minimum

eigenvalue of a matrix A.
(C5) There exist some positive constants m0, m1 and α

such that for sufficiently large η,

P{|Zj | ≥ η} ≤ m1 exp{−m0η
α} for j = 1, . . . , p.

Condition (C4) corresponds to the uniform uncertainty
principle given by [5], which is a relatively mild condition
used in the literature of high dimensional methods (e.g.,
[7, 33, 37]. Also note that Condition (C4) is dependent on

the sparse level k, and the 2k-restricted minimum eigen-
value can be much bigger than the minimum eigenvalue of
λmin[−�̈n{β(v)}]. Condition (C5) ensures the tails of covari-
ates to be exponentially light. This condition holds for a
variety of distributions, such as the normal distribution and
the distributions with bounded support.

Theorem 3.1. Suppose that Conditions (C1)–(C5) hold,
and there exist some positive constants ω1, ω2, κ1 and κ2

such that

inf
v∈J

min
j∈M∗

|β∗
j (v)| ≥ ω1n

−κ1 ,(8)

and s ≤ k < ω2n
κ2 . Then for some constants c1 and c2 > 0,

P
{
M∗ ⊆ M̂

}
≥ 1− c2n

2+κ2pk exp
{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

Remark 3.1. Condition (8) states that the minimum sig-
nal strength of relevant covariates is uniformly bounded
away from zero, but the lower bound may converge to
zero. Together with (C4), it confines an appropriate order
of k that guarantees the identifiability of M∗ over M for
card(M) = k. To establish the sure screening property, [40]
required the asymptotic stability and Lindeberg conditions,
which may be difficult to verify in the ultrahigh-dimensional
case. However, we do not impose these assumptions in The-
orem 3.1.

Remark 3.2. Theorem 3.1 states that the proposed screen-
ing procedure satisfies the sure screening property [13]. The
number of covariates is allowed to be

log(p) = o(n
(1−2γ−2κ1−κ2)α

α+2 −κ2)

for κ1 + (1 + 1/α)κ2 ∈ (0, 0.5 − γ). Accordingly, p grows
with the sample size n at an exponential rate. It is worth
noting that the probability bound is dependent on the or-
der of the bandwidth h. If h is selected in a reasonable
range and satisfies Condition (C1), the larger the band-
width is, the higher the dimensionality we can handle. It
can be seen that the number of covariates can be taken as
p = o(exp{n2(0.3−κ1−κ2)}) for κ1 + κ2 ∈ (0, 0.3) with the
optimal bandwidth h = O(n−1/5) and bounded covariates
(α = ∞). Thus, Theorem 3.1 generalizes the results of [14]
and [25] to the varying coefficient Cox model.

4. IMPLEMENT ISSUES

4.1 Selection of thresholding parameter

In practice, the thresholding parameter k plays a very
important role in the KNOVAS. A large k will lead to a
large number of false positives in the selected model, while
a small k may prevent sure screening. By the conditions of
Theorem 3.1, we know that k is the order of O(nκ2). One
can take k = [n4/5/ log(n4/5)] as suggested in [25], where
[x] denotes the integer part of x ≥ 0. This is a hard cutoff
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rule that retains a fixed number of variables in the selected
model. The best choice of k is the true model size s. It can
be seen from (6) that determining s is equivalent to esti-
mate d̃∗(s) or d̃

∗
(s+1). The latter can be regarded as the maxi-

mum signal among the irrelevance covariates in practice. In
what follows, we adopt the ideas of [2] and [44] to determine
d̃∗(s+1).

For the ith subject (i = 1, . . . , n), we first generate q-
dimensional auxiliary covariates Wi from a standard multi-
normal distribution, which are independent of the observed
data. We then carry out the KNOVAS procedure based on
the extended data {(Xi,Δi, Z

∗
i , Vi), i = 1, . . . , n}, where

Z∗
i = (ZT

i ,W
T
i )T are (p + q)-dimensional covariates. Since

the last q covariates are unrelated to the survival time T ,
β̂j(v) (p + 1 ≤ j ≤ p + q) obtained based on the extended
data are estimates of zero. Define

d∗ = max
p+1≤j≤p+d

1

n

n∑
i=1

β̂j(Vi)
2,

which can be viewed as the minimum thresholding level that
makes no false positives. By replacing d̃∗(k) with d∗ in (6),
we obtain

b̂j = d̃jI(d̃
∗
j > d∗), 1 ≤ j ≤ p.

Note that d∗ depends on the q auxiliary covariates. To sta-
bilize the model selection results, we repeat the above pro-
cedure N times, and obtain N submodels. Then we choose
a best fitting model from the N submodels by using some
information criteria such as AIC or BIC. In the simulation
studies below, we take q = p, N = 5, and use a BIC-type
information criterion to determine the final model. More
details about this information criterion can be found in Sec-
tion 5.2.

4.2 Parameter settings of IGHT algorithm

A good setup for the step size t can greatly reduce the cost
of the IGHT algorithm, and hence it is critical for the fast
convergence of the algorithm. By Theorem 2.1, we know that
only t is large enough that can guarantee L(D) to increase
after each iteration. However, our empirical studies suggest
that a larger value of t often leads to a slower convergence of
the IGHT algorithm. We choose an initial t[l] in Step 2a by
adopting the Barzilai-Borwein rule [3], which uses a diagonal
matrix tIp×p to approximate the Hessian matrix −�̈n{β(Vi)}
at β(Vi) = β̂[l](Vi). Specifically, we choose t at the (l+ 1)th
iteration of the IGHT algorithm as

t[l+1] = argmin
t

1

n

n∑
i=1

||tx[l]
i − y

[l]
i ||22 =

∑n
i=1(x

[l]
i )T y

[l]
i∑n

i=1(x
[l]
i )Tx

[l]
i

,

where x
[l]
i = β[l](Vi)−β[l−1](Vi), and y

[l]
i = −[�̇n{β[l](Vi)}−

�̇n{β[l−1](Vi)}]. In addition, we set σ = ε = 10−5, and L =
1000 in the simulation studies below.

Remark 4.1. As shown in Theorem 2.1, when the step size
t[l] ≥ φ/(1 − σ), the IGHT algorithm converges to the op-
timal solution, and the estimate D̂ is obtained at the con-
vergence. In our simulation studies and real data analysis,
the initial step size t[l] selected by the Barzilai-Borwein rule
works well, and the algorithm always converges to the opti-
mal solution.

5. NUMERICAL EXAMPLES

5.1 Monte Carlo simulation

We conduct simulation studies to illustrate the sure
screening property of the proposed procedure. For com-
parison, we also consider three alternative methods: FAST
[15], CR [28], and the spline-based method [40], denoted by
YZLH. For the three methods, we also use the data-driven
procedure presented in Section 4.1 to determine the thresh-
olding level. The total number of covariates is taken to be
p = 500 and 1000 for all examples. The censoring time fol-
lows an exponential distribution with mean μ, where μ is se-
lected to yield censoring rates of 26% and 42% for different
settings, respectively. The covariates (V ∗, ZT )T are gener-
ated from a multi-normal distribution with mean zero and
covariance Σ, where Σ = (σij)(p+1)×(p+1) and σij = ρ|i−j|.
The exposure variable is taken as V = Φ(V ∗), where Φ(·) is
the standard normal cumulative distribution function. Thus,
V follows a uniform distribution U(0, 1) and is related to Z.
The kernel function is chosen as K(x) = 0.75(1−x2)I(|x| ≤
1), and the bandwidth is determined by the thumb-rule with
h = �σ̂V n

−1/5, where � is a pre-specified constant and σ̂V

is the estimated standard error of V for each setting. We
take � = 2, which works well in the simulation studies. The
results presented below are based on 500 replications with
sample size n = 200.

We mainly consider the following criteria to assess the
performances of these methods: (1) the proportion of sub-
models M̂ that contain all important covariates, denoted
by pa; (2) the proportion of submodels M̂ that contain Zj ,
denoted by pj ; (3) the proportion of correct fitting, that is,

M̂ = M∗, denoted by CF; (4) the average number of true
positives (TP) and false positives (FP). A powerful screen-
ing procedure should guarantee that pa, pj and CF are close
to one, TP is close to the number of covariates with nonzero
coefficients, and FP is close to zero.

Example 1. The true model index sets are taken to be
M∗ = {10, 100, 200, 400, 500} and M∗ = {10, 100, 200, 800,
1000} for p = 500 and p = 1000, respectively. The correla-
tion parameter ρ is set to be 0.1, 0.5 and 0.9. Moreover, we
consider the following three cases for β(V ):

Case I. β10(v) = 1.5, β100(v) = 1, β200(v) = −1,

β800(v) = 1.2 and β1000(v) = −1.5.

Case II. β10(v) = (v − 2)2, β100(v) = −2I(v > 0.3),

β200(v) = 3 sin(2πv), β800(v) = 3v
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Table 1. The selection results for Case I of Example 1

Censoring rate of 26% Censoring rate of 42%
ρ Method p10 p100 p200 p800 p1000 pa TP FP CF p10 p100 p200 p800 p1000 pa TP FP CF

p = 500
0.1 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.84 0.16 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.91 0.20

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.61 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.66 0.10
FAST 1.00 0.92 0.93 0.92 1.00 0.79 4.76 0.91 0.38 0.99 0.91 0.90 0.91 0.99 0.74 4.71 1.01 0.31
CR 0.84 0.56 0.42 0.56 0.64 0.10 3.01 1.00 0.02 0.82 0.55 0.18 0.50 0.42 0.02 2.47 0.99 0.01

0.5 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.25 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.38 0.15
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.78 0.08 1.00 1.00 0.99 1.00 1.00 1.00 4.99 5.04 0.07
FAST 1.00 0.93 0.94 0.92 0.99 0.81 4.79 3.96 0.03 0.99 0.91 0.90 0.87 0.99 0.71 4.66 3.24 0.04
CR 0.84 0.55 0.39 0.55 0.64 0.08 2.96 1.96 0.01 0.79 0.55 0.22 0.52 0.40 0.04 2.48 1.73 0.00

0.9 KNOVAS 1.00 0.98 0.99 0.99 1.00 0.97 4.97 17.56 0.00 0.99 0.97 0.98 0.98 1.00 0.93 4.93 16.51 0.00
YZLH 1.00 0.81 0.76 0.93 0.99 0.56 4.49 24.40 0.00 0.99 0.76 0.70 0.92 0.99 0.50 4.36 23.20 0.00
FAST 1.00 0.88 0.90 0.88 0.99 0.69 4.65 30.38 0.00 0.98 0.87 0.89 0.87 0.98 0.66 4.60 29.51 0.00
CR 0.83 0.54 0.42 0.54 0.67 0.08 3.00 16.97 0.00 0.81 0.53 0.22 0.54 0.39 0.03 2.49 14.74 0.00

p = 1000
0.1 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.01 0.18 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.48 0.19

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.77 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.85 0.09
FAST 1.00 0.88 0.92 0.89 0.99 0.72 4.68 1.05 0.32 0.99 0.87 0.87 0.87 0.98 0.65 4.58 0.95 0.28
CR 0.83 0.50 0.35 0.50 0.61 0.05 2.79 1.02 0.01 0.75 0.45 0.16 0.49 0.34 0.01 2.19 0.90 0.00

0.5 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.71 0.17 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.74 0.17
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.78 0.09 1.00 0.99 1.00 1.00 1.00 0.99 4.99 5.04 0.07
FAST 0.99 0.91 0.89 0.89 0.99 0.71 4.67 3.14 0.04 0.99 0.88 0.86 0.88 0.99 0.66 4.60 2.95 0.06
CR 0.78 0.52 0.37 0.49 0.60 0.05 2.76 1.82 0.01 0.77 0.49 0.17 0.46 0.35 0.01 2.24 1.68 0.00

0.9 KNOVAS 1.00 0.99 1.00 0.99 1.00 0.98 4.98 16.81 0.00 1.00 0.98 0.99 0.98 1.00 0.95 4.95 15.96 0.00
YZLH 0.99 0.79 0.77 0.93 0.99 0.57 4.47 23.60 0.00 0.99 0.75 0.71 0.92 0.99 0.51 4.36 22.00 0.00
FAST 0.99 0.85 0.89 0.87 0.98 0.64 4.59 28.75 0.00 0.98 0.86 0.86 0.84 0.99 0.61 4.53 27.77 0.00
CR 0.77 0.49 0.35 0.49 0.61 0.04 2.71 14.24 0.00 0.78 0.46 0.21 0.44 0.42 0.02 2.31 11.89 0.00

and β1000(v) = exp(v).

Case III. β10(v) = 2v + 1, β100(v) = 3 sin(2πv),

β200(v) = 2, β800(v) = exp(v)

and β1000(v) = 2.

In Case I, all the nonzero coefficient functions are con-
stants, and in Case II, the nonzero coefficient functions are
truly varying over v. Case III is a more complicated exam-
ple, which allows some covariates to have varying effects,
but others not.

The simulation results are reported in Tables 1–3. We
find that the proposed KNOVAS procedure performs well
for all the situations considered here. Specifically, the pro-
portions of pj and pa are close to one, and the values of TP
are close to 5. Note that for Case II, the challenge is to iden-
tify the important covariate Z200, since β200(V ) has mean
0 when V is from a uniform distribution U(0, 1). Table 2
indicates that the KNOVAS successfully identifies the co-
variate Z200, and the values of TP are close to 5. These
findings suggest that the KNOVAS with the data-driven
thresholding method ensures the sure screening property,
and can also handle the case where the coefficient functions
are constants. We also observe that the KNOVAS performs
stable in terms of pa as ρ increases. This implies that our
method can successfully identify the important covariates

even when the covariates are highly correlated. In addi-
tion, the simulation results show that the proposed method
still performs reasonably well for different p’s and censoring
rates.

Furthermore, compared with the YZLH’s method, it can
be seen from Tables 1–3 that when ρ = 0.1 and 0.5, the
KNOVAS and YZLH’s methods provide comparable results
in terms of pa, pj and TP, but our method yields smaller
values for FP. When ρ = 0.9, our method outperforms the
YZLH’s method in all the settings considered here. For ex-
ample, under Case I with p = 500 and the censoring rate of
26%, the values of pa are ranged from 0.50 to 0.57 for the
YZLH’s method, while the values are from 0.93 to 0.98 for
the KNOVAS.

For the FAST and CR methods, as shown in Table 2
for Case II, the proportions of p200 and pa are close to 0.
Thus, the two methods fail to identify the covariate Z200.
This is because E{β200(V )} = 0 for V following a uni-
form distribution U(0, 1). When we treat β200(V ) as a con-
stant and apply the FAST and CR methods, Z200 is re-
garded as a false covariate, and thus is ranked behind. For
Case III, similar results can be found for the covariate Z100.
In addition, in terms of pj and pa, our method has bet-
ter overall performance compared to the marginal screen-
ing methods considered here, even though the coefficient

202 L. Q. Qu and L. Q. Sun



Table 2. The selection results for Case II of Example 1

Censoring rate of 26% Censoring rate of 42%
ρ Method p10 p100 p200 p800 p1000 pa TP FP CF p10 p100 p200 p800 p1000 pa TP FP CF

p = 500
0.1 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.31 0.17 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.31 0.16

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.67 0.11 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.77 0.12
FAST 1.00 0.72 0.00 0.79 0.94 0.00 3.45 1.13 0.00 1.00 0.65 0.00 0.73 0.90 0.00 3.28 0.95 0.00
CR 0.94 0.16 0.00 0.43 0.61 0.00 2.13 0.95 0.00 0.91 0.05 0.01 0.41 0.57 0.00 1.96 0.96 0.00

0.5 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.69 0.14 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.45 0.13
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.17 0.07 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.39 0.05
FAST 1.00 0.72 0.01 0.79 0.91 0.01 3.43 2.86 0.00 1.00 0.69 0.00 0.75 0.89 0.00 3.33 2.66 0.00
CR 0.93 0.17 0.01 0.42 0.58 0.00 2.11 1.81 0.00 0.93 0.04 0.00 0.42 0.58 0.00 1.97 1.58 0.00

0.9 KNOVAS 1.00 0.99 0.99 0.99 1.00 0.97 4.97 17.51 0.00 1.00 0.97 0.99 0.97 0.99 0.94 4.94 17.17 0.00
YZLH 1.00 0.82 0.98 0.87 0.85 0.57 4.52 25.40 0.00 1.00 0.81 0.98 0.85 0.87 0.60 4.51 24.80 0.00
FAST 1.00 0.74 0.00 0.79 0.91 0.00 3.44 25.06 0.00 1.00 0.67 0.00 0.76 0.86 0.00 3.30 23.99 0.00
CR 0.95 0.15 0.00 0.46 0.60 0.00 2.17 14.38 0.00 0.94 0.06 0.00 0.42 0.56 0.00 1.98 13.19 0.00

p = 1000
0.1 KNOVA 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.24 0.15 1.00 1.00 1.00 0.99 1.00 0.99 4.99 3.32 0.19

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.68 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.16 0.11
FAST 1.00 0.64 0.01 0.76 0.88 0.01 3.29 1.05 0.00 1.00 0.63 0.00 0.71 0.88 0.00 3.22 1.01 0.00
CR 0.93 0.13 0.00 0.40 0.56 0.00 2.02 1.12 0.00 0.92 0.03 0.00 0.36 0.54 0.00 1.86 0.91 0.00

0.5 KNOVA 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.04 0.12 1.00 1.00 1.00 1.00 1.00 1.00 4.99 3.73 0.16
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.25 0.11 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.27 0.11
FAST 1.00 0.64 0.00 0.76 0.89 0.00 3.29 2.34 0.00 1.00 0.63 0.00 0.68 0.87 0.00 3.18 2.52 0.00
CR 0.91 0.14 0.00 0.36 0.54 0.00 1.95 1.52 0.00 0.90 0.06 0.00 0.33 0.52 0.00 1.81 1.55 0.00

0.9 KNOVA 1.00 0.98 1.00 0.97 1.00 0.95 4.95 17.13 0.00 1.00 0.96 0.99 0.98 0.99 0.91 4.91 15.90 0.00
YZLH 1.00 0.85 0.98 0.83 0.90 0.60 4.56 24.70 0.00 1.00 0.83 0.97 0.83 0.85 0.58 4.48 24.30 0.00
FAST 1.00 0.64 0.00 0.71 0.90 0.00 3.25 21.73 0.00 1.00 0.58 0.00 0.70 0.88 0.00 3.16 21.77 0.00
CR 0.94 0.13 0.01 0.36 0.53 0.00 1.97 11.39 0.00 0.90 0.04 0.00 0.38 0.46 0.00 1.77 10.85 0.00

functions are indeed constants. This is not surprising be-
cause the KNOVAS employs the joint effects of candidate
covariates in the screening procedure, and has a good po-
tential to outperform the marginal screening methods. It is
also worth pointing out that all methods tend to be con-
servative in model selection, since all of them have high
false positives, especially when ρ = 0.9. The main reason
is that some irrelevant covariates will be included in the
selected model due to their strong association with the rel-
evant ones.

5.2 Variable selection stage

As pointed out in Section 5.1, there are still many ir-
relevant covariates retained in M̂ . Thus, a penalized pro-
cedure is needed to further recover the final sparse model.
For this, let β∗(Vi) be the subvector of β(Vi) defined by
β∗(Vi) = {βj(Vi), j ∈ M̂} for each 1 ≤ i ≤ n. Further define
D∗ = (β∗(V1), . . . , β∗(Vn)) = (d1∗, . . . , dk∗)

T ∈ Rk×n. Then
we can obtain an estimator of D∗ by

D̂∗(λ) = arg min
D∗∈Rk×n

{
−L(D∗) + λ

∑
j∈M̂

wj ||dj∗||2

}
,(9)

where λ is a tuning parameter, and wj are data-driven
weights. We can solve the minimization problem (9) via the

local quadratic approximation [11], and choose the tuning
parameter λ by minimizing an extended Bayesian informa-
tion criterion (EBIC):

EBIC(λ) = −L{D̂∗(λ)}+ dfλ
log(nh)

nh
Cn,

where dfλ is the number of nonzero coefficients, Cn is a pos-
itive constant that diverges to infinity as the sample size
n increases. Here we use nh but not n because in the ker-
nel regression setting, the effective sample size is nh rather
than n. The EBIC has been studied for the linear regres-
sion and quantile regression models [6, 22, 34]. As suggested
in [22], we use Cn = log(p)/3 in the following simulation
study.

Example 2. We consider a more challenging model, where
the true model index set is taken to be M∗ = {1, 2, 3, 4, 5, 6}
for p = 500 and 1000. The covariates (V ∗, ZT )T are gener-
ated from a multi-normal distribution with mean zero and
covariance Σ, where Σ = (σij)(p+1)×(p+1) with σij = 0.4|i−j|

for i, j �= 7, σ7j = σj7 = 0 for j �= 7, and σ77 = 1. The ex-
posure variable V is generated as V = Φ(V ∗). The nonzero
coefficient functions are given by

β1(v) = 2 + cos{π(6v − 5)/3}, β2(v) = 3− 3v,

β3(v) = −2 + 0.25(2− 3v)3, β4(v) = sin(9v2/2) + 1,

Variable screening method for Cox model 203



Table 3. The selection results for Case III of Example 1

Censoring rate of 26% Censoring rate of 42%
ρ Method p10 p100 p200 p800 p1000 pa TP FP CF p10 p100 p200 p800 p1000 pa TP FP CF

p = 500
0.1 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.79 0.15 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.14 0.15

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.53 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.29 0.13
FAST 0.99 0.01 0.98 0.91 0.97 0.01 3.86 0.87 0.00 0.97 0.01 0.99 0.87 0.99 0.01 3.82 1.02 0.00
CR 0.78 0.00 0.82 0.63 0.81 0.00 3.04 1.02 0.00 0.75 0.01 0.78 0.53 0.77 0.00 2.83 0.99 0.00

0.5 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.58 0.14 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.68 0.15
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.87 0.08 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.24 0.08
FAST 0.99 0.00 0.99 0.91 0.98 0.00 3.86 3.28 0.00 0.98 0.00 0.98 0.89 0.99 0.00 3.84 2.95 0.00
CR 0.76 0.00 0.81 0.59 0.83 0.00 2.99 2.07 0.00 0.73 0.00 0.79 0.60 0.77 0.00 2.89 1.81 0.00

0.9 KNOVAS 1.00 1.00 1.00 0.99 1.00 0.99 4.98 17.98 0.00 1.00 1.00 1.00 0.99 1.00 0.98 4.98 18.18 0.00
YZLH 0.97 0.97 0.98 0.86 0.96 0.76 4.74 24.50 0.00 0.97 0.97 0.95 0.82 0.95 0.67 4.66 24.00 0.00
FAST 0.98 0.00 0.99 0.90 1.00 0.00 3.87 28.46 0.00 0.98 0.00 0.98 0.87 0.97 0.00 3.80 27.20 0.00
CR 0.81 0.00 0.77 0.60 0.81 0.00 2.99 17.55 0.00 0.77 0.00 0.73 0.55 0.76 0.00 2.81 16.12 0.00

p = 1000
0.1 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.12 0.16 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.23 0.20

YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.71 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.95 0.09
FAST 0.97 0.00 0.99 0.89 0.98 0.00 3.82 1.09 0.00 0.97 0.00 0.97 0.84 0.98 0.00 3.75 0.91 0.00
CR 0.74 0.00 0.75 0.52 0.76 0.00 2.77 0.98 0.00 0.71 0.00 0.75 0.50 0.71 0.00 2.67 0.87 0.00

0.5 KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.07 0.12 1.00 1.00 1.00 1.00 1.00 1.00 5.00 3.83 0.15
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 5.00 4.83 0.07 1.00 1.00 1.00 1.00 1.00 1.00 5.00 5.30 0.10
FAST 0.98 0.00 0.98 0.88 0.98 0.00 3.82 2.68 0.00 0.96 0.00 0.96 0.87 0.97 0.00 3.77 2.53 0.00
CR 0.72 0.00 0.72 0.51 0.75 0.00 2.71 1.68 0.00 0.67 0.00 0.72 0.49 0.72 0.00 2.60 1.74 0.00

0.9 KNOVAS 0.99 0.99 1.00 0.99 1.00 0.98 4.98 17.41 0.00 0.99 1.00 0.99 0.98 1.00 0.96 4.96 16.59 0.00
YZLH 0.97 0.99 0.99 0.87 0.98 0.81 4.80 24.00 0.00 0.95 0.97 0.97 0.85 0.97 0.73 4.71 23.40 0.00
FAST 0.97 0.00 0.98 0.84 0.99 0.00 3.78 26.06 0.00 0.95 0.00 0.98 0.83 0.95 0.00 3.71 25.16 0.00
CR 0.72 0.00 0.73 0.51 0.74 0.00 2.70 13.97 0.00 0.70 0.00 0.72 0.51 0.73 0.00 2.65 14.58 0.00

β5(v) = exp{3v2/(3v2 + 1)} and β6(v) = 1.

This setup is also considered in [25] with β6(v) ≡ 0. Note
that the covariate Z3 is marginally unrelated to T but is an
important covariate. In addition, the signal strength of the
covariate Z6 is relatively weak compared to others, and its
marginal signal strength is not enhanced by the correlations
between covariates. The other setups are the same as in
Section 5.1. The simulation results are reported in Table 4,
in which the row labeled KNOVAS∗ refers to the KNOVAS
method with the penalized stage. The results suggest that
the KNOVAS∗ can significantly reduce the false positives
after the screening procedure, and further recover the final
sparse model. For example, when p = 1000 and the censoring
rate is 42%, the FP of the KNOVAS∗ (= 0.47) is smaller
than that of the KNOVAS (= 3.81), and the CF increases
from 0.16 (KNOVAS) to 0.64 (KNOVAS∗).

5.3 Ovarian cancer data

For illustration purposes, we apply the KNOVAS method
to an ovarian cancer dataset. This dataset is from the Can-
cer Genome Atlas [30], which includes 486 patients and
11864 probe sets. The response of interest is the time to
progression, and our analysis is restricted to 388 patients
with observed responses. The follow-up time is τ = 110.75
(in months), and 191 patients are censored. We take the

patient’s age as the exposure variable V , which is ranged
from 30 to 87 years at diagnosis. The gene expression
values are taken as the covariates. The bandwidth is se-
lected as h = 2σ̂V n

−1/5, where σ̂V is the estimated stan-
dard error of V . The covariates are normalized to have
mean zero and variance one. The raw data are available
at the TCGA website (https://tcga-data.nci.nih.gov/docs/
publications/ov 2011/).

Using the KNOVAS with the data-driven thresholding
method, we find five genes, named as CD79A, MUC13,
PLA2G2D, PUF60 and TBX2, with strong effects on the
progression-free survival time. Figure 1 depicts the esti-
mated coefficient functions of the selected 5 genes. This
means that their effects are nonlinear, and vary with the
age. For example, the effects of PLA2G2D and PUF60
show a similar parabola shape: a negative impact on the
progression-free survival time; TBX2 has a decreasing pat-
tern, changing from positive to negative values as the age
increases.

6. CONCLUSION

For the sparse varying coefficient Cox model, we intro-
duced a non-marginal variable screening method that com-
bines the kernel smoothing and group learning methods.
An IGHT algorithm was developed for fast implementation
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Table 4. The selection results for Example 2

Censoring rate of 26% Censoring rate of 42%
Method p1 p2 p3 p4 p5 p6 pa TP FP CF p1 p2 p3 p4 p5 p6 pa TP FP CF

p = 500
KNOVAS∗ 1.00 1.00 1.00 1.00 1.00 0.99 0.99 5.99 0.31 0.72 1.00 1.00 1.00 1.00 1.00 0.99 0.99 5.98 0.44 0.67
KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 3.39 0.19 1.00 1.00 1.00 1.00 1.00 0.99 0.99 5.99 3.42 0.19
YZLH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 5.28 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 5.81 0.06
FAST 1.00 1.00 0.00 0.93 0.99 0.00 0.00 4.31 0.98 0.00 1.00 1.00 0.00 0.93 0.99 0.41 0.00 4.33 1.12 0.00
CR 0.99 0.87 0.00 0.69 0.84 0.19 0.00 3.58 0.89 0.00 0.96 0.83 0.00 0.61 0.79 0.21 0.00 3.41 1.00 0.00

p = 1000
KNOVAS∗ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 0.42 0.65 0.99 0.99 0.99 0.98 0.99 0.96 0.96 5.92 0.47 0.64
KNOVAS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6.00 3.37 0.17 1.00 1.00 1.00 0.99 1.00 0.99 0.98 5.97 3.81 0.16
YZLH 1.00 1.00 0.99 0.99 1.00 0.99 0.98 5.97 5.06 0.07 1.00 1.00 0.99 0.99 1.00 0.99 0.98 5.96 5.06 0.07
FAST 1.00 1.00 0.00 0.94 1.00 0.35 0.00 4.29 0.94 0.00 1.00 1.00 0.00 0.92 0.99 0.00 0.34 4.24 1.09 0.00
CR 0.97 0.81 0.00 0.63 0.83 0.14 0.00 3.37 1.07 0.00 0.97 0.81 0.00 0.63 0.81 0.00 0.12 3.35 1.01 0.00

of the proposed method. We established the convergence
properties of the IGHT algorithm, and the sure screening
properties of the variable screening procedure. The simula-
tion studies showed that the proposed method performed
well in the following cases: (i) the covariates are ultrahigh-
dimensional and highly correlated; (ii) the covariate effects
vary with an exposure variable; and (iii) the covariates are
marginally unrelated but jointly related to the response.

For computationally feasibility, we used the thumb-rule
to determine the bandwidth. Further research is needed to
develop some data-based methods for the selection of the
bandwidth. In addition, it would be interested to generalize
the proposed method to other regression models, such as
proportional odds models with varying coefficients, varying
coefficient transformation models and nonparametric pro-
portional hazards models [8].

APPENDIX A. PROOFS

Proof of Proposition 2.1. Let B be an optimal solution and
M = {j : ||bj ||2 �= 0}. Then the objective function can be
rewritten as

||B − D̃||2F =
∑
j∈M

||bj − d̃j ||22 +
∑
j /∈M

||d̃j ||22.

By taking bj = d̃j for j ∈ M , we have ||B − D̃||2F =∑
j /∈M ||d̃j ||22. Thus, the objective function achieves the min-

imum if and only if M corresponds to the indices of the
largest k values of d̃∗j .

Proof of Theorem 2.1(a). We first show the convergence of
{L(D[l])}. Note that the linear criteria (7) ensures that the
value of L(D[l]) is monotonically increasing after each itera-
tion. Thus, it suffices to show that (7) holds because of the
boundedness of L(D). By the Lipschitz continuous condition
of �n{β(·)}, we have that for any t ≥ φ,

L(B) ≥ L(D)+
1

n
tr{(B −D)T L̃(D)} − t

2n
‖B −D‖2F .

(10)

By the definitions of Qt(B|D) and D[l+1], we have

L(D[l]) =Qt[l](D
[l]|D[l]) ≤ Qt[l](D

[l+1]|D[l])

(11)

=L(D[l]) +
1

n
tr{(D[l+1] −D[l])T L̃(D[l])}

− t[l]

2n
‖D[l+1] −D[l]‖2F

=L(D[l]) +
1

n
tr{(D[l+1] −D[l])T L̃(D[l])}

− t[l]

2n
‖D[l+1] −D[l]‖2F − t[l] − φ

2n
‖D[l+1] −D[l]‖2F

=Qφ(D
[l+1]|D[l])− t[l] − φ

2n
‖D[l+1] −D[l]‖2F .

Then it follows from (10) and (11) that

L(D[l]) ≤ L(D[l+1])− t[l] − φ

2n
‖D[l+1] −D[l]‖2F .(12)

Hence the monotone line search criterion (7) is satisfied
whenever t[l] ≥ φ/(1− σ). (12), together with the bounded-
ness of L(D), implies that {L(D[l])} has at least one limiting
point in the feasible region.

Next, we show that there exists a subsequence such that
D[l] is convergent. When t[l] → ∞ as l goes to infinity,
the result is trivial. In what follows, we assume that {t[l]}
is bounded. Thus, there exists a subsequence S such that
t[l] → t̃ for l ∈ S. For each t[l] ∈ S, let M[l] = {j :

n−1
∑n

i=1 β
[l]
j (Vi) �= 0}. By (12) and the fact that L(D[l])

is convergent, we know that ‖D[l+1] −D[l]‖2F → 0 as l ∈ S
goes to infinity, which implies that M[l] is also convergent.
Since M[l] is a discrete sequence, there exists an l∗ ∈ S such
that M[l] = M[l∗] for all l ∈ S and l ≥ l∗. Thus, the IGHT
algorithm is a gradient descent algorithm on the space M[l]

for all l ∈ S and l ≥ l∗. Since a gradient descent algorithm
for minimizing a convex function over a closed convex set
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Figure 1. Estimated varying coefficients of the selected 5 genes. The solid lines are the estimated curves, and the dashed lines
are the 95% pointwise confidence intervals.

yields a sequence of iterations that converges [26], we con-
clude that the subsequence {D[l] : l ∈ S} is convergent, and
the proof is completed.

Proof of Theorem 2.1(b). It follows from (12) and t[l] ≥
φ/(1− σ) that

L∑
l=0

{L(D[l])− L(D[l+1])} ≤ σφ

2(σ − 1)n

L∑
l=0

‖D[l+1] −D[l]‖2F ,

which implies that

min
0≤l≤L

1

n
‖D[l+1] −D[l]‖2F ≤ 2(1− σ)

σφL
{L(D[L+1])− L(D[0])}.

Let t∗ = 2(1−σ)/(σφ). In view of Theorem 2.1(a), we obtain
that the nondecreasing sequence L(D[l]) has at least one
limiting point, denoted by L(D∗). Thus, we get

min
0≤l≤L

1

n
‖D[l+1] −D[l]‖2F ≤ t∗

L
{L(D[L+1])− L(D[0])}

≤ t∗

L
{L(D∗)− L(D[0])}.

This completes the proof of Theorem 2.1(b).

Proof of Theorem 2.2. It can be checked that

‖D[l+1] −D∗‖F ≤ 2‖D[l] −D∗ + (t[l])−1L̃(D[l])‖F .

Then by the Taylor’s expansion, we have

‖D[l] −D∗ − (t[l])−1L̃(D[l])‖F

=
[ n∑

i=1

‖β[l](Vi)− β∗(Vi) +
1

t[l]
�̇n{β∗(Vi)}

+
1

t[l]
�̈n{β̃(Vi)}{β[l](Vi)− β∗(Vi)}‖22

]1/2
≤
√
2
[ n∑

i=1

{
‖[I + 1

t[l]
�̈n{β̃(Vi)}]{β[l](Vi)− β∗(Vi)}‖22

+
1

t[l]
‖�̇n{β∗(Vi)}‖22

}]1/2
≤
√
2
[ n∑

i=1

‖[I + 1

t[l]
�̈n{β̃(Vi)}]{β[l](Vi)− β∗(Vi)}‖22

]1/2

+

√
2

t[l]

[ n∑
i=1

‖�̇n{β∗(Vi)}‖22
]1/2

,

where β̃(Vi) lies between β[l](Vi) and β∗(Vi). Thus, by Con-
dition (C4) with φ < t[l] < ρ/(1− 1/

√
32), we obtain

‖D[l+1] −D∗‖F ≤ 2−1‖D[l] −D∗‖F +

√
2

φ
‖L̃(D∗)‖F .

By iterating this relationship, we get

‖D[l] −D∗‖F ≤ 2−l‖D[0] −D∗‖F +

√
8

φ
‖L̃(D∗)‖F .

This completes the proof of Theorem 2.2.

To show Theorem 3.1, we need the following lemma,
which gives a concentration inequality of the objective func-
tion �̇nj{β(v)} for 1 ≤ j ≤ p. Let �̇nj(β(v), v) = �̇nj{β(v)}.
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Lemma A.1. Under Conditions (C1)–(C3), there exist pos-
itive constants k0, k1 and k2 independent of n such that for
a large η > 0 and 1 ≤ j ≤ p,

sup
β(v)∈C

sup
v∈J

P
{∣∣�̇nj(β(v), v)∣∣ > k0(nh

2)−1/2(1 + x)
}

≤k1 exp{−k1x
2/(2η2)}+ k2 exp{−k2nh

2/(2η2)}
+ nP{|Zij | > η}.

The proof of Lemma A.1 is tedious, and the de-
tails can be found in the online Supplemental Ma-
terial, http://intlpress.com/site/pub/files/ supp/sii/2021/
0014/0002/SII-2021-0014-0002-s002.pdf.

Proof of Theorem 3.1. It suffices to show that

P
{

max
M∈Mk

−

L(DM ) ≥ min
M∈Mk

+

L(DM )
}

≤c2n
2+κ2pk exp

{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

For any M ∈ Mk
−, let M ′ = M ∪ M∗ ∈ M2k

+ . Consider
DM close to D∗

M such that ‖βM ′(Vi)−β∗
M ′(Vi)‖2 = ω1n

−κ1

for some ω1, κ1 > 0. It follows from Condition (C4) and the
Taylor’s expansion that

L(DM )− L(D∗
M )

=
1

n

n∑
i=1

{
�n(βi,M ′)− �n(β

∗
i,M ′)

}

=
1

n

n∑
i=1

{
�̇n(β

∗
i,M ′)T (βi,M ′ − β∗

i,M ′)

+
1

2
(βi,M ′ − β∗

i,M ′)T �̈n(β̃i,M ′)(βi,M ′ − β∗
i,M ′)

}

≤ 1

n

n∑
i=1

{
||�̇n(β∗

i,M ′)||2||βi,M ′ − β∗
i,M ′ ||2

− ρ

2
||βi,M ′ − β∗

i,M ′ ||22
}

≤ 1

n

n∑
i=1

{
ω1n

−κ1 ||�̇n(β∗
i,M ′)||2 −

ρ

2
ω2
1n

−2κ1

}
,

where β̃i,M ′ is an intermediate value between βi,M ′ and
β∗
i,M ′ . Thus, we obtain

P{L(DM )− L(D∗
M ) ≥ 0}(13)

≤P
{ 1

n

n∑
i=1

||�̇n(β∗
i,M ′)||2 ≥ (

ρω1

2
)n−κ1

}

≤
n∑

i=1

∑
j∈M ′

P
{
|�̇nj(β∗

i,M ′)| ≥ ρω1

2
(2k)−1/2n−κ1

}
.

Also note that

P
{
|�̇nj(β∗

i,M ′)| ≥ ρω1

2
(2k)−1/2n−κ1

}

≤P
{
|�̇nj(β∗

i,M ′)| ≥ ρω1

2
√
2ω2

n−κ1−0.5κ2 , max
1≤i≤n

|Zij | ≤ η
}

+ P
{

max
1≤i≤n

|Zij | > η
}
.

By Lemma A.1, Condition (C5) and taking η =
n(1−2γ−2κ1−κ2)/(α+2), there exist c0 and c1 > 0 such that

P
{
|�̇nj(β∗

i,M ′)| ≥ (
ρω1

2
)(2k)−1/2n−κ1

}
(14)

≤c0n exp
{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

The inequalities (13) and (14) imply that

P{L(DM ) ≥ L(D∗
M )} ≤ c0n

2k exp
{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

Therefore, the Bonferroni inequality yields that there is a
constant c2 > 0 such that

P
{

max
M ′∈Mk

−

L(DM ′) ≥ L(D∗)
}

≤c2n
2+κ2pk exp

{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

By Condition (C4), we know that �̈(βM ′(v)) is positive defi-
nite for each v ∈ J . This implies that the above result holds
for any βM ′(v) such that ‖βM ′(v) − β∗

M ′(v)‖2 ≥ ω1n
−κ1 .

For any M ∈ Mk
−, let β̃M ′(v) be βM (v) augmented with

zeros corresponding to the elements in M ′/M∗. Since M ′ =
{M ∪ (M∗/M)}∪{M ′/M∗}, it follows from Condition (C4)
that ‖β̃M ′(v)− β∗

M ′(v)‖2 ≥ ‖βM ′/M∗(v)‖2 ≥ ω1n
−κ1 . Thus,

we have

P
{

max
M ′∈Mk

−

L(DM ) ≥ min
M ′∈Mk

+

L(DM )
}

≤P
{

max
M ′∈Mk

−

L(D̃M ) ≥ L(D∗
M )

}

≤c2n
2+κ2pk exp

{
−c1n

(1−2γ−2κ1−κ2)α
α+2

}
.

The proof is completed.
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