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Grouped variable selection with prior information
via the prior group bridge method

Kai Li, Meng Mei, and Yuan Jiang
∗,†

In a multiple regression with grouped predictors, it is
usually desired to select important groups as well as to se-
lect important variables within a group simultaneously. To
achieve this so-called “bi-level selection,” group bridge has
been developed as a combination of group-level bridge and
variable-level lasso penalties. However, in many scientific
areas, prior knowledge is available about the importance
of certain groups of predictors, leading to the necessity of
methodological development to incorporate such valuable
information. For a prior-informative group, we propose a
new penalty called “group ridge” as a combination of group-
level ridge and variable-level lasso penalties, which always
preserves this group while selects important variables in it.
Then, we propose a composite group penalization named
“prior group bridge” by applying group ridge and group
bridge to prior-informative groups and groups with no prior
information, respectively. We prove that prior group bridge
achieves estimation and group selection consistencies given
that the prior information is correct. In addition, we demon-
strate the empirical advantage of prior group bridge over
group bridge in terms of estimation, group and variable se-
lection, and prediction through simulation studies. Finally,
we apply prior group bridge to a genetic association study
of bipolar disorder to illustrate its applicability and efficacy
in real applications.

Keywords and phrases: Composite penalization, Group
ridge, Selection consistency, Solution path.

1. INTRODUCTION

In many scientific problems, explanatory variables are
naturally grouped. For example, in analysis of variance prob-
lems, a factor may have several levels and can be expressed
through a group of dummy variables; in genetic associa-
tion studies, single nucleotide polymorphisms (SNPs) are
grouped in a gene and genes are grouped in a gene path-
way. In these problems, it is often desired to select impor-
tant individual variables and/or groups. Multiple statistical
approaches have been proposed for this purpose, including
group lasso [27, 15], group bridge [10], group SCAD, group
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MCP, cMCP [9], sparse-group lasso [20], the Composite Ab-
solute Penalties (CAP) family [29], group exponential lasso
[3], adaptive group lasso [24, 28, 25], doubly sparse penalty
[13], group SLOPE [4], etc. We refer to Huang, Breheny and
Ma [9] for a review of grouped variable selection methods.

The above-mentioned methods can be categorized into
two types: those that only carry out group-level selection
and those that carry out bi-level selection, i.e., selection
at both group and individual levels. Group-level selection
methods only select important groups; within a group, the
coefficients of individual variables are forced to be either all
zero or all nonzero. By contrast, bi-level selection methods
can select important groups as well as useful variables within
those groups. Among the above-mentioned methods, group
lasso, group MCP, group SCAD, adaptive group lasso, and
group SLOPE are all group-level selection methods, while
group bridge, cMCP, sparse-group lasso, group exponential
lasso, and doubly sparse penalty are bi-level selection meth-
ods. The CAP family in Zhao et al. [29] includes group lasso
and group bridge as its special cases and is more general
than the other methods.

In practice, prior knowledge is sometimes available about
the importance of a certain group of predictors but not in-
dividual ones. For example, school district as a factor is
well known to be associated with house price. However, one
might still be interested in telling whether the house prices
in two particular school districts have a significant differ-
ence or not. In this case, the prior knowledge is about the
importance of the school district as a whole factor but not
necessarily all its levels (compared to the baseline). Another
example arises in genetic association studies. When an asso-
ciation study is conducted to identify genetic signals at the
SNP level, a risk gene may have been discovered by prior
studies. In this case, the prior knowledge is about the im-
portance of a gene, i.e., a group of SNPs, instead of all the
SNPs in this gene. In both examples, the prior knowledge
can be represented as a prior-informative group of predic-
tors, such as the factor of all school districts or the SNPs in
the risk gene, for the new studies.

Another reason for the necessity of incorporating the
prior knowledge is the difficulty detecting signals from the
massive data collected by current research. For example, in
a typical genetic association study, hundreds of thousands
of SNPs are genotyped, and yet their individual effect sizes
are usually very small. It is very unlikely to detect all impor-
tant genetic factors with a desired statistical significance in
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a single study; therefore, top findings from various studies
do not usually show obvious overlaps [14]. This is referred to
as the notorious “lack of reproducibility” problem. There-
fore, it is imperative for us to borrow information from other
studies, such as the known risk SNPs or genes, in order to
improve reproducibility in genetic findings. Jiang, He and
Zhang [11] proposed a method called “prior lasso” to incor-
porate prior-informative variables into a variable selection
problem. However, to the best of our knowledge, no method
is available yet to incorporate prior-informative groups into
a (grouped) variable selection problem. This motivates us
to develop such a method.

For a prior-informative group, one expects it to be also
important in a new study. However, we would also like to se-
lect important variables instead of including all variables in
it. In the house price example, it is totally possible that the
house prices in two particular school districts do not differ
significantly; in the genetic association study, it is usually
the case that only a small number of SNPs in a risk gene are
associated with the disease. In other words, not only do we
want to preserve a prior-informative group, but we would
also like to select individual variables within the group. It
is noteworthy that none of the above-mentioned grouped
variable selection methods can achieve this goal. Applying
either group-level or bi-level selection methods, one may still
lose the whole prior-informative group because none of these
methods guarantee to retain a group in the model.

To fulfill our purpose, we propose a new penalty named
“group ridge” which can preserve a group while performing
variable selection within it. We show that at least one of
the coefficients of the variables within a group is nonzero
under this new penalty. In addition, we apply group ridge
and group bridge to prior-informative groups and other
groups without any prior information, respectively, lead-
ing to a novel composite group penalization named “prior
group bridge.” Compared to other grouped variable selec-
tion methods, prior group bridge treats prior-informative
groups differently from the other groups. If correct prior
information is incorporated, prior group bridge takes the
advantage and outperforms the other methods.

The rest of the paper is organized as follows. In Section 2,
we will introduce group ridge and investigate its theoretical
properties with comparison to other penalization methods.
In Section 3, we will introduce prior group bridge as a com-
posite group penalization combining group ridge and group
bridge. In addition, we will establish the asymptotic theory
and develop an efficient algorithm for prior group bridge.
In Section 4, we will show the empirical advantage of prior
group bridge over group bridge through simulation studies.
Prior group bridge works better than group bridge espe-
cially for those groups with weak signals, which are common
in many real problems. In Section 5, we apply prior group
bridge to a real genetic association study of bipolar disor-
der. Compared to group bridge, it leads to findings that are
more consistent with the knowledge from previous studies

thus improves reproducibility. Section 6 concludes this pa-
per with some discussion. Some details for the theoretical
proof in Sections 2 and 3 are given in the Appendix.

2. GROUP RIDGE

2.1 Group lasso and group bridge

Suppose we have a set of independent and identically
distributed observations {(Xi, Yi) : i = 1, . . . , n}, where
Xi = (Xi1, . . . , Xid)

� is a d-dimensional vector of covari-
ates and Yi is the observed response given the correspond-
ing Xi. Let X = (X1, . . . ,Xn)

� be the design matrix,
xk = (X1k, . . . , Xnk)

� be its kth column with k = 1, . . . , d,
and Y = (Y1, . . . , Yn)

� be the response vector. Assume that
the conditional distribution of Yi given Xi belongs to the
canonical exponential family with the following density func-
tion:

(1) f(Yi|θi) ∝ exp[Yiθi − b(θi)],

where θi = β0 + X�
i β with β = (β1, . . . , βd)

� and b(·) is
the canonical link function assumed to be twice continu-
ously differentiable with a positive second-order derivative,
b′′(·) > 0. The loss function of a generalized linear model is
simply the negative log-likelihood function:

L(β0,β) = −
n∑

i=1

[Yiθi − b(θi)]

= −
n∑

i=1

[Yi(β0 +X�
i β)− b(β0 +X�

i β)].

We impose a group structure on the covariates. Let
A1, . . . , AJ be a partition of the set {1, . . . , d} represent-
ing groups of the covariate vector and denote the regression
coefficients in the group Aj by βAj

= (βk : k ∈ Aj)
�. In

addition, for any m-dimensional vector a = (a1, . . . , am)�,
denote its L1 norm by ‖a‖1 = |a1| + · · · + |am| and its L2

norm by ‖a‖2 = (a21 + · · ·+ a2m)1/2.

Yuan and Lin [27] proposed group lasso for grouped vari-
able selection, leading to the group lasso estimator defined
as the minimizer of

(2) �(β0,β) = L(β0,β) + λ

J∑
j=1

cj‖βAj
‖2,

where λ > 0 is a tuning parameter and cj ’s are constants
to adjust the different dimensions of βAj

. A simple choice

is cj ∝ |Aj |1/2, where |Aj | is the cardinality of Aj .

A unique characteristic of group lasso is that it selects
important variables at the group level, but not at the in-
dividual variable level [27]. To achieve both group and in-
dividual variable selections (the so-called bi-level selection),
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Huang et al. [10] proposed the group bridge estimator that
minimizes the following objective function:

(3) �(β0,β) = L(β0,β) + λ

J∑
j=1

cj‖βAj
‖γ1 , γ ∈ (0, 1),

where λ > 0 and cj ’s have a similar role to those in (2).
Huang et al. [10] chose cj ∝ |Aj |1−γ . The group bridge
method can be used for variable selection at the group and
individual variable levels simultaneously.

2.2 Group ridge

In our applications, prior knowledge is available about the
importance of certain groups. For such a prior-informative
group, we would like to preserve the group in the model
while to select important variables within this group. Nei-
ther group lasso nor group bridge can achieve this goal
as both penalties might exclude the whole group from the
model.

For our purpose, we propose a new penalty in conjunction
with the same loss function in (2) and (3) as follows:

(4) �(β0,β) = L(β0,β) + λ

J∑
j=1

cj‖βAj
‖21,

where λ > 0 and cj ’s have a similar role to those in (2)
and (3). Inspired by the name of group bridge, we call the
penalty ‖βAj

‖21 the group ridge penalty. Group ridge can be
regarded as a combination of group-level ridge and variable-
level lasso penalties.

To illustrate the statistical property as well as to derive
the computational algorithm for group ridge, let us first
present the following Karush-Kuhn-Tucker (KKT) condi-
tions for minimizing (4).

Theorem 1. A set of necessary and sufficient conditions
for an estimator (β̂0, β̂) to be a global solution of (4) is
that, for all j = 1, . . . , J ,

n∑
i=1

[Yi − b′(β̂0 +X�
i β̂)] = 0,(5)

∣∣∣∣∣
n∑

i=1

[Yi − b′(β̂0 +X�
i β̂)]Xik

∣∣∣∣∣ ≤ 2λcj‖β̂Aj
‖1,(6)

when β̂k = 0, k ∈ Aj ,
n∑

i=1

[Yi − b′(β̂0 +X�
i β̂)]Xik = 2λcj‖β̂Aj

‖1 sign(β̂k),(7)

when β̂k �= 0, k ∈ Aj .

The KKT conditions for a lasso solution [23] are very
similar to those for group ridge in (5)–(7), except that they

do not have the term ‖β̂Aj
‖1 on the right-hand sides of (6)

and (7). This small but key distinction provides us with

some intuitions about how group ridge differs from lasso as
follows.

For lasso, if (6) is satisfied without ‖β̂Aj
‖1 on the right-

hand side for all k ∈ Aj , then the estimators of the whole

group β̂Aj
will be shrunk to zero. However, for group ridge,

it is always true that β̂Aj
�= 0 for all j = 1, . . . , J . Oth-

erwise, ‖β̂Aj
‖1 becomes 0 and consequently the right-hand

side of (6) becomes zero. This will result in an unpenalized
estimator for group Aj as the first-order derivatives [left-
hand side of (6)] are all zeros, which contradicts with the

fact that β̂Aj
= 0.

In addition to the above intuitive arguments, a more rig-
orous proof will be provided in Section 2.3 to show that
group ridge will keep at least one nonzero coefficient in any
group. It is a unique characteristic not possessed by lasso,
group lasso, or group bridge. This property meets our need
to preserve prior-informative groups from existing knowl-
edge while to select important variables within these groups.

2.3 Solution path

For linear regression, the development of the lars algo-
rithm [7] leads to the geometric interpretation of the lasso
estimator, and consequently, a clear illustration of how the
lasso estimator evolves when the tuning parameter changes.
We notice that group ridge is simply the square of the lasso
penalty if there is only one group. Therefore, we will de-
velop a similar solution path for group ridge on one group
and compare it with lars to better characterize the geometric
properties of the group ridge estimator.

In the one-group setting, let’s assume the generalized
linear model in (1) with θi = β0 + X�

i β, where β =
(β1, . . . , βd)

� is in a single group. In this case, the group

ridge estimator [β̂0(λ), β̂(λ)] is defined to be the minimizer
of

(8) �(β0,β) = L(β0,β) + λ‖β‖21.

Before presenting the group ridge solution path, we point
out an interesting observation that links the group ridge
solution to the lasso solution. Define the corresponding lasso
solution, [α̂0(μ), α̂(μ)], to be the minimizer of

(9) �(α0,α) = L(α0,α) + μ‖α‖1.

Simply speaking, there is a one-to-one correspondence be-
tween the two solutions. We summarize this result in the
following theorem.

Theorem 2. Let the group ridge solution be [β̂0(λ), β̂(λ)]

for (8). Define μ = 2λ‖β̂(λ)‖1. Then, the lasso solution for

(9), [α̂0(μ), α̂(μ)], is equal to [β̂0(λ), β̂(λ)].

Theorem 2 can be easily proved by comparing the KKT
conditions for both solutions. It illustrates a one-to-one cor-
respondence between the group ridge and lasso solutions.
However, this result is less helpful in finding one solution
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from the other due to the lack of direct relationship between
μ and λ. For example, suppose we know the lasso solution
path, i.e., the lasso solutions [α̂0(μ), α̂(μ)] for all μ > 0.

Then, for a given λ > 0, can we easily find [β̂0(λ), β̂(λ)]
using Theorem 2? Unfortunately, it is not straightforward
because there is no easy way to determine the correspond-
ing μ for this particular λ through Theorem 2.

Therefore, we will develop the solution path for group
ridge as follows, which also provides a deeper geometric in-
sight than Theorem 2. For simplicity, we assume the “one
at a time” assumption as in Efron et al. [7]. Let A(λ) de-

note the active set of the estimator β̂(λ), i.e., A(λ) = {k ∈
{1, . . . , d} : β̂k(λ) �= 0}. We start with a very large λ at the
beginning of the path. It is well known that the lasso estima-
tor α̂(μ) (except the intercept) will be shrunk to zero when
μ is large enough. However, our result suggests that group
ridge has a nonzero starting point, different from lasso.

Theorem 3. When λ is large enough, A(λ) of the group

ridge estimator β̂(λ) always includes one index k∗.

Obviously, no matter how large λ is, group ridge will keep
at least one nonzero coefficient. It is why group ridge can
preserve prior-informative groups compared to other penal-
ties. In addition, it is easy to find k∗ under specific models.
For example, consider linear regression in which b(θ) = θ2/2
in (1). Further, suppose that both Y and x1, . . . ,xd are cen-
tralized so that the intercept β0 is not included in (8). In
this case, k∗ satisfies that |x�

k∗Y| = max1≤k≤d |x�
k Y|. Mean-

while, β̂k∗(λ) = x�
k∗Y/(x�

k∗xk∗+2λ) when λ is large enough.
In other words, the predictor with the largest absolute co-
variance with Y will always have a nonzero coefficient even
when λ → ∞.

As the tuning parameter λ decreases from ∞ to 0, the
indices k ∈ {1, . . . , d} will either be added to or removed
from A(λ), and when λ = 0, A(0) will match the active set

of the unpenalized estimator β̂(0). Thus, the solution path
is built in consecutive steps, each step adding or deleting a
covariate under the “one at a time” assumption [7]. Within a
given step, the active set A(λ) stays unchanged. Therefore,

to figure out the whole path, we need to clarify how β̂(λ)
evolves within a step as well as howA(λ) is updated between
two consecutive steps. The next result shows explicitly how
β̂(λ) evolves within a step.

Theorem 4. Within a step starting at λ0, A(λ) stays
the same as A(λ0) = A, and the group ridge estimator

[β̂0(λ), β̂(λ)] satisfies that

X
�
A{b′[β̂0(λ) + X

�
Aβ̂A(λ)]− b′[β̂0(λ0) + X

�
Aβ̂A(λ0)]}(10)

= −2SAS
�
A[λβ̂A(λ)− λ0β̂A(λ0)],

where XA = (. . . ,xk, . . .)k∈A and SA = (. . . , Sk, . . .)
�
k∈A

with Sk = sign[β̂k(λ0)].

Unfortunately, (10) does not have a closed-form solution

for the group ridge estimator [β̂0(λ), β̂(λ)] in the general
setting unless b(·) is in some specific form. The following
corollary provides a closed-form solution for linear regression
in which b(θ) = θ2/2.

Corollary 5. Consider linear regression in which b(θ) =
θ2/2 in (1). Further, suppose that both Y and x1, . . . ,xd

are centralized so that the intercept β0 is not included in (8).
Then, (10) implies that

(11) β̂A(λ) =

[
I− 2(λ− λ0)

1 + 2λδA
G−1
A SAS

�
A

]
β̂A(λ0),

where GA = X
�
AXA with XA = (. . . ,xk, . . .)k∈A, SA =

(. . . , Sk, . . .)
�
k∈A with Sk = sign[β̂k(λ0)], and δA =

S�
AG−1

A SA.

Corollary 5 implies that the group ridge solution path fol-
lows the same “equiangular vector” direction, G−1

A SA, as in
the lasso solution path [7]. However, it is piecewise smooth
with respect to λ but not piecewise linear as in the lasso
path. Although the two paths are different, the group ridge
solution is still a monotone function of λ when A(λ) stays
unchanged, the same as lasso. This can be verified by ob-
serving that its derivative with respect to λ has a fixed sign
for each k ∈ A:

dβ̂A(λ)

dλ
= −2

1 + 2λ0δA
(1 + 2λδA)2

‖β̂A(λ0)‖1G−1
A SA.

Next, let’s discuss how the active set A(λ) changes be-
tween two consecutive steps. To facilitate the discussion, we
will focus on the linear regression setting throughout the
rest of this subsection, in which both Y and x1, . . . ,xd have
been centralized and thus the intercept β0 is not included
in (8). Again, suppose the current step starts at λ0 and
A(λ0) = A. There are two possible cases, i.e., an index k is
either added to A or removed from A. On the one hand, if
k ∈ A is removed from A at λ, it is equivalent to β̂k(λ) = 0

since β̂k(λ) is a monotone function of λ within the current

step. In Corollary 5, we can solve the equation β̂k(λ) = 0 to
get

λ∗
k =

β̂k(λ0) + 2λ0Ck‖β̂A(λ0)‖1
2Ck‖β̂A(λ0)‖1 − 2β̂k(λ0)δA

,

where Ck = [G−1
A SA]k. Here, λ

∗
k satisfies that β̂k(λ

∗
k) = 0.

Therefore, we define λ∗
− = maxk∈A{λ∗

k : λ∗
k ∈ (0, λ0)} to

be the candidate λ where an index k ∈ A will be removed
from A.

On the other hand, we discuss when an index k /∈ A will
be added to A. Let’s define ak(λ) = x�

k {Y−XAβ̂A(λ)} for
λ ∈ (0, λ0) and bk = x�

k XAG−1
A SA. Furthermore, Δk(λ) =

|ak(λ)| − 2λ‖β̂A(λ)‖1 for λ ∈ (0, λ0). According to Theo-
rem 1, Δk(λ) ≤ 0 for λ ∈ (0, λ0) and all k /∈ A. For an
index k /∈ A, if Δk(λ) = 0 and Δ′

k(λ) < 0, then k will be

214 K. Li, M. Mei, and Y. Jiang



added to A at λ; otherwise, as λ further decreases to λ−,
Δk(λ−) > 0 and this violates the KKT conditions in The-
orem 1. Therefore, to find out the value of λ at which an
index k /∈ A is added to A, we just need to solve Δk(λ) = 0
to get a candidate λ∗

k and verify that Δ′
k(λ

∗
k) < 0, where

Δ′
k(λ) can be evaluated assisted by (11):

Δ′
k(λ) = − 2

1 + 2λ0δA
(1 + 2λδA)2

‖β̂A(λ0)‖1 (1− bk sign[ak(λ)]) .

So, if ak(λ) > 0, Δ′
k(λ) < 0 is equivalent to bk < 1 and

Δk(λ) = 0 leads to

λ∗
k,1 =

ak(λ0)/2− λ0bk‖β̂A(λ0)‖1
(1 + 2λ0δA − bk)‖β̂A(λ0)‖1 − δAak(λ0)

.

In parallel, if ak(λ) < 0, Δ′
k(λ) < 0 is equivalent to bk > −1,

and Δk(λ) = 0 leads to

λ∗
k,2 =

−ak(λ0)/2 + λ0bk‖β̂A(λ0)‖1
(1 + 2λ0δA + bk)‖β̂A(λ0)‖1 + δAak(λ0)

.

Thus, we define a candidate λ where an index k /∈ A will
be added to A as λ∗

+ = maxk/∈A[{λ∗
k,1 ∈ (0, λ0) : bk <

1} ∪ {λ∗
k,2 ∈ (0, λ0) : bk > −1}].

Following the above discussion, a new step will start at
λ∗ = max(λ∗

−, λ
∗
+), and an index will be removed from or

added to A(λ∗) depending on whether λ∗
− or λ∗

+ is the larger
one, respectively. This result is summarized in Theorem 6.
Together, Theorems 3–6 provide a thorough illustration of
the group ridge solution path.

Theorem 6. Consider linear regression in which b(θ) =
θ2/2 in (1). Further, suppose that both Y and x1, . . . ,xd

are centralized so that the intercept β0 is not included in (8).
Then, there are two situations where A(λ) changes when λ
decreases from λ0. If λ

∗
− > λ∗

+, an index k ∈ A is removed
from A at λ = λ∗

−; otherwise, an index k /∈ A is added to A
at λ = λ∗

+.

3. PRIOR GROUP BRIDGE

3.1 Definition

Real data often come with both prior-informative groups
and groups without any prior information. As in the intro-
duction, the house price study may not have other known
factors besides school district and the genetic study may
only have a small number of genes known to be associated
with the disease. In these situations, we need to treat the
prior-informative groups differently from the groups without
prior information.

Let {Aj : j ∈ J1} be the prior-informative groups while
the others {Aj : j ∈ J2} are not included in the prior knowl-
edge. Here, J1 ∪ J2 = {1, . . . , J} and J1 ∩ J2 = ∅. Then it
is natural to keep all the groups {Aj : j ∈ J1} and to select
important groups among {Aj : j ∈ J2}. To this end, we will

impose the group ridge and group bridge penalties on prior-
informative groups and groups without prior information,
respectively. This leads to the following objective function:

�(β0,β) = L(β0,β) + λ1

∑
j∈J1

cj‖βAj
‖21(12)

+ λ2

∑
j∈J2

cj‖βAj
‖γ1 , 0 < γ < 1,

where λ1 > 0 and λ2 > 0 are the tuning parameters and
cj ’s are constants to adjust the different dimensions of βAj

.
Similar to group lasso and group bridge, we choose cj ∝
|Aj |1/2 and cj ∝ |Aj |1−γ for j ∈ J1 and j ∈ J2, respectively.
We refer to (12) as prior group bridge and call the minimizer
of (12) the prior group bridge estimator.

Compared to group bridge, prior group bridge automat-
ically includes the prior-informative groups in the model.
Therefore, it is very crucial for us to ensure the prior in-
formation to be correct before it is incorporated into (12).
Fortunately, such information is available in some real ap-
plications, such as replicable or well-known factors for a re-
sponse in the two examples illustrated in the introduction.

3.2 Asymptotic properties

In Huang et al. [10], group bridge has been shown to
possess the oracle property in terms of group selection. In
other words, the group bridge estimators of the irrelevant
groups are exactly equal to zero with probability converging
to one and the group bridge estimators of the relevant groups
are

√
n-consistent to their true coefficients.

As prior group bridge is a combination of group ridge
and group bridge, it is not surprising to see the same oracle
property holds for the groups without prior information, i.e.,
{Aj : j ∈ J2}. For prior-informative groups {Aj : j ∈ J1},
we need to assume the correctness of the prior information
to ensure the selection consistency. This leads to the follow-
ing main result for the asymptotic properties of prior group
bridge.

Before presenting the main result, let us introduce some
necessary notation as follows. Let (β0,0,β0) with an addi-
tional subscript 0 denote the true value of (β0,β) for clarity.
Further, let B2 be the union of the irrelevant groups with
all zero coefficients and consequently B1 = {1, . . . , d} \ B2

be the union of the relevant groups, each of which has at
least one nonzero coefficient. Write βBj

= (βk : k ∈ Bj)
�

for j = 1, 2. Finally, define

Σ(β0,β) = (1,X)� diag{b′′(β0 +X�
1 β), . . . ,

b′′(β0 +X�
nβ)}(1,X),

with 1 = (1, . . . , 1)�. As follows, Theorem 7 provides the
asymptotic properties of the prior group bridge estimator.

Theorem 7. Assume that Aj ⊆ B1 for j ∈ J1. Sup-
pose n−1/2λ1 → λ∗

1 < ∞, n−1/2λ2 → λ∗
2 < ∞,
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and n−γ/2λ2 → ∞. Assume that Σ(β0,0,β0)/n → Σ∗

where Σ∗ is a positive definite matrix and sup{‖Σ(b0,b)−
Σ(β0,0,β0)‖2 :

√
n‖{b0 − β0,0, (b − β0)

�}‖2 ≤ δ} → 0 for
any δ > 0. Then,

(a) P (β̂B2
= 0) → 1;

(b) [
√
n(β̂0−β0,0),

√
n(β̂B1

−βB1,0)]
d−→ argmin

u0,u
V (u0,u),

where

V (u0,u) = −(u0,u
�)Z+

1

2
(u0,u

�)Σ∗
1,1(u0,u

�)�

+ 2λ∗
1

∑
j∈J1

cj‖βAj ,0‖1×

∑
k∈Aj∩B1

{uk sign(βk,0)I(βk,0 �= 0) + |uk|I(βk,0 = 0)}

+ γλ∗
2

∑
j∈J2

cj‖βAj ,0‖
γ−1
1 ×

∑
k∈Aj∩B1

{uk sign(βk,0)I(βk,0 �= 0) + |uk|I(βk,0 = 0)}

with Z∼N(0,Σ∗
1,1) and Σ∗

1,1 being the ({0,B1},{0,B1})-
submatrix of Σ∗. In particular, when λ∗

1 = λ∗
2 = 0,

[
√
n(β̂0 − β0,0),

√
n(β̂B1

− βB1,0)]
d−→ N(0,Σ∗−1

1,1 ).

The assumption Aj ⊆ B1 for j ∈ J1 reflects our require-
ment about the prior information. The prior-informative
groups cannot be irrelevant to the response to avoid incor-
rect group inclusion. Under this assumption, prior group
bridge also possesses the oracle property in terms of group
selection just like group bridge. The major difference be-
tween prior group bridge and group bridge lies in the asymp-
totic distribution of the estimators {β̂Aj : j ∈ J1} as the
penalties imposed on them are different. In the special case
when λ∗

1 = λ∗
2 = 0, the two estimators have the same asymp-

totic distribution.
Although both methods have the same and optimal the-

oretical property, i.e., the oracle property, group bridge can
still miss a relevant group with small coefficients in prac-
tice (see Section 4). Weak signals are actually common in
many studies. For example, genetic effects tend to have a
small size and are notoriously hard to identify in a single
genome-wide association study [14]. Fortunately, prior ge-
netic research has accumulated a large amount of valuable
knowledge, e.g., in GWAS Catalog [26]. To avoid potential
loss of signal identifications, prior group bridge is preferred
over group bridge as it can incorporate the valuable prior
information and help identify the weak genetic effects. We
will illustrate it further in our simulation studies and real
data analysis.

3.3 Computational algorithms

To minimize (12), we optimize the objective function it-
eratively with respect to one of the following parameter sets,

β0, {βAj
: j ∈ J1}, and {βAj

: j ∈ J2}, regarding the other
two parameter sets as fixed. To update β0, we simply take
the derivative of L(β0,β) with respect to β0 and set it to
be zero, because both penalties do not involve β0. To up-
date {βAj

: j ∈ J1}, the optimization can be regarded as a
group ridge problem as the objective function only involves
a group ridge penalty. Similarly, the optimization with re-
spect to {βAj

: j ∈ J2} can be regarded as a group bridge
problem as it only involves a group bridge penalty.

For group ridge, we derive a coordinate descent algo-
rithm from the KKT conditions of (12) similar to those
in Theorem 1. The coordinate descent algorithm updates
one parameter at a time by regarding all other parame-
ters as fixed. For each coordinate k, the algorithm either
sets βk to be 0 or updates βk by solving an equation from
the KKT conditions depending on whether the condition
for βk = 0 is satisfied or not. For group bridge, we fol-
low the algorithm in Huang et al. [10] as well as the op-
timization function gBridge in the R package grpreg. It
is noteworthy that both optimizations for {βAj

: j ∈ J1}
and {βAj

: j ∈ J2} have an offset that needs to be ad-
justed in prior group bridge. The offset when optimizing
{βAj

: j ∈ J1} is β01+
∑

j∈J2
XAjβAj

and the offset when
optimizing {βAj

: j ∈ J2} is β01+
∑

j∈J1
XAjβAj

.

4. SIMULATION STUDIES

We use simulation studies to evaluate the performance of
prior group bridge and compare it with other methods such
as group bridge and lasso.

We adopt two simulation settings: (a) “small n small p”
in which the sample size n = 100 for linear regression, n =
200 for logistic regression, and the number of parameters
p = 36; (b) “large n large p” in which the sample size n =
500 for linear regression, n = 1,000 for logistic regression,
and the number of parameters p = 180. In each setting,
for i = 1, . . . , n, we first simulate a covariate vector X of
length p from multivariate normal distribution N(0,Σ) with
covariances σi,j = ρ|i−j| for 0 < ρ < 1 and i, j = 1, . . . , p.
To impose a group structure on the covariates, write X =
(X�

A1
,X�

A2
, . . . ,X�

A6
)� into six groups with alternating sizes

8 and 4 in the “small n small p” setting, and with alternating
sizes 40 and 20 in the “large n large p” setting. Based on the
simulated covariate vectorX, we further simulate a response
Y using either a linear model or a logistic regression model:

Y ∼ N(μ, 1), with μ = X�β;

or Y ∼ Bernoulli(μ), with logit(μ) = X�β.

In the “small n small p” setting, we set coefficients β =
(β�

A1
,β�

A2
, . . . ,β�

A6
)�, corresponding to the six groups of X,

as in Table 1. In the “large n large p” setting, we keep the
group number as six while replicating the coefficients in each
group in the “small n small p” setting five times. It is seen
that the first four groups are relevant to the response while
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the last two are irrelevant. In addition, groups A1 and A2

possess sparse and relatively strong signals and groups A3

and A4 possess sparse and relatively weak signals.

In this simulation study, we compare three grouped vari-
able selection methods—prior group bridge with complete
prior information (i.e., J1 = {1, 2, 3, 4}), prior group bridge
with incomplete prior information (i.e., J1 = {1, 4}), group
bridge where γ is set to be 0.5 in the group bridge penalty,
and a variable selection method, lasso. For all the methods,
we use the Bayesian Information Criterion (BIC) to deter-
mine their optimal tuning parameters. We run the simula-
tion for 5,000 times and summarize the following results:

(a) TPG, FPG: the number of true-positive and false-
positive groups;

(b) TPV, FPV: the number of true-positive and false-
positive variables;

(c) SE: the estimation error measured by the squared error
loss;

(d) PE: the prediction error evaluated on the test data,
measured by the mean of squared residuals for linear
regression and misclassification error rate for logistic
regression.

Table 1. Coefficients in the “small n small p” setting

Group Size Coefficients

A1 8 βA1
= (1.5, 3, 0, . . . , 0)�

A2 4 βA2
= (1, 2, 0, 0)�

A3 8 βA3
= βA1

/5
A4 4 βA4

= βA2
/5

A5 8 βA5
= (0, 0, . . . , 0)�

A6 4 βA6
= (0, 0, 0, 0)�

Tables 2 and 3 summarize the simulation results for linear
regression and logistic regression in the “small n small p”
setting, respectively; Tables 4 and 5 summarize the simula-
tion results for linear regression and logistic regression in the
“large n large p” setting, respectively. For linear regression
(Tables 2 and 4), it is seen that prior group bridge outper-
forms group bridge in almost all aspects. Compared to group
bridge, prior group bridge recovers more relevant groups and
variables, includes fewer irrelevant variables, and results in
more accurate estimation and prediction. Both methods per-
form very well in terms of excluding irrelevant groups from
the model. In addition, comparing prior group bridge with
complete and incomplete prior information, the extra infor-
mation helps prior group bridge achieve better performance
in terms of group and variable selection, estimation, and pre-
diction as expected. Comparing lasso with grouped variable
selection methods, lasso keeps almost all groups including
the irrelevant ones. This is because lasso does not perform
any group-level selection. Lasso also selects many more ir-
relevant variables than the three grouped variable selection
methods, leading to a slightly worse performance in estima-
tion and prediction.

The results for logistic regression (Tables 3 and 5) have
a similar trend to those for linear regression. Prior group
bridge clearly outperforms group bridge in terms of group
selection because group bridge totally ignores the two groups
that possess weak signals (A3 and A4). For variable selec-
tion, prior group bridge recovers more relevant variables
in all settings but also keeps slightly more irrelevant vari-
ables. Both methods result in similar estimation accura-
cies relative to their large standard errors and prior group
bridge gives slightly smaller misclassification errors when
applied to test data. This is probably because the magni-
tude of the coefficients in groups A3 and A4 is small even

Table 2. Simulation results for linear regression in the “small n small p” setting. Reported are averages from 5,000 replications
with standard errors in the parentheses. pgbridge.c: prior group bridge with complete prior information; pgbridge.i: prior group

bridge with incomplete prior information; gbridge: group bridge

Method TPG FPG TPV FPV SE PE

ρ = 0.1
pgbridge.c 4.0 (0.0) 1.1e-1 (4.7e-3) 7.5 (9.5e-3) 2.0 (2.4e-2) 0.19 (1.6e-3) 1.2 (2.9e-3)
pgbridge.i 3.9 (4.1e-3) 5.0e-2 (3.2e-3) 7.4 (1.1e-2) 2.9 (2.2e-2) 0.24 (2.3e-3) 1.3 (3.6e-3)
gbridge 3.7 (7.9e-3) 2.0e-2 (1.8e-3) 6.9 (1.6e-2) 4.7 (3.1e-2) 0.32 (2.3e-3) 1.3 (3.7e-3)
lasso 4.0 (6.3e-4) 1.7 (7.0e-3) 7.8 (6.4e-3) 10 (6.5e-2) 0.25 (1.5e-3) 1.3 (3.0e-3)

ρ = 0.5
pgbridge.c 4.0 (0.0) 1.1e-1 (4.6e-3) 7.4 (9.6e-3) 1.9 (2.2e-2) 0.24 (2.2e-3) 1.2 (2.8e-3)
pgbridge.i 3.9 (3.9e-3) 4.0e-2 (3.1e-3) 7.2 (1.1e-2) 2.5 (2.1e-2) 0.31 (3.0e-3) 1.2 (3.6e-3)
gbridge 3.9 (5.3e-3) 2.0e-2 (1.8e-3) 7.1 (1.3e-2) 4.2 (2.7e-2) 0.34 (2.5e-3) 1.3 (3.3e-3)
lasso 4.0 (2.0e-4) 1.6 (8.2e-3) 7.8 (6.5e-3) 8.6 (6.0e-2) 0.26 (1.9e-3) 1.2 (2.8e-3)

ρ = 0.9
pgbridge.c 4.0 (0.0) 1.1e-1 (4.7e-3) 6.9 (1.1e-2) 1.1 (1.8e-2) 0.96 (1.1e-2) 1.2 (2.7e-3)
pgbridge.i 3.8 (5.1e-3) 1.0e-1 (4.4e-3) 6.3 (1.3e-2) 2.7 (2.1e-2) 1.2 (1.1e-2) 1.2 (2.9e-3)
gbridge 3.5 (7.3e-3) 5.0e-2 (3.2e-3) 6.1 (1.4e-2) 4.7 (2.7e-2) 1.4 (1.1e-2) 1.3 (3.0e-3)
lasso 4.0 (1.2e-3) 1.3 (1.1e-2) 7.1 (1.0e-2) 7.1 (5.1e-2) 0.90 (8.6e-3) 1.2 (2.6e-3)
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Table 3. Simulation results for logistic regression in the “small n small p” setting. Reported are averages from 5,000
replications with standard errors in the parentheses. pgbridge.c: prior group bridge with complete prior information; pgbridge.i:

prior group bridge with incomplete prior information; gbridge: group bridge

Method TPG FPG TPV FPV SE PE (%)

ρ = 0.1
pgbridge.c 4.0 (0.0) 7.0e-2 (5.0e-3) 6.4 (2.0e-2) 2.4 (2.6e-2) 2.5 (4.6e-2) 14 (5.4e-2)
pgbridge.i 3.2 (7.3e-3) 2.8e-2 (3.2e-3) 5.5 (1.7e-2) 1.4 (2.3e-2) 2.0 (3.6e-2) 15 (5.0e-2)
gbridge 2.1 (6.3e-3) 4.3e-3 (1.3e-3) 4.1 (1.0e-2) 0.65 (2.1e-2) 1.7 (2.8e-2) 15 (5.0e-2)
lasso 3.9 (4.6e-3) 1.8 (8.4e-3) 6.8 (1.7e-2) 11 (7.5e-2) 2.6 (2.0e-2) 15 (5.1e-2)

ρ = 0.5
pgbridge.c 4.0 (0.0) 6.2e-2 (4.7e-3) 6.0 (2.1e-2) 1.6 (2.4e-2) 3.0 (4.9e-2) 13 (5.2e-2)
pgbridge.i 3.2 (7.7e-3) 2.7e-2 (3.1e-3) 5.2 (1.9e-2) 1.3 (2.2e-2) 2.6 (4.1e-2) 13 (5.0e-2)
gbridge 2.2 (8.0e-3) 6.2e-3 (1.5e-3) 4.1 (1.4e-2) 0.79 (2.4e-2) 2.2 (3.3e-2) 13 (4.7e-2)
lasso 3.9 (5.1e-3) 1.7 (9.2e-3) 6.7 (1.7e-2) 9.4 (6.7e-2) 2.7 (2.0e-2) 13 (4.8e-2)

ρ = 0.9
pgbridge.c 4.0 (0.0) 1.2e-2 (2.2e-3) 5.2 (1.9e-2) 0.75 (1.6e-2) 7.6 (7.1e-2) 9.1 (4.1e-2)
pgbridge.i 3.0 (3.7e-3) 1.1e-2 (2.0e-3) 4.3 (1.6e-2) 1.0 (1.7e-2) 6.6 (6.9e-2) 9.2 (4.1e-2)
gbridge 2.2 (8.0e-3) 1.5e-2 (2.3e-3) 3.6 (1.5e-2) 1.8 (2.4e-2) 6.1 (6.1e-2) 9.5 (4.2e-2)
lasso 3.7 (8.5e-3) 1.4 (1.2e-2) 5.4 (1.9e-2) 6.2 (4.6e-2) 4.7 (3.7e-2) 9.1 (4.1e-2)

Table 4. Simulation results for linear regression in the “large n large p” setting. Reported are averages from 5,000 replications
with standard errors in the parentheses. pgbridge.c: prior group bridge with complete prior information; pgbridge.i: prior group

bridge with incomplete prior information; gbridge: group bridge

Method TPG FPG TPV FPV SE PE

ρ = 0.1
pgbridge.c 4.0 (0.0) 2.0e-3 (6.0e-4) 40.0 (2.2e-3) 6.6 (3.4e-2) 5.4e-2 (2.0e-4) 1.0 (1.0e-3)
pgbridge.i 4.0 (0.0) 0.0 (0.0) 39.9 (1.0e-3) 7.0 (2.8e-2) 5.6e-2 (2.0e-4) 1.0 (1.0e-3)
gbridge 4.0 (0.0) 0.0 (0.0) 39.9 (5.5e-3) 6.8 (4.4e-2) 7.2e-2 (3.0e-4) 1.1 (1.0e-3)
lasso 4.0 (0.0) 2.0 (2.0e-4) 40.0 (0.0) 52 (1.5e-1) 1.1e-1 (3.0e-4) 1.1 (1.0e-3)

ρ = 0.5
pgbridge.c 4.0 (0.0) 1.0e-3 (5.0e-4) 40.0 (4.0e-3) 5.6 (3.2e-2) 7.0e-2 (3.0e-4) 1.1 (1.0e-3)
pgbridge.i 4.0 (0.0) 0.0 (0.0) 39.9 (2.1e-3) 6.5 (2.9e-2) 8.0e-2 (3.0e-4) 1.1 (1.0e-3)
gbridge 4.0 (0.0) 0.0 (0.0) 39.9 (4.4e-3) 6.1 (3.4e-2) 8.0e-2 (4.0e-4) 1.1 (1.0e-3)
lasso 4.0 (0.0) 2.0 (8.0e-4) 40.0 (0.0) 43 (1.4e-1) 1.1e-1 (3.0e-4) 1.1 (1.0e-3)

ρ = 0.9
pgbridge.c 4.0 (0.0) 1.0e-3 (6.0e-4) 38.3 (2.1e-2) 12 (4.4e-2) 0.54 (3.2e-3) 1.1 (1.0e-3)
pgbridge.i 4.0 (0.0) 0.0 (0.0) 38.0 (1.9e-2) 13 (4.4e-2) 0.59 (2.5e-3) 1.1 (1.0e-3)
gbridge 4.0 (0.0) 0.0 (0.0) 38.8 (9.3e-3) 24 (6.2e-2) 0.62 (1.9e-3) 1.1 (1.0e-3)
lasso 4.0 (0.0) 1.4 (9.4e-3) 39.9 (5.4e-3) 26 (6.6e-2) 0.45 (1.5e-3) 1.1 (1.0e-3)

though group bridge totally ignores them. The performance
of lasso is similar to that for linear regression. It under-
performs all three grouped variable selection methods with
a much higher number of irrelevant groups/variables and
slightly lower accuracy in terms of estimation and predic-
tion.

In addition, we examine the performance of all meth-
ods in terms of variable selection within each group. Fig-
ures 1 and 2 present the boxplots of the number of true and
false positives within all groups, A1, . . . , A6, for linear re-
gression and logistic regression, respectively, in the “small
n small p” setting; Figures 3 and 4 present the same re-
sults in the “large n large p” setting. These results further
confirm the findings from Tables 2–5. For linear regression,

group bridge tends to have more false positives especially
in groups with strong signals (A1 and A2). For logistic re-
gression, group bridge totally ignores the groups with weak
signals (A3 and A4). Lasso always selects more irrelevant
groups and variables than the three grouped variable se-
lection methods. It is clearly seen that prior group bridge
performs better in terms of variable selection with the as-
sistance from the prior knowledge.

It is noteworthy that the above conclusions drawn from
comparing different methods are consistent in both the
“small n small p” and the “large n large p” settings, sug-
gesting that the advantage of prior group bridge over its
competitors is robust to both the size and the dimension of
the data.
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Table 5. Simulation results for logistic regression in the “large n large p” setting. Reported are averages from 5,000
replications with standard errors in the parentheses. pgbridge.c: prior group bridge with complete prior information; pgbridge.i:

prior group bridge with incomplete prior information; gbridge: group bridge

Method TPG FPG TPV FPV SE PE (%)

ρ = 0.1
pgbridge.c 4.0 (0.0) 0.0 (0.0) 26.6 (1.7e-1) 10 (1.4e-1) 25 (0.59) 13 (7.9e-2)
pgbridge.i 3.0 (0.0) 0.0 (0.0) 24.1 (8.6e-2) 6.2 (7.8e-2) 13 (0.36) 11 (5.6e-2)
gbridge 2.0 (0.0) 0.0 (0.0) 18.8 (3.9e-2) 1.5 (6.5e-2) 11 (0.15) 11 (4.2e-2)
lasso 4.0 (0.0) 2.0 (0.0) 33.4 (7.3e-2) 56 (3.0e-1) 30 (0.19) 11 (4.4e-2)

ρ = 0.5
pgbridge.c 4.0 (0.0) 0.0 (0.0) 23.0 (1.4e-1) 7.5 (1.1e-1) 24 (0.48) 11 (6.3e-2)
pgbridge.i 3.0 (0.0) 0.0 (0.0) 21.8 (1.1e-1) 5.0 (7.7e-2) 16 (0.27) 11 (5.3e-2)
gbridge 2.0 (0.0) 0.0 (0.0) 18.9 (3.5e-2) 2.9 (5.8e-2) 13 (0.15) 9.7 (3.9e-2)
lasso 4.0 (0.0) 2.0 (0.0) 32.7 (7.3e-2) 48 (2.7e-1) 30 (0.18) 9.3 (3.7e-2)

ρ = 0.9
pgbridge.c 4.0 (0.0) 0.0 (0.0) 14.3 (9.1e-2) 7.8 (9.2e-2) 62 (0.42) 7.8 (6.1e-2)
pgbridge.i 3.0 (1.2e-3) 0.0 (0.0) 13.8 (8.4e-2) 7.1 (8.5e-2) 53 (0.43) 7.5 (4.3e-2)
gbridge 2.1 (8.3e-3) 0.0 (0.0) 13.1 (8.4e-2) 7.5 (9.1e-2) 46 (0.36) 8.0 (3.9e-2)
lasso 4.0 (0.0) 2.0 (3.2e-3) 23.7 (8.6e-2) 30 (1.6e-1) 42 (0.16) 5.4 (2.8e-2)

In summary, equipped with the prior information, prior
group bridge possesses a better overall performance than the
method without incorporating such information. For those
prior-informative groups, the group ridge penalty is obvi-
ously a more natural choice than group bridge as it elim-
inates the possibility of losing true signals. More interest-
ingly, prior group bridge tends to perform better in terms
of variable selection within groups as well, as shown in Fig-
ures 1–4. Incorporating correct information also slightly in-
creases the accuracies of parameter estimation and predic-
tion.

5. REAL DATA

In this section, we apply prior group bridge to a real
dataset from a genetic study of bipolar disorder. Bipolar
disorder is a serious and potentially life-threatening mood
disorder [16] and it is well known that bipolar disorder has a
substantial genetic component [6]. There have been at least
six genome-wide association studies reported in the liter-
ature so far [5, 1, 8, 21, 19, 22]. While these studies re-
vealed promising association signals, top findings from var-
ious studies do not show obvious overlap [2, 17].

In this work, we analyze the SNP data collected by the
Wellcome Trust Case Control Consortium (WTCCC) as the
primary dataset [5]. To collect prior information, we choose
the genetic findings from the five other studies. Among the
five studies, Ferreira et al. [8] and Scott et al. [19] used meta-
analysis to jointly analyze the WTCCC data and another
dataset; Smith et al. [22] analyzed data from two popula-
tions, i.e., individuals of European ancestry and African an-
cestry. Since the WTCCC dataset is our primary dataset
and it only includes individuals of European ancestry, we
omit the results from the above three studies. Therefore, we

summarize the results from Baum et al. [1] and Sklar et al.
[21] as prior genetic risk factors for bipolar disorder.

We incorporate the prior genetic findings at the gene level
instead of the SNP level for two reasons. First, different
genotyping platforms were used in these two prior studies.
Baum et al. [1] used the Illumina HumanHap550 Array and
Sklar et al. [21] used the Affymetrix Human Mapping 500K
Array. This results in many non-overlapping SNPs between
the two datasets. Second, it is more reasonable to assume
that gene-level signals are preserved among different studies
than SNP-level signals. A recent large-scale GWAS meta-
analysis [18] found that many of the risk genes are shared
by different studies, but the SNP-level association signals
can be distinct. Due to the above reasons, we summarize the
prior genetic factors into risk genes instead of risk SNPs.

Recall that we need to ensure the correctness of the prior
information before incorporating it into prior group bridge
for good performance. To this end, we only select the very
top findings that have been discovered as well as validated
by replication samples. After a careful selection, only seven
risk genes fall into this category: DFNB31, DGKH, EGFR,
MYO5B, NALCN, NXN, and SORCS2. We believe that
these seven genetic signals are qualified to serve as prior
information and thus regard them as the prior-informative
genes (groups) for the WTCCC SNP data.

In addition to collecting prior information, we prescreen
the WTCCC data before carrying out the association study.
As in most genetic association studies, all SNPs with a minor
allele frequency less than 0.05 or failing the Hardy-Weinberg
equilibrium test at p-value 0.0001 are excluded from further
analysis. To further reduce the computational burden, a uni-
variate SNP analysis was performed to select a smaller set
of SNPs. Specifically, a logistic regression is run separately
for each SNP and a SNP is included in the final analysis
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Figure 1. Number of true positives and false positives within each group for linear regression in the “small n small p” setting,
selected by prior group bridge with complete prior information (dark), prior group bridge with incomplete prior information
(dark grey), group bridge (light grey), and lasso (light). The three rows correspond to ρ = 0.1, 0.5, and 0.9, respectively.

if either of the following two conditions is satisfied: (a) its
p-value from the logistic regression is smaller than 0.05; (b)
it belongs to one of the seven prior-informative genes and
its logistic regression p-value is smaller than 0.1.

After prescreening, we use SNPnexus (http://snp-
nexus.org), an online genomic mapping tool, to map the
SNPs in the WTCCC data to their genes including the
seven risk genes. This mapping procedure results in our fi-
nal dataset with 10717 SNPs mapped to 3582 genes, among
which 25 SNPs belong to the seven prior-informative genes.
Moreover, the final dataset includes 5002 samples with 1998
cases and 3004 controls. We then apply both prior group

bridge and group bridge to this dataset with their tuning
parameters selected by BIC as in the simulation studies.

Table 6 summarizes our findings within the seven prior-
informative genes. The advantage of prior group bridge over
group bridge is obvious: prior group bridge is able to keep
these important genes by identifying risk SNPs within them,
while group bridge totally ignores all these well-known ge-
netic signals. In addition, the estimated odds ratios from a
refitted model imply that most of the SNP-level signals in
these risk genes are relatively weak. This is probably why
group bridge ignores all these risk genes, similar to what we
have observed in simulations. In other words, group bridge
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Figure 2. Number of true positives and false positives within each group for logistic regression in the “small n small p” setting,
selected by prior group bridge with complete prior information (dark), prior group bridge with incomplete prior information

(dark grey), and group bridge (light grey), and lasso (light). The three rows correspond to ρ = 0.1, 0.5, and 0.9, respectively.

tends to ignore a relevant group with small individual coef-
ficients.

For the genes without prior information, we summarize
our findings at the SNP level and at the gene level sepa-
rately. At the SNP level, both prior group bridge and group
bridge select a large number of SNPs, with 39 SNPs by
prior group bridge and 40 SNPs by group bridge. Interest-
ingly, 25 SNPs are overlapped between those selected by the
two methods, while prior group bridge selects 14 additional
SNPs and group bridge selects 15 additional SNPs. At the
gene level, prior group bridge and group bridge identify 25
common genes, while prior group bridge identifies 13 addi-

tional genes and group bridge identifies 15 additional genes.
In summary, there are a lot of similarities between prior
group bridge and group bridge in terms of selection of SNPs
and genes without any prior information.

In summary, the genetic factors identified by prior group
bridge are consistent with the known fact that the seven risk
genes are associated with bipolar disorder, but group bridge
results in inconsistent findings. Additionally, the two meth-
ods perform fairly similarly for the genes with no prior in-
formation. Finally, the large number of genetic signals iden-
tified by both methods suggests that bipolar disorder has a
very complex genetic etiology. It is not a single gene or a
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Figure 3. Number of true positives and false positives within each group for linear regression in the “large n large p” setting,
selected by prior group bridge with complete prior information (dark), prior group bridge with incomplete prior information
(dark grey), group bridge (light grey), and lasso (light). The three rows correspond to ρ = 0.1, 0.5, and 0.9, respectively.

small number of genes that contribute to the disease risk.
It might involve many risk genes, each of which only con-
tributes a moderate or even a weak effect.

6. DISCUSSION

In this work, we propose a group penalty called group
ridge to select at least one variable in a prior-informative
group, different from other group penalties. Furthermore,
we develop prior group bridge by applying group ridge and
group bridge to groups with and without prior information
in a multiple regression problem, respectively. Our study

shows that the incorporation of correct prior information
improves the performance in group and variable selections.
Other group penalizations, such as group bridge, can omit
a whole group, even if it is a relevant group with nonzero
coefficients.

Due to the nature of group ridge, we need to ensure the
correctness of prior information before applying prior group
bridge to real data. Otherwise, the wrong group-level signals
from the prior information will be included in the model. In
some real problems, this information is available from either
the experts or studies that have been performed previously
as illustrated in both introduction and real data sections.
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Figure 4. Number of true positives and false positives within each group for logistic regression in the “large n large p” setting,
selected by prior group bridge with complete prior information (dark), prior group bridge with incomplete prior information

(dark grey), and group bridge (light grey), and lasso (light). The three rows correspond to ρ = 0.1, 0.5, and 0.9, respectively.

Ignorance of such valuable information will result in poten-
tially inconsistent findings and possible loss of estimation
and prediction accuracies.

A question naturally arises following the current work:
how can one extend the proposed approach to allow possibly
wrong information? One possible way is to follow the idea
in Jiang, He and Zhang [11], in which the authors proposed
a two-step approach to incorporating variable-level prior in-
formation with various qualities. They first incorporate the
information as it is correct and then balance between the
prior information and the data. Similarly, we can add a bal-
ancing step after we apply prior group bridge. However, this

is beyond the scope of the current work and we will leave it
to future investigations.

APPENDIX

Proof of Theorem 3

From the objective function (8) and its associated KKT

conditions, β̂(λ) �= 0 for any λ > 0. Otherwise, according

to (6),
∑n

i=1[Yi − b′(β̂0(λ) + X�
i β̂(λ))]Xik = 0 for all k =

1, . . . , d, which in conjunction with (5) implies β̂(λ) being

the unpenalized estimator and a contradiction to β̂(λ) = 0.
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Table 6. Real data results. Reported are SNPs selected in the
seven prior-informative genes and their estimated odds ratios

Prior Group Bridge Group Bridge
Risk Gene #SNPs SNP Odds Ratio SNP Odds Ratio

DFNB31 4 rs10982246 0.950 – –
rs10982256 0.884 – –

DGKH 6 rs619508 1.077 – –
rs9594703 1.143 – –

EGFR 1 rs2293347 1.127 – –
MYO5B 2 rs8098113 1.058 – –

rs17660456 1.119 – –
NALCN 7 rs646773 0.891 – –

rs655365 1.274 – –
rs4771391 1.127 – –

NXN 1 rs9892880 0.890 – –
SORCS2 4 rs6446588 1.205 – –

rs16840358 1.237 – –

Proof of Theorem 5

By the definition of a step, A(λ) ≡ A(λ0) = A and the

estimators β̂A(λ) do not change their signs within a step.
Then, the condition (7) in Theorem 1 implies that:

(A.1) X
�
A{Y − b′[β̂0(λ) + X

�
Aβ̂A(λ)]} = 2λ‖β̂A(λ)‖1SA.

Subtracting (A.1) evaluated at λ and λ0 leads to:

X
�
A{b′[β̂0(λ) + X

�
Aβ̂A(λ)]− b′[β̂0(λ0) + X

�
Aβ̂A(λ0)]}

= −2SA[λ‖β̂A(λ)‖1 − λ0‖β̂A(λ0)‖1]
= −2SAS

�
A[λβ̂A(λ)− λ0β̂A(λ0)].

Proof of Theorem 7

Before presenting the main proof of Theorem 7, let us
present a lemma that will be used in the proof.

Lemma 8. Suppose n−1/2λ1 → λ∗
1 < ∞ and n−1/2λ2 →

λ∗
2 < ∞. Assume that Σ(β0,0,β0)/n → Σ∗ where Σ∗ is a

positive definite matrix and sup{‖Σ(b0,b)−Σ(β0,0,β0)‖2 :√
n‖{b0−β0,0, (b−β0)

�}‖2 ≤ δ} → 0 for any δ > 0. Then,

‖{β̂0 − β0,0, (β̂ − β0)
�}‖22 = OP (1/n).

Proof. By the definition of (β̂0, β̂), we have that

L(β̂0, β̂)− L(β0,0,β0)(A.2)

≤ λ1

∑
j∈J1

cj(‖βAj ,0‖
2
1 − ‖β̂Aj

‖21)

+ λ2

∑
j∈J2

cj(‖βAj ,0‖
γ
1 − ‖β̂Aj

‖γ1).

On the one hand, by Taylor expansion of the left-hand
side of (A.2), L(β̂0, β̂)− L(β0,0,β0) = I1 + I2 where

I1 = − 1√
n

n∑
i=1

{Yi − b′(β0,0 +X�
i β0)}(1,X�

i )×

√
n{β̂0 − β0,0, (β̂ − β0)

�}�,

I2 =
1

2n

n∑
i=1

b′′(β0,0 +X�
i β0)[(1,X

�
i )×

√
n{β̂0 − β0,0, (β̂ − β0)

�}�]2{1 + oP (1)}.

Similar to the proof of Theorem 3 in Jiang, He and Zhang
[11], we can show that

1√
n

n∑
i=1

{Yi − b′(β0,0 +X�
i β0)}(1,X�

i )

d−→ N(0,Σ∗).

This immediately leads to, for a large enough n,

|I1| = ‖
√
nΣ∗1/2{β̂0 − β0,0, (β̂ − β0)

�}�‖2OP (1)(A.3)

≤ n

4
‖Σ∗1/2{β̂0 − β0,0, (β̂ − β0)

�}�‖22 +OP (1).

Further, when n is large enough,

(A.4) I2 =
n

2
‖Σ∗1/2{β̂0−β0,0, (β̂−β0)

�}�‖22{1+ oP (1)}.

On the other hand, for the right-hand side of (A.2), using
the inequality that br−ar ≤ 2(b−a)br−1 for 0 ≤ a ≤ b with
0 < r < 1 or r = 2, we have that

‖βAj ,0‖
r
1 − ‖β̂Aj

‖r1
≤ 2‖βAj ,0‖

r−1
1 ‖β̂Aj

− βAj ,0‖1
≤ 2|Aj |1/2‖βAj ,0‖

r−1
1 ‖β̂Aj

− βAj ,0‖2.

This leads to

λ1

∑
j∈J1

cj(‖βAj ,0‖
2
1 − ‖β̂Aj

‖21)+(A.5)

λ2

∑
j∈J2

cj(‖βAj ,0‖
γ
1 − ‖β̂Aj

‖γ1)

≤ λ1

∑
j∈J1

cj(‖βAj ,0‖
2
1 − ‖β̂Aj

‖21)+

λ2

∑
j∈J2:Aj⊆B1

cj(‖βAj ,0‖
γ
1 − ‖β̂Aj

‖γ1)

≤ 2λ1

∑
j∈J1

cj |Aj |1/2‖βAj ,0‖1‖β̂Aj
− βAj ,0‖2+

2λ2

∑
j∈J2:Aj⊆B1

cj |Aj |1/2‖βAj ,0‖
γ−1
1 ‖β̂Aj

− βAj ,0‖2

≤ λ1η1

√∑
j∈J1

‖β̂Aj
− βAj ,0‖22+

λ2η2

√ ∑
j∈J2:Aj⊆B1

‖β̂Aj
− βAj ,0‖22

≤ max(λ1η1, λ2η2)‖β̂ − β0‖2,
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where η1 = 2
√∑

j∈J1
c2j |Aj |‖βAj ,0‖21 and η2 =

2
√∑

j∈J2:Aj⊆B1
c2j |Aj |‖βAj ,0‖

2γ−2
1 are bounded constants.

Combining (A.3)–(A.5) leads to

n

4
‖Σ∗1/2{β̂0 − β0,0, (β̂ − β0)

�}�‖22{1 + oP (1)}

≤ max(λ1η1, λ2η2)‖β̂ − β0‖2 +OP (1).

Therefore,

‖{β̂0 − β0,0, (β̂ − β0)
�}‖22

≤ O{max(4λ1η1, 4λ2η2)‖β̂ − β0‖2/n}+OP (1/n)

≤ O{max(4λ1η1, 4λ2η2)
2/(2n2)}+ 1

2
‖β̂ − β0‖22 +OP (1/n).

Since n−1/2λ1 → λ∗
1 < ∞ and n−1/2λ2 → λ∗

2 < ∞, the
above inequality implies that

‖{β̂0 − β0,0, (β̂ − β0)
�}‖22 = OP (1/n).

So the proof is completed.

Now we turn to prove part (a) of Theorem 7. Let’s de-

fine an estimator (β̃0, β̃) so that β̃0 = β̂0, β̃B1
= β̂B1

, and

β̃B2
= 0. By the definitions of (β̂0, β̂) and (β̃0, β̃),

L(β̃0, β̃)− L(β̂0, β̂)(A.6)

≥ λ1

∑
j∈J1

cj(‖β̂Aj
‖21 − ‖β̃Aj

‖21)+

λ2

∑
j∈J2

cj(‖β̂Aj
‖γ1 − ‖β̃Aj

‖γ1)

= λ2

∑
j:Aj⊆B2

cj‖β̂Aj
‖γ1 ,

where the second equality follows from the assumption that
Aj ⊆ B1 for j ∈ J1.

Applying Taylor’s expansion to the left-hand side of (A.6)

leads to L(β̃0, β̃)− L(β̂0, β̂) = I1 + I2, where

I1 = −
n∑

i=1

{Yi − b′(β̂0 +X�
i β̂)}(1,X�

i )×

{β̃0 − β̂0, (β̃ − β̂)�}�,

I2 =
1

2

n∑
i=1

b′′(β∗
0 +X�

i β
∗)[(1,X�

i )×

{β̃0 − β̂0, (β̃ − β̂)�}�]2{1 + oP (1)},

with (β∗
0 ,β

∗) lies between (β̂0, β̂) and (β̃0, β̃). For I1, by
KKT conditions,

|I1| =
∣∣∣∣∣

n∑
i=1

{Yi − b′(β̂0 +X�
i β̂)}X�

i,B2
(β̃B2

− β̂B2
)

∣∣∣∣∣(A.7)

≤ γλ2

∑
j:Aj⊆B2

cj‖β̂Aj
‖γ−1
1

∑
k∈Aj

|β̂k|

≤ γλ2

∑
j:Aj⊆B2

cj‖β̂Aj
‖γ1 .

For I2, since Σ(β0,0,β0) → Σ∗ and sup{‖Σ(b0,b) −
Σ(β0,0,β0)‖2 :

√
n‖{b0 − β0,0, (b − β0)

�}‖2 ≤ δ} → 0 for
any δ > 0, when n is large enough,

I2 =
1

2

n∑
i=1

b′′(β∗
0 +X�

i β
∗)(X�

i,B2
β̂B2

)2{1 + oP (1)}(A.8)

≥ n

4
λmin(Σ

∗)‖β̂B2
‖22{1 + oP (1)}.

Combining (A.6)–(A.8) leads to:

n

4
λmin(Σ

∗)‖β̂B2
‖22{1 + oP (1)}(A.9)

≥ (1− γ)λ2

∑
j:Aj⊆B2

cj‖β̂Aj
‖γ1

≥ (1− γ)λ2‖β̂B2
‖γ1 ≥ (1− γ)λ2‖β̂B2

‖γ2 ,

where the second inequality follows from aγ + bγ ≥ (a+ b)γ

for a > 0, b > 0, and 0 < γ < 1. If β̂B2
�= 0, then (A.9)

leads to:

(1− γ)λ2 ≤ n

4
λmin(Σ

∗)‖β̂B2
‖2−γ
2 {1 + oP (1)}

= OP {n× (1/
√
n)2−γ} = OP (n

γ/2).

Therefore,

P (β̂B2
�= 0) ≤ P{(1− γ)λ2 ≤ OP (n

γ/2)} → 0,

because λ2/n
γ/2 → ∞. The proof of part (a) of Theorem 7

is thus completed.
Finally, we prove part (b) of Theorem 7. Let (û0, û) =√
n{β̂0−β0,0, (β̂−β0)}. As P (β̂B2

= 0) → 1, ûB2 = 0 with
probability tending to one. Therefore, (û0, ûB1) minimizes
Vn(u0,uB1) where

Vn(u0,uB1)

= L[β0,0 +
1√
n
u0, (β

�
B1,0 +

1√
n
u�
B1

,0�)�]−

L(β0,0,β0) + λ1

∑
j∈J1

cj‖βAj ,0 +
1√
n
uAj‖21+

λ2

∑
j∈J2:Aj⊆B1

cj‖βAj ,0 +
1√
n
uAj‖

γ
1 .

Similar to the proof of Theorem 4 in Jiang, He and Zhang
[11], it can be shown that

L[β0,0 +
1√
n
u0, (β

�
B1,0 +

1√
n
u�
B1

,0�)�]− L(β0,0,β0)
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d−→ −(u0,u
�
B1

)Z+
1

2
(u0,u

�
B1

)Σ∗
1,1(u0,u

�
B1

)�,

where Z ∼ N(0,Σ∗
1,1). In addition, it is seen that

λ1

∑
j∈J1

cj(‖βAj ,0 +
1√
n
uAj‖21 − ‖βAj ,0‖

2
1) →

2λ∗
1

∑
j∈J1

cj‖βAj ,0‖1×

∑
k∈Aj∩B1

{uk sign(βk,0)I(βk,0 �= 0) + |uk|I(βk,0 = 0)},

λ2

∑
j∈J2:Aj⊆B1

cj(‖βAj ,0 +
1√
n
uAj‖

γ
1 − ‖βAj ,0‖

γ
1) →

γλ∗
2

∑
j∈J2

cj‖βAj ,0‖
γ−1
1 ×

∑
k∈Aj∩B1

{uk sign(βk,0)I(βk,0 �= 0) + |uk|I(βk,0 = 0)}.

Therefore, Vn(u0,uB1) → V (u0,uB1) in distribution. The
proof is then completed by applying the continuous mapping
theorem in Kim and Pollard [12].
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group lasso for logistic regression. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 70 53–71. MR2412631

[16] Merikangas, K. R., Akiskal, H. S., Angst, J., Green-

berg, P. E., Hirschfeld, R. M., Petukhova, M. and
Kessler, R. C. (2007). Lifetime and 12-month prevalence of bipo-
lar spectrum disorder in the National Comorbidity Survey repli-
cation. Archives of General Psychiatry 64 543–552.

[17] Ollila, H., Soronen, P., Silander, K., Palo, O., Kieseppä, T.,
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