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Robust rank correlation screening (RRCS) procedure
that is built on Kendall τ , has been suggested by Li, Peng,
Zhang and Zhu (2012) as a robust alternative to the sure
independence screening (SIS) method that is based on the
Pearson’s correlation. However, as a drawback for certain
applications is that τ may be zero even if there is an associ-
ation between two random variables, RRCS is not omnibus,
only having an ability to detect monotonic effects. In this pa-
per, we use the Bergsma-Dassios sign correlation (Bergsma
and Dassios, 2014, τ∗b ) to introduce a new SIS procedure. We
advocate using the τ∗b -SIS for three reasons. First, as τ∗b pos-
sesses the necessary and intuitive properties as a correlation
index, the τ∗b -SIS has a better screening ability for nonlinear
effects including interactions and heterogeneity compared
with the RRCS. Second, as τ∗b is a natural extension of τ ,
the τ∗b -SIS is conceptually simple, easy to implement and ro-
bust to the presence of extreme values and outliers in the ob-
servations. Third, without assuming any moment condition
on the response and predictors, the τ∗b -SIS enjoys several
appealing properties, such as the sure screening property,
ranking consistency property and the characteristic of min-
imum model size. We demonstrate the merits of the τ∗b -SIS
procedure through extensive Monte Carlo experiments and
illustrate the method through a real-data example.

Keywords and phrases: Bergsma-Dassios sign correla-
tion, Feature screening, Kendall τ , Sure screening property,
Ranking consistency property, Minimum model size.

1. INTRODUCTION

With the development of modern scientific techniques, ul-
trahigh dimensional data sets can be conveniently obtained
in diverse fields of the sciences, engineering and humanities.
Much importance has been placed on the problem of vari-
able selection which plays a significant role in data analysis.

The idea of shrinkage estimation with penalization is
very important and can be applied to handle high dimen-
sional data, with examples given of bridge regression (Frank
and Friedman, 1993; Huang et al., 2008), LASSO (Tibshi-
rani, 1996; Van de Geer, 2008), elastic-net (Zou and Hastie,
2005), adaptive LASSO (Zou, 2006), SCAD (Fan and Li,
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2001; Fan and Lv, 2011; Fan and Peng, 2004) and Dantzig
selector (Candes and Tao, 2007). However, these methods
may not perform well when the dimension of predictor vari-
ables p is much larger than sample size n. An alternative
approach that has been advocated in Fan and Lv (2008)
is to first perform variable screening to reduce the num-
ber of predictors to a relative large scale that is smaller
than or equal to the sample size, and then finish the final
variable selection and parameter estimation simultaneously
through a more sophisticated technique. Since the seminal
work of Fan and Lv (2008) on sure independence screen-
ing (SIS, hereafter) which means that all truly important
predictors can be selected with probability approaching one
as the sample size diverges to ∞ for linear regressions with
Gaussian predictors and responses, there has been a surge
of interest on ultrahigh-dimensional variable screening. Fan
and Song (2010) and Fan, Feng and Song (2011) proposed
a feature-screening method based on ranking the maximum
marginal likelihood estimates in generalized linear models.
Zhu, Li, Li and Zhu (2011) proposed a sure independent
ranking and screening procedure (SIRS, hereafter) to screen
significant predictors in multi-index models. Li, Peng, Zhang
and Zhu (2012) proposed a robust rank correlation screen-
ing method which is based on Kendall’s τ (Kendall, 1938).
Li, Zhong and Zhu (2012) proposed a feature screening pro-
cedure (DC-SIS, hereafter) based on the distance correla-
tion (Székely et al., 2007; Székely and Rizzo, 2009). Shao
and Zhang (2014) proposed a model-free screening proce-
dure (MDC-SIS, hereafter) based on the martingale differ-
ence correlation. Kong, Li, Fan and Lv (2017) proposed a
two-stage interaction identification method, called the inter-
action pursuit via distance correlation (IPDC). Pan, Wang,
Xiao and Zhu (2019) proposed a generic nonparametric sure
independence screening procedure, called BCor-SIS, on the
basis of Ball correlation.

It is known in the literature that each screening method
targets a certain aspect of dependence. Let us look more
closely at the robust rank correlation screening (RRCS)
method that essentially uses the same premises as ours.
Since Kendall’s τ has robust advantages over Pearson cor-
relation as showed in Kendall (1962), the RRCS procedure
can be considered as a robust alternative to the SIS method.
However, as a drawback for certain applications is that τ
may be zero even if there is an association between two ran-
dom variables, RRCS is not omnibus, only having an ability
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to detect monotonic effects. Inspired by the RRCS, we use
the Bergsma-Dassios sign correlation (Bergsma and Dassios,
2014, τ∗b ) to introduce a new SIS procedure. We advocate
using the τ∗b -SIS for three reasons. First, as τ∗b possesses the
necessary and intuitive properties as a correlation index, the
τ∗b -SIS has a better screening ability for nonlinear effects in-
cluding interactions and heterogeneity than RRCS. Second,
as τ∗b is a natural extension of τ , the τ∗b -SIS is conceptually
simple, easy to implement and robust to the presence of ex-
treme values and outliers in the observations. Third, without
assuming any moment condition on the response and pre-
dictors, the τ∗b -SIS enjoys several appealing properties, such
as the sure screening property, ranking consistency property
and the characteristic of minimum model size.

The rest of this paper is organized as follows. Section 2
presents some preliminary results for τ∗b , develops the new
feature screening approach and studies its asymptotic prop-
erties. Section 3 demonstrates the merits of the τ∗b -SIS pro-
cedure through Monte Carlo experiments. Section 4 gives a
real data example to illustrate the proposed methodology.
All technical proofs are presented in the Appendix.

2. METHOD

2.1 Preliminary: Bergsma-Dassios sign
correlation

The Bergsma-Dassios sign correlation τ∗b between two
random variables U and V was recently introduced by
Bergsma and Dassios (2014). Apply {(Ui, Vi)}ni=1, n ≥ 4
to denote i.i.d. replications of (U, V ). Bergsma and Dassios
(2014) defined the Bergsma-Dassios sign covariance between
U and V without finite moments to be the nonnegative num-
ber τ∗ given by

τ∗(U, V ) = Ea(U1, U2, U3, U4)a(V1, V2, V3, V4),

where a(z1, z2, z3, z4) = sign(|z1−z2|+ |z3−z4|−|z1−z3|−
|z2 − z4|). The τ∗b between U and V without finite moments
is defined as

τ∗b (U, V ) =
τ∗(U, V )√

τ∗(U,U)τ∗(V, V )
.

Bergsma and Dassios (2014) showed that τ∗b has many desir-
able properties. A remarkable property is that τ∗b (U, V ) = 0
if and only if U and V are independent. This partly moti-
vates us to use it in a feature screening procedure. Further,
Bergsma and Dassios (2014) stated that

τ∗(U, V ) = 4S1 + 4S2 − 8S3,

where Si, i = 1, 2, 3, are defined as:

S1 = E [I(U1, U2 < U3, U4)I(V1, V2 < V3, V4)] ,

S2 = E [I(U1, U2 < U3, U4)I(V1, V2 > V3, V4)] ,

S3 = E [I(U1, U2 < U3, U4)I(V1, V3 < V2, V4)] ,

where I(U1, U2 < U3, U4) is shortened for I(U1 < U3&U1 <
U4&U2 < U3&U2 < U4), and & is logical AND. We can es-
timate S1, S2 and S3 through the usual moment estimators,
which are

Ŝ1 =
1

n4

n∑
i,j,l,m=1

[I(Ui, Uj < Ul, Um)I(Vi, Vj < Vl, Vm)],

Ŝ2 =
1

n4

n∑
i,j,l,m=1

[I(Ui, Uj < Ul, Um)I(Vi, Vj > Vl, Vm)],

Ŝ3 =
1

n4

n∑
i,j,l,m=1

[I(Ui, Uj < Ul, Um)I(Vi, Vl < Vj , Vm)].

Consequently, a natural estimator of τ∗(U, V ) is given by

τ̂∗(U, V ) = 4Ŝ1 + 4Ŝ2 − 8Ŝ3.

Accordingly, the sample τ∗b (U, V ) between U and V can be
defined by

τ̂∗b (U, V ) =
τ̂∗(U, V )√

τ̂∗(U,U)τ̂∗(V, V )
.

2.2 The τ ∗
b -based feature screening

In this subsection, we propose a sure independence
screening procedure based on the τ∗b for ultrahigh dimen-
sional data. As the dimensionality p extremely exceeds the
sample size n in ultrahigh dimensional data, the main fo-
cus is on screening out as many unimportant predictors as
possible. Let Y be the response variable with support Ψy,
x = (X1, X2, . . . , Xp)

T be the predictor vector, and F (y|x)
denote the conditional distribution function of Y given x.
The screening procedure using τ∗b can also be established
without a specified regression model. First the index set of
the active predictors which contributes to response variable
is defined as

D = {k : F (y|x) functionally depends on Xk for some y ∈ Ψy},

and the index set of the inactive predictors is defined as

I = {k :F (y|x) does not functionally depend onXk for any y ∈Ψy}.

Then we can further denote xD = {Xk : k ∈ D} as ac-
tive predictors and xI = {Xk : k ∈ I} as inactive predic-
tors. From this definition, we can clearly understand that
the predictors xI are independent of Y when the important
predictors xD are given. The goal of an independence rank-
ing and screening procedure is to obtain a reduced model
with a proper scale which can almost fully contain active
predictors xD by using an independence screening method.
Thus the following method can be taken to shrink the full
model {1, 2, . . . , p} to an appropriate submodel by ranking
all the predictors and picking out the important ones in that
the xI are equivalent to redundant predictors.
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Based upon a random sample {xi, Yi}, i = 1, 2, . . . , n, we
write

ωk = τ∗b (Xk, Y ), ω̂k = τ̂∗b (Xk, Y ),

for k = 1, 2, . . . , p. Then ωk is applied as a marginal utility
to rank the predictors at the population level and corre-
spondingly an appropriate ω̂k is used as a criterion to select
important predictors in sample. Note that ωk = 0 if and
only if the independence between Xk and Y holds. Then
we can naturally apply ωk as an effective measure to distin-
guish the active predictor subset from the inactive predictor
subset because ωk > 0 for k ∈ D and ωk = 0 for k ∈ I. It
also implies that the τ∗b -based variable screening is model-
free in that there is no need to specify a regression model in
its definition, and able to identify both linear and nonlinear
relationships between the response and predictors. Thus it
leads to the following definition which is used for choosing
a submodel

D̂∗ = {k : ω̂k ≥ cn−κ, 1 ≤ k ≤ p},

where c and κ are prespecified threshold values that will be
explained later in Condition (C1). We refer this procedure to
the τ∗b -based sure independence screening (τ∗b -SIS for short).

In the following, we study the theoretical properties of the
τ∗b -SIS. When we refer to independence screening procedure,
we understand that the most crucial property we have to
guarantee is the sure screening property. That is, all active
predictors can be embraced in the reduced model with pretty
high probability. Thus, we first establish the sure screening
property for τ∗b -SIS with assuming an essential condition:

(C1) The minimum τ∗b of active predictors satisfies

min
k∈D

ωk ≥ 2cn−κ,

for some constants c > 0 and 0 ≤ κ < 1/2.
This condition puts forward an idea that the minimum

true signal must possess a lower threshold and the order of
the signal can ensure that it vanishes to zero along with the
sample size n approaching to infinity.

Theorem 1 (Sure Screening Property). Under the condi-
tion (C1), there exists a positive constant c1 > 0, such that

P

(
max
1≤k≤p

|ω̂k − ωk| ≥ cn−κ

)
≤ O

(
p exp

{
−c1n

1−2κ
})

,

and

P
(
D ⊆ D̂∗

)
≥ 1−O

(
sn exp

{
−c1n

1−2κ
})

,

where sn is the cardinality of D.

In the next we explore another property for independence
screening, namely ranking consistency property (Zhu et al.,
2011). By the definition of D and I, we recognize that the
conditional distribution of Y given xD is independent of xI .

So we expect Y depends more on xD than on xI which
means the τ∗b index has ability to sort active and inactive
predictors well in the population level. That is the following
condition we additionally assume:

(C2)

lim inf
p→∞

{
min
k∈D

ωk −max
k∈I

ωk

}
≥ c2,

where c2 is a positive constant.
Then we can obtain the ranking consistency property for

the τ∗b -SIS procedure.

Theorem 2 (Ranking Consistency Property). Suppose that
the condition (C2) holds in addition to the conditions of
Theorem 1, then

lim inf
n→∞

{
min
k∈D

ω̂k −max
k∈I

ω̂k

}
> 0

almost surely.

This theorem implies that the sample τ∗b (Xk, Y ) values of
inactive predictors are always ranked behind those of active
ones in high probability.

We can also obtain the following theorem which charac-
terizes the size of the reduced model after screening.

Theorem 3 (Minimum Model Size). Under the conditions
of Theorem 1, there exists a positive constant c4, such that

P

{∣∣∣D̂∗
∣∣∣ ≤ O

(
nκ

p∑
k=1

|ωk|
)}

≥ 1−O
(
p exp

{
−c4n

1−2κ
})

.

3. SIMULATION STUDY

In this Section, we assess the finite sample performance
of the proposed τ∗b -SIS via Monte Carlo simulation. For
comparison purpose, five existing screening methods are in-
cluded here: SIS, SIRS, DC-SIS, MDC-SIS and RRCS. The
following three criteria are considered to evaluate the per-
formance:

(1) S: the minimum model size that includes all active
predictors. We report the 5%, 25%, 50%, 75% and 95%
quantiles of S out of 500 replications.

(2) Ps: the proportion that an individual active predictor
is selected for a given model size d in 500 replications.

(3) Pa: the proportion that all active predictors are se-
lected for a given model size d in 500 replications.

The minimum model size S is a measure of the ability
of a screening procedure to include all the active predictors.
The smaller the S is, the better the screening method is.
The effects of Ps and Pa are similar, and the ability of a
screening procedure can also be measured through them.
The sure screening property ensures that Ps and Pa will
both tend to be one when the model size d is as large as it
can be. So we consider a screening method competitive if the
measured S value approaches the actual number of all active
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predictors and the Ps and Pa values approach one. In the
following, we choose d to be d1 = �n/ log n�, d2 = 2�n/ logn�
and d3 = 3�n/ logn�, respectively.
Example 1. We modify the simple linear model in Fan and
Lv (2008) as follows:

M1 : Y = 5X1 + 5X2 + 5X3 + ε.

The difference is that the error term ε ∼ t(1) rather than
the standard normal distribution N(0, 1). And we generate
samples of (X1, X2, . . . , Xp) with size n from a multivariate
normal distribution with mean zero and covariance matrix
Σ = (σij)p×p. In this example, we take σij = 0.5|i−j|, n =
20, 50, 100 and p = 100, 1000, 2000.

Table 1 presents the estimated results of Ps and Pa. Over-
all, high dimensionality, for fixed sample sizes n, results in
worse performance for all the six methods. It is readily seen
that the procedures τ∗b -SIS and RRCS outperform others in
an obvious way. And RRCS always performs the best, while
SIRS always performs the worst for this linear model. SIS
and MDC-SIS deliver a similar performance, and DC-SIS
outperforms these two methods except the cases of n = 20.
The values of Ps and Pa for both τ∗b -SIS and RRCS approach
one as p and n increase, which indicates that they are both
robust against heavy-tailed distribution due to Kendall’s τ ’s
good properties.

Table 2 shows the 5%, 25%, 50%, 75% and 95% quan-
tiles of the minimum model size S. Note that when n =
20, 50, 100, �n/ log(n)� = 6, 12, 21, respectively. It can be
seen that, in the case 3 (i.e., n = 20, p = 1000), all the pro-
cedures result in poor performance due to the small sam-
ple size. In other cases, τ∗b -SIS performs almost as good as
RRCS. For the competitors, the estimated values S of DC-
SIS are always smaller than that of MDC-SIS, SIS and SIRS.

Example 2. Consider the following nonlinear model:

M2 : Y = 5X2
1 + 5X2 + 5X2

3 + exp
(
X2

1 +X2
2

)
+ ε.

Here the predictors x = (X1, X2, . . . , Xp)
T are also gener-

ated from a multivariate normal distribution with mean zero
and covariance matrix Σ = (σij)p×p, where σij = ρ|i−j|,
and ρ = 0.5, 0.9, respectively. The noise ε is distributed
identically to that in Example 1. And n = 50, 100, and
p = 1000, 2000, respectively.

Table 3 depicts the simulation results for Ps and Pa. It oc-
curs to us that τ∗b -SIS always performs the best, followed by
DC-SIS, MDC-SIS, SIS, RRCS and SIRS in turn. It should
be pointed out that, the performance of RRCS is signif-
icantly inferior to τ∗b -SIS compared with Example 1, and
SIRS fails completely in selecting any active predictor in
this nonlinear model. These results demonstrate that the τ∗b -
based screening procedure is able to identify both linear and
nonlinear relationships between response and predictors.

Table 4 presents the 5%, 25%, 50%, 75% and 95% quan-
tiles of the minimum model size S in the case of ρ = 0.9.

Clearly, τ∗b -SIS outperforms all the five competitors substan-
tially. And the resulting model based on τ∗b -SIS can almost
cover all active predictors across three different model sizes.

Example 3. Let us consider the following model:

M3 : log(Y ) = 2X2
1 + 5X1X2 + 2X3 + ε,

which contains a logarithm transformation function and an
interaction term X1X2. All the settings are the same as that
in Example 2, except that we fix σij = 0.9|i−j| for simplicity.

The simulation results are listed in Tables 5 and 6, from
which it can be seen that τ∗b -SIS shows outstanding perfor-
mance in terms of the minimum modes size and the pro-
portions of including active predictor variables. RRCS and
SIRS still perform poor and the other three methods give
a similar and lackluster presentation. These results support
the assertion of the sure screening property of the procedure
τ∗b -SIS in which the condition of Xk and Y to be bounded
is not necessary.

Example 4. In the previous three examples, the predictors
are all generated from multivariate normal distributions. In
this example, we consider the predictors are generated from
the following mixed normal distribution:

λN (μ1,Σ1) + (1− λ)N (μ2,Σ2),

where λ = 0.4, μ1 = 0, μ2 = 1p, Σ1 = (σij)p×p with σij

being 1 for i = j, and 0.9 otherwise, and Σ2 = (γij)p×p with
γij = 0.9|i−j|.

Table 7 and 8 illustrate the simulation results for Ps and
Pa. An interesting observation is that all the proportions
have declined to some extent. Specifically, RRCS and τ∗b -
SIS remain a robust performance, DC-SIS, MDC-SIS and
SIS deliver a relatively worse performance and SIRS con-
tinues to behave poor for the three models. Compared with
the observations in Example 1, RRCS also slightly outper-
forms τ∗b -SIS. While for the other two models, τ∗b -SIS be-
haves slightly better than RRCS. As a whole, τ∗b -SIS per-
forms quite satisfactory in all the considered cases.

Example 5. Here, we discuss two procedures in recent:
BCor-SIS (Pan, Wang, Xiao and Zhu (2019)) and IPDC
(Kong, Li, Fan and Lv (2017)). In the above simulations,
we have discussed models that are designed for good per-
formance of τ∗b -SIS. For a fair comparison, here we consider
the following four models from Pan, Wang, Xiao and Zhu
(2019):

M4 : Y = X1 + 1.25X2 + 0.75X8 − 2.4X16 + ε,

M5 : Y = 3X1X5 + 2X10 + 3X15 + ε,

M6 : Y = 3X2
1 + 5X2 + 5X8 − 8X16 + ε,

M7 : Y = 2I(ω > 0)ω + 1

with ω = 5X2
1 − 5X2

2 + 3X8 + 2X16 + ε,

where ε ∼ N(0, 1).
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Table 1. The proportions of Ps and Pa in Example 1

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa

Size X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All
Case 1: p=100 and n=20

d1 0.784 0.922 0.784 0.614 0.782 0.850 0.814 0.680 0.800 0.850 0.810 0.706 0.236 0.360 0.272 0.044 0.810 0.960 0.830 0.656 0.872 0.982 0.876 0.764
d2 0.872 0.958 0.886 0.780 0.860 0.880 0.860 0.782 0.860 0.890 0.870 0.792 0.392 0.510 0.410 0.150 0.920 0.980 0.910 0.834 0.950 0.992 0.952 0.900
d3 0.910 0.960 0.926 0.848 0.880 0.910 0.890 0.814 0.880 0.920 0.900 0.832 0.492 0.646 0.510 0.228 0.930 0.980 0.930 0.858 0.962 0.992 0.978 0.934

Case 2: p=100 and n=50
d1 0.984 0.990 0.988 0.978 0.852 0.864 0.872 0.798 0.864 0.882 0.884 0.816 0.762 0.896 0.768 0.568 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d2 0.992 0.998 0.994 0.988 0.888 0.902 0.916 0.850 0.902 0.918 0.916 0.860 0.914 0.980 0.910 0.832 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d3 0.998 1.000 0.996 0.994 0.918 0.926 0.932 0.876 0.926 0.926 0.994 0.882 0.976 0.998 0.980 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case 3: p=1000 and n=20
d1 0.498 0.690 0.508 0.248 0.574 0.714 0.536 0.358 0.592 0.722 0.570 0.404 0.086 0.084 0.060 0.006 0.560 0.808 0.564 0.272 0.658 0.858 0.630 0.382
d2 0.624 0.764 0.606 0.372 0.646 0.756 0.638 0.488 0.672 0.768 0.658 0.524 0.130 0.134 0.106 0.014 0.680 0.866 0.676 0.424 0.756 0.924 0.752 0.556
d3 0.682 0.798 0.666 0.460 0.688 0.780 0.684 0.560 0.718 0.784 0.698 0.592 0.156 0.182 0.142 0.018 0.738 0.904 0.734 0.518 0.822 0.936 0.798 0.638

Case 4: p=1000 and n=50
d1 0.934 0.966 0.936 0.910 0.782 0.822 0.796 0.724 0.772 0.814 0.796 0.722 0.396 0.534 0.392 0.150 0.992 0.998 0.992 0.982 0.996 1.000 0.992 0.988
d2 0.952 0.972 0.954 0.934 0.806 0.848 0.808 0.756 0.798 0.840 0.812 0.754 0.542 0.650 0.536 0.278 0.996 1.000 0.996 0.992 0.996 1.000 0.994 0.990
d3 0.960 0.974 0.958 0.940 0.816 0.858 0.818 0.768 0.808 0.860 0.824 0.766 0.642 0.734 0.628 0.368 0.996 1.000 0.998 0.994 0.996 1.000 0.994 0.990

Case 5: p=1000 and n=100
d1 0.976 0.980 0.970 0.968 0.782 0.830 0.800 0.746 0.784 0.820 0.802 0.754 0.854 0.950 0.866 0.740 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d2 0.982 0.984 0.980 0.978 0.808 0.838 0.816 0.762 0.810 0.840 0.828 0.780 0.914 0.978 0.936 0.854 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d3 0.984 0.990 0.980 0.980 0.818 0.850 0.828 0.770 0.830 0.858 0.832 0.784 0.954 0.992 0.962 0.916 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case 6: p=2000 and n=50
d1 0.936 0.960 0.930 0.900 0.798 0.858 0.786 0.734 0.800 0.852 0.784 0.738 0.284 0.424 0.258 0.056 0.994 1.000 0.982 0.976 1.000 1.000 0.990 0.990
d2 0.948 0.964 0.948 0.920 0.834 0.870 0.800 0.770 0.832 0.868 0.812 0.778 0.392 0.544 0.360 0.136 1.000 1.000 0.994 0.994 1.000 1.000 0.992 0.992
d3 0.960 0.966 0.958 0.936 0.846 0.878 0.816 0.786 0.840 0.878 0.828 0.794 0.468 0.602 0.434 0.198 1.000 1.000 0.996 0.996 1.000 1.000 0.996 0.996

Case 7: p=2000 and n=100
d1 0.968 0.974 0.962 0.958 0.762 0.810 0.774 0.700 0.764 0.810 0.778 0.710 0.750 0.906 0.798 0.582 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d2 0.976 0.980 0.968 0.962 0.780 0.824 0.802 0.728 0.788 0.828 0.802 0.744 0.830 0.948 0.876 0.720 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d3 0.978 0.986 0.972 0.966 0.812 0.840 0.810 0.748 0.810 0.842 0.814 0.756 0.886 0.968 0.914 0.796 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 1

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Case 1: p=100 and n=20
3 3 5 11 47 3 3 4 10 79 3 3 4 8 81 7 20 35 53 77 3 3 4 9 67 3 3 4 6 21

Case 2: p=100 and n=50
3 3 3 3 4 3 3 3 6 80 3 3 3 5 79 3 5 10 20 34 3 3 3 3 3 3 3 3 3 3

Case 3: p=1000 and n=20
3 7 22 96 565 3 4 13 101 801 3 4 11 85 749 40 170 342 531 794 3 6 18 53 683 3 4 10 31 202

Case 4: p=1000 and n=50
3 3 3 3 59 3 3 3 21 850 3 3 3 20 784 5 22 67 145 326 3 3 3 3 5 3 3 3 3 4

Case 5: p=1000 and n=100
3 3 3 3 3 3 3 3 22 870 3 3 3 20 835 3 4 8 23 87 3 3 3 3 3 3 3 3 3 3

Case 6: p=2000 and n=50
3 3 3 4 72 3 3 3 18 1466 3 3 3 16 1386 11 49 144 301 611 3 3 3 3 7 3 3 3 3 5

Case 7: p=2000 and n=100
3 3 3 3 6 3 3 3 66 1528 3 3 3 56 1639 3 6 16 49 166 3 3 3 3 3 3 3 3 3 3
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Table 3. The proportions of Ps and Pa in Example 2

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa

ρ Size X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All
p=1000 and n=50

0.5

d1 0.488 0.476 0.072 0.028 0.392 0.396 0.058 0.012 0.338 0.342 0.052 0.008 0.002 0.002 0.002 0.000 0.382 0.376 0.084 0.018 0.052 0.194 0.022 0.000
d2 0.622 0.624 0.116 0.062 0.526 0.520 0.102 0.046 0.440 0.438 0.102 0.030 0.004 0.002 0.002 0.000 0.592 0.564 0.154 0.066 0.064 0.248 0.038 0.006
d3 0.708 0.700 0.142 0.078 0.612 0.602 0.138 0.070 0.512 0.506 0.122 0.046 0.008 0.006 0.004 0.000 0.692 0.690 0.222 0.124 0.098 0.312 0.046 0.006

0.9

d1 0.664 0.668 0.436 0.328 0.538 0.556 0.352 0.224 0.444 0.486 0.322 0.194 0.000 0.000 0.000 0.000 0.918 0.946 0.690 0.654 0.146 0.252 0.130 0.100
d2 0.826 0.864 0.616 0.540 0.700 0.718 0.526 0.400 0.592 0.626 0.442 0.340 0.002 0.000 0.000 0.000 0.982 0.984 0.852 0.840 0.202 0.322 0.180 0.144
d3 0.914 0.948 0.712 0.660 0.806 0.838 0.630 0.540 0.670 0.692 0.538 0.452 0.004 0.000 0.000 0.000 0.998 0.998 0.924 0.922 0.232 0.354 0.224 0.176

p=1000 and n=100

0.5

d1 0.786 0.780 0.140 0.084 0.654 0.664 0.114 0.060 0.510 0.498 0.110 0.054 0.002 0.008 0.010 0.000 0.998 0.982 0.422 0.412 0.084 0.536 0.044 0.008
d2 0.868 0.870 0.202 0.158 0.766 0.768 0.176 0.112 0.622 0.606 0.162 0.092 0.002 0.018 0.024 0.000 0.998 0.998 0.634 0.632 0.106 0.646 0.080 0.014
d3 0.902 0.912 0.258 0.206 0.812 0.814 0.228 0.148 0.660 0.664 0.212 0.132 0.008 0.052 0.040 0.000 1.000 0.998 0.766 0.764 0.148 0.702 0.124 0.032

0.9

d1 0.932 0.948 0.684 0.654 0.828 0.822 0.574 0.512 0.660 0.668 0.470 0.404 0.000 0.000 0.002 0.000 1.000 1.000 0.998 0.998 0.298 0.530 0.288 0.234
d2 0.986 0.992 0.852 0.842 0.944 0.942 0.750 0.722 0.774 0.774 0.638 0.598 0.002 0.004 0.002 0.000 1.000 1.000 1.000 1.000 0.376 0.592 0.364 0.312
d3 0.996 0.996 0.930 0.930 0.970 0.970 0.858 0.838 0.810 0.808 0.728 0.688 0.004 0.012 0.010 0.000 1.000 1.000 1.000 1.000 0.424 0.634 0.412 0.352

p=2000 and n=50

0.5

d1 0.404 0.416 0.042 0.006 0.298 0.292 0.036 0.004 0.254 0.228 0.024 0.000 0.000 0.000 0.000 0.000 0.250 0.398 0.036 0.012 0.016 0.216 0.012 0.002
d2 0.520 0.512 0.070 0.014 0.432 0.436 0.058 0.010 0.352 0.352 0.058 0.006 0.000 0.002 0.000 0.000 0.458 0.516 0.080 0.042 0.030 0.270 0.020 0.002
d3 0.608 0.590 0.088 0.036 0.496 0.502 0.088 0.032 0.410 0.424 0.080 0.024 0.000 0.004 0.004 0.000 0.558 0.598 0.106 0.058 0.050 0.312 0.026 0.002

0.9

d1 0.534 0.573 0.324 0.198 0.386 0.388 0.238 0.126 0.328 0.330 0.196 0.106 0.000 0.000 0.000 0.000 0.888 0.918 0.528 0.494 0.118 0.232 0.090 0.064
d2 0.722 0.718 0.470 0.352 0.544 0.546 0.378 0.240 0.448 0.446 0.318 0.186 0.000 0.000 0.000 0.000 0.962 0.964 0.754 0.736 0.148 0.284 0.130 0.090
d3 0.834 0.824 0.560 0.478 0.674 0.646 0.470 0.336 0.566 0.550 0.410 0.302 0.000 0.000 0.000 0.000 0.984 0.986 0.832 0.822 0.178 0.322 0.164 0.126

p=2000 and n=100

0.5

d1 0.680 0.666 0.092 0.036 0.526 0.522 0.086 0.020 0.436 0.432 0.082 0.020 0.000 0.008 0.004 0.000 0.954 0.934 0.268 0.242 0.074 0.490 0.034 0.010
d2 0.782 0.762 0.154 0.082 0.676 0.646 0.134 0.056 0.546 0.536 0.126 0.048 0.000 0.010 0.012 0.000 0.984 0.980 0.454 0.446 0.116 0.574 0.050 0.020
d3 0.818 0.824 0.190 0.122 0.734 0.718 0.174 0.090 0.606 0.588 0.174 0.094 0.000 0.022 0.014 0.000 0.996 0.986 0.594 0.586 0.148 0.614 0.066 0.024

0.9

d1 0.828 0.866 0.614 0.530 0.698 0.714 0.484 0.374 0.588 0.610 0.400 0.322 0.000 0.000 0.000 0.000 1.000 1.000 0.998 0.998 0.212 0.458 0.214 0.164
d2 0.946 0.964 0.738 0.706 0.836 0.872 0.634 0.558 0.698 0.718 0.528 0.462 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 0.300 0.512 0.278 0.232
d3 0.988 0.990 0.806 0.798 0.916 0.934 0.722 0.678 0.762 0.776 0.606 0.552 0.002 0.000 0.004 0.000 1.000 1.000 1.000 1.000 0.328 0.548 0.336 0.268

Table 4. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 2

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Case 1: p=1000 and n=50
4 9 22 50 130 4 14 34 69 178 5 17 43 138 834 340 618 772 911 988 3 4 7 17 47 6 86 392 731 955

Case 2: p=1000 and n=100
3 6 14 30 71 3 9 21 48 112 4 11 30 96 753 125 279 498 675 975 3 3 3 3 4 4 26 193 620 919

Case 3: p=2000 and n=50
4 17 39 97 281 6 26 63 141 449 8 30 80 270 1470 688 1188 1514 1783 1972 3 5 13 26 82 11 155 819 1527 1927

Case 4: p=2000 and n=100
3 7 19 49 151 3 11 34 79 258 4 17 50 157 1475 592 984 1329 1630 1918 3 3 3 3 6 3 56 399 1192 1880
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Table 5. The proportions of Ps and Pa in Example 3

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa Ps Pa

Size X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All X1 X2 X3 All
p=1000 and n=50

d1 0.342 0.280 0.162 0.110 0.322 0.294 0.170 0.108 0.350 0.316 0.206 0.132 0.000 0.002 0.006 0.000 0.852 0.728 0.478 0.436 0.134 0.192 0.254 0.106
d2 0.448 0.404 0.286 0.212 0.452 0.416 0.302 0.214 0.480 0.442 0.298 0.222 0.000 0.002 0.010 0.000 0.942 0.870 0.602 0.570 0.194 0.254 0.332 0.162
d3 0.542 0.518 0.380 0.300 0.530 0.500 0.376 0.298 0.552 0.520 0.394 0.320 0.000 0.004 0.018 0.000 0.970 0.922 0.672 0.654 0.238 0.304 0.382 0.208

p=1000 and n=100
d1 0.396 0.378 0.282 0.220 0.386 0.372 0.290 0.226 0.438 0.424 0.334 0.276 0.004 0.010 0.018 0.000 0.998 0.998 0.948 0.948 0.186 0.316 0.458 0.174
d2 0.474 0.472 0.370 0.338 0.462 0.458 0.364 0.320 0.508 0.494 0.418 0.382 0.006 0.026 0.040 0.002 1.000 0.998 0.978 0.978 0.246 0.400 0.556 0.230
d3 0.502 0.498 0.428 0.404 0.496 0.500 0.408 0.384 0.526 0.526 0.458 0.426 0.014 0.042 0.078 0.002 1.000 1.000 0.990 0.990 0.280 0.450 0.604 0.258

p=2000 and n=50
d1 0.216 0.204 0.142 0.072 0.188 0.192 0.118 0.048 0.230 0.226 0.146 0.078 0.000 0.000 0.000 0.000 0.758 0.596 0.334 0.282 0.106 0.150 0.184 0.086
d2 0.342 0.316 0.206 0.144 0.308 0.276 0.200 0.124 0.348 0.320 0.232 0.166 0.000 0.000 0.004 0.000 0.890 0.762 0.486 0.448 0.130 0.196 0.256 0.100
d3 0.428 0.406 0.264 0.196 0.412 0.356 0.252 0.182 0.436 0.390 0.294 0.216 0.002 0.002 0.008 0.000 0.934 0.850 0.578 0.544 0.152 0.222 0.304 0.118

p=2000 and n=100
d1 0.340 0.288 0.198 0.146 0.304 0.280 0.194 0.132 0.348 0.320 0.232 0.170 0.000 0.008 0.004 0.000 1.000 0.998 0.900 0.900 0.192 0.308 0.464 0.180
d2 0.416 0.386 0.286 0.238 0.400 0.386 0.272 0.226 0.434 0.412 0.302 0.260 0.000 0.010 0.012 0.000 1.000 1.000 0.966 0.966 0.236 0.388 0.534 0.224
d3 0.462 0.428 0.336 0.296 0.450 0.424 0.330 0.284 0.480 0.452 0.368 0.322 0.000 0.010 0.020 0.000 1.000 1.000 0.978 0.978 0.266 0.434 0.588 0.254

Table 6. The 5%, 25%, 50%, 75%, and 95% quantiles of the minimum model size S out of 500 replications in Example 3

DC-SIS MDC-SIS SIS SIRS τ∗b -SIS RRCS
5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Case 1: p=1000 and n=50
6 29 82 387 933 7 28 85 366 945 6 27 80 416 922 288 551 723 896 989 3 6 18 52 486 5 66 397 773 966

Case 2: p=1000 and n=100
5 23 127 612 949 5 25 141 654 961 3 25 141 654 961 154 403 628 829 976 3 3 3 7 23 4 56 275 687 951

Case 3: p=2000 and n=50
9 45 156 690 1827 13 56 173 710 1838 8 46 153 727 1841 482 1056 1433 1781 1960 3 11 31 93 927 6 147 673 1485 1898

Case 4: p=2000 and n=100
8 44 250 1249 1951 8 49 259 1310 1924 3 39 245 1226 1924 407 939 1321 1681 1950 3 3 4 9 33 4 61 370 1176 1886
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Table 7. The proportions of Pa in Example 4

Pa DC-SIS MDC-SIS SIS SIRS τ∗
b -SIS RRCS

Model

Size Size Size Size Size Size
d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3

p=1000 and n=50

M1 0.584 0.592 0.608 0.534 0.546 0.566 0.530 0.552 0.576 0.000 0.000 0.002 0.612 0.626 0.642 0.618 0.642 0.674
M2 0.152 0.272 0.350 0.122 0.228 0.302 0.108 0.222 0.292 0.000 0.000 0.000 0.612 0.626 0.648 0.606 0.606 0.606
M3 0.066 0.126 0.184 0.052 0.124 0.186 0.074 0.160 0.214 0.000 0.000 0.000 0.596 0.598 0.600 0.596 0.596 0.598

p=1000 and n=100

M1 0.566 0.588 0.622 0.538 0.588 0.604 0.532 0.582 0.610 0.000 0.000 0.000 0.764 0.852 0.888 0.810 0.892 0.920
M2 0.376 0.462 0.500 0.348 0.456 0.496 0.338 0.456 0.496 0.000 0.000 0.000 0.668 0.734 0.776 0.574 0.574 0.576
M3 0.148 0.252 0.324 0.136 0.238 0.310 0.178 0.276 0.354 0.000 0.000 0.000 0.632 0.650 0.668 0.608 0.608 0.612

p=2000 and n=50

M1 0.614 0.614 0.618 0.548 0.560 0.576 0.548 0.564 0.576 0.000 0.000 0.000 0.642 0.648 0.650 0.642 0.658 0.670
M2 0.116 0.198 0.266 0.086 0.142 0.180 0.060 0.120 0.166 0.000 0.000 0.000 0.638 0.646 0.652 0.634 0.634 0.634
M3 0.026 0.056 0.092 0.020 0.050 0.078 0.052 0.088 0.108 0.000 0.000 0.000 0.596 0.596 0.598 0.596 0.596 0.596

p=2000 and n=100

M1 0.572 0.584 0.594 0.518 0.548 0.564 0.514 0.536 0.562 0.000 0.000 0.000 0.656 0.736 0.780 0.696 0.784 0.820
M2 0.264 0.358 0.416 0.222 0.316 0.382 0.192 0.296 0.388 0.000 0.000 0.000 0.636 0.698 0.728 0.578 0.578 0.578
M3 0.056 0.120 0.164 0.052 0.112 0.164 0.092 0.160 0.214 0.000 0.000 0.000 0.586 0.596 0.602 0.586 0.586 0.586
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Table 8. The proportions of Ps in Example 4

Ps DC-SIS MDC-SIS SIS SIRS τ∗
b -SIS RRCS

Model

size size size size size size
d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3

p=1000 and n=50

M1

X1 0.626 0.662 0.694 0.598 0.626 0.660 0.594 0.628 0.658 0.004 0.020 0.022 0.700 0.746 0.778 0.722 0.770 0.804
X2 0.636 0.664 0.690 0.618 0.650 0.680 0.618 0.666 0.694 0.008 0.010 0.020 0.722 0.754 0.784 0.738 0.784 0.816
X3 0.650 0.684 0.718 0.624 0.652 0.674 0.624 0.660 0.688 0.018 0.032 0.048 0.730 0.770 0.802 0.758 0.814 0.848

M2

X1 0.366 0.500 0.570 0.314 0.438 0.532 0.290 0.436 0.522 0.002 0.002 0.002 0.794 0.828 0.860 0.622 0.626 0.632
X2 0.382 0.522 0.578 0.360 0.478 0.540 0.320 0.446 0.528 0.006 0.006 0.008 0.768 0.804 0.830 0.696 0.740 0.764
X3 0.224 0.338 0.386 0.202 0.298 0.360 0.186 0.290 0.344 0.008 0.010 0.014 0.656 0.678 0.708 0.618 0.624 0.624

M3

X1 0.170 0.302 0.348 0.162 0.286 0.350 0.196 0.310 0.394 0.006 0.006 0.010 0.782 0.820 0.840 0.612 0.614 0.620
X2 0.162 0.258 0.320 0.164 0.252 0.312 0.180 0.280 0.360 0.000 0.004 0.010 0.640 0.660 0.686 0.602 0.608 0.616
X3 0.134 0.216 0.274 0.128 0.210 0.258 0.152 0.248 0.294 0.008 0.018 0.026 0.622 0.628 0.640 0.634 0.658 0.678

p=1000 and n=100

M1

X1 0.700 0.758 0.796 0.630 0.686 0.716 0.640 0.684 0.718 0.034 0.048 0.066 0.894 0.940 0.964 0.926 0.964 0.974
X2 0.708 0.744 0.788 0.632 0.694 0.704 0.636 0.690 0.718 0.028 0.046 0.062 0.912 0.946 0.962 0.934 0.952 0.970
X3 0.674 0.732 0.764 0.638 0.672 0.692 0.630 0.670 0.690 0.030 0.050 0.066 0.880 0.932 0.944 0.898 0.958 0.966

M2

X1 0.570 0.622 0.648 0.534 0.608 0.638 0.526 0.582 0.618 0.000 0.002 0.004 0.950 0.962 0.976 0.588 0.594 0.604
X2 0.558 0.632 0.644 0.528 0.604 0.628 0.508 0.586 0.616 0.016 0.034 0.048 0.926 0.952 0.962 0.828 0.870 0.904
X3 0.424 0.496 0.534 0.420 0.490 0.528 0.406 0.486 0.522 0.010 0.014 0.028 0.706 0.772 0.812 0.578 0.590 0.598

M3

X1 0.330 0.398 0.460 0.320 0.408 0.456 0.356 0.442 0.486 0.002 0.004 0.012 0.966 0.978 0.992 0.618 0.624 0.632
X2 0.296 0.396 0.440 0.288 0.380 0.438 0.334 0.420 0.482 0.006 0.016 0.020 0.746 0.786 0.820 0.618 0.634 0.652
X3 0.200 0.306 0.370 0.198 0.300 0.370 0.230 0.338 0.398 0.024 0.046 0.070 0.682 0.720 0.736 0.750 0.806 0.826

p=2000 and n=50

M1

X1 0.654 0.674 0.682 0.596 0.620 0.636 0.606 0.632 0.648 0.006 0.016 0.018 0.712 0.736 0.746 0.726 0.750 0.774
X2 0.644 0.660 0.674 0.610 0.634 0.652 0.604 0.632 0.654 0.010 0.012 0.020 0.708 0.732 0.756 0.728 0.770 0.794
X3 0.650 0.660 0.666 0.616 0.634 0.662 0.624 0.642 0.660 0.014 0.016 0.020 0.704 0.742 0.756 0.728 0.768 0.790

M2

X1 0.286 0.416 0.488 0.228 0.340 0.416 0.186 0.314 0.388 0.000 0.000 0.002 0.778 0.822 0.846 0.644 0.646 0.652
X2 0.306 0.410 0.476 0.264 0.374 0.418 0.226 0.350 0.416 0.004 0.004 0.010 0.730 0.768 0.790 0.718 0.746 0.758
X3 0.186 0.274 0.350 0.164 0.234 0.298 0.144 0.216 0.296 0.000 0.000 0.004 0.658 0.674 0.690 0.634 0.636 0.636

M3

X1 0.112 0.178 0.236 0.106 0.172 0.232 0.140 0.208 0.256 0.000 0.000 0.002 0.766 0.806 0.828 0.614 0.624 0.630
X2 0.106 0.158 0.218 0.096 0.150 0.220 0.126 0.194 0.248 0.002 0.004 0.008 0.628 0.658 0.674 0.600 0.604 0.612
X3 0.074 0.126 0.172 0.066 0.118 0.154 0.100 0.154 0.186 0.004 0.012 0.016 0.608 0.616 0.626 0.634 0.652 0.668

p=2000 and n=100

M1

X1 0.650 0.698 0.726 0.612 0.652 0.672 0.606 0.638 0.662 0.008 0.016 0.032 0.794 0.854 0.898 0.830 0.894 0.918
X2 0.652 0.694 0.732 0.622 0.650 0.682 0.608 0.652 0.692 0.018 0.026 0.044 0.824 0.880 0.902 0.860 0.914 0.926
X3 0.682 0.700 0.744 0.610 0.660 0.688 0.618 0.664 0.698 0.014 0.034 0.040 0.860 0.894 0.912 0.888 0.918 0.938

M2

X1 0.470 0.552 0.592 0.428 0.526 0.574 0.426 0.520 0.578 0.000 0.000 0.000 0.916 0.944 0.956 0.582 0.588 0.596
X2 0.480 0.562 0.588 0.422 0.524 0.576 0.408 0.512 0.564 0.010 0.020 0.026 0.880 0.918 0.932 0.780 0.810 0.832
X3 0.330 0.414 0.458 0.300 0.392 0.430 0.268 0.372 0.426 0.004 0.008 0.014 0.692 0.748 0.770 0.580 0.584 0.588

M3

X1 0.184 0.282 0.338 0.158 0.270 0.324 0.210 0.324 0.386 0.002 0.002 0.002 0.926 0.954 0.966 0.588 0.596 0.602
X2 0.156 0.234 0.304 0.138 0.220 0.272 0.192 0.272 0.340 0.000 0.006 0.012 0.668 0.710 0.734 0.590 0.592 0.596
X3 0.120 0.184 0.234 0.112 0.184 0.230 0.160 0.228 0.276 0.008 0.014 0.032 0.626 0.652 0.668 0.676 0.720 0.740
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Table 9. The proportions of Pa and Ps in Example 5

τ∗
b -SIS IPDC BCor-SIS

Ps Pa Ps Pa Ps Pa

M4 : Y = X1 + 1.25X2 + 0.75X8 − 2.4X16 + ε

Size X1 X2 X8 X16 All X1 X2 X8 X16 All X1 X2 X8 X16 All

d1 1.000 1.000 0.682 1.000 0.682 0.948 0.982 0.090 0.974 0.082 1.000 1.000 0.432 1.000 0.432
d2 1.000 1.000 0.814 1.000 0.814 0.978 0.994 0.154 0.988 0.150 1.000 1.000 0.574 1.000 0.574
d3 1.000 1.000 0.866 1.000 0.866 0.984 0.994 0.194 0.994 0.190 1.000 1.000 0.640 1.000 0.640

M5 : Y = 3X1X5 + 2X10 + 2X15 + ε

X1 X5 X10 X15 All X1 X5 X10 X15 All X1 X5 X10 X15 All

d1 0.906 1.000 1.000 1.000 0.906 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 0.996
d2 0.988 1.000 1.000 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
d3 0.992 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

M6 : Y = 3X2
1 + 5X2 + 5X8 − 8X16 + ε

X1 X2 X8 X16 All X1 X2 X8 X16 All X1 X2 X8 X16 All

d1 1.000 1.000 1.000 1.000 1.000 0.975 0.990 0.520 1.000 0.510 1.000 1.000 0.995 1.000 0.995
d2 1.000 1.000 1.000 1.000 1.000 0.975 1.000 0.650 1.000 0.645 1.000 1.000 1.000 1.000 1.000
d3 1.000 1.000 1.000 1.000 1.000 0.985 1.000 0.705 1.000 0.700 1.000 1.000 1.000 1.000 1.000

M7 : Y = 2I(ω > 0)ω + 1 with ω = 5X2
1 − 5X2

2 + 3X8 + 2X16 + ε

X1 X2 X8 X16 All X1 X2 X8 X16 All X1 X2 X8 X16 All

d1 0.994 0.720 1.000 0.874 0.614 1.000 0.398 0.108 0.042 0.000 1.000 0.996 0.998 0.738 0.732
d2 0.998 0.866 1.000 0.922 0.796 1.000 0.576 0.168 0.086 0.010 1.000 0.998 1.000 0.828 0.826
d3 1.000 0.942 1.000 0.940 0.884 1.000 0.696 0.200 0.112 0.020 1.000 1.000 1.000 0.874 0.874

Table 10. Top 5 genes identified by 6 methods and the adjusted R2 and deviance explained of additive models for the
microarray data

Xk1 Xk2 Xk3 Xk4 Xk5 R2 Deviance explained

DC-SIS Msa.2134.0 Msa.2877.0 Msa.26025.0 Msa.5583.0 Msa.1590.0 91.9% 93.8%
MDC-SIS Msa.2877.0 Msa.2134.0 Msa.741.0 Msa.1166.0 Msa.1590.0 93.3% 94.9%

SIS Msa.2134.0 Msa.5794.0 Msa.15442.0 Msa.5727.0 Msa.7019.0 63.3% 72.3%
SIRS Msa.2412.0 Msa.1007.0 Msa.2037.0 Msa.116.0 Msa.16991.0 60.2% 67.9%
τ∗
b -SIS Msa.2877.0 Msa.964.0 Msa.2134.0 Msa.741.0 Msa.3041.0 93.8% 95.2%
RRCS Msa.7019.0 Msa.5794.0 Msa.1166.0 Msa.2877.0 Msa.15442.0 85.2% 88.4%

The parameter settings are respectively and basically
identical with these in Example (1.a) and (2.a) in Pan,
Wang, Xiao and Zhu (2019). We generate (X1, X2, . . . , Xp)
from a multivariate normal distribution with mean zero and
covariance matrix Σ = (σij)p×p. In M4, σij = 0.8|i−j|,
n = 150 and p = 1000. In M5, σij = 0.9|i−j|, n = 200
and p = 2000. In M6, σij = 0.8|i−j|, n = 200 and p = 2000.
In M7, σij = 0.5|i−j|, n = 200 and p = 2000.

From results of M4 in Table 9 we can clearly see that the
point of Pa in three methods is the selection of X8 and all of
them can successfully select predictors X1, X2 and X16. In
this view, τ∗b -SIS performs better. Data in M5 reveal that
IPDC and BCor-SIS are suitable to the linear interaction
model and τ∗b -SIS is also competitive. For M6 and M7, τ

∗
b -

SIS and BCor-SIS outperform IPDC in general.

4. REAL DATA ANALYSIS

In this Section, we apply the proposed method to the car-
diomyopathy microarray dataset, which was also analyzed

by Segal, Dahlquist and Conklin (2003), Hall and Miller
(2009), Li, Zhong and Zhu (2012), among others. We aim to
identify a set of influential genes for overexpression of a G
protein-coupled receptor (Ro1) in mice, which is beneficial
to understand types of human heart disease. The dataset
includes the information collected from n = 30 mice. The
Ro1 expression level is the response Y , and other p = 6319
gene expression levels are the predictors Xk’s.

First, we rank the predictors through all the six screening
approaches and choose the top 5 genes which are listed in
Table 10. To assess the performance of these 6 procedures,
we fit the following additive model:

Y = 
k1(Xk1) + 
k2(Xk2) + 
k3(Xk3) + 
k4(Xk4)

+ 
k5(Xk5) + εk, k = 1, 2, 3, 4, 5, 6,

where k corresponds to different method, respectively. We
use the R “mgcv” package to fit the unknown link func-
tion 
ki and gain the results of adjusted R2 and deviance
explained for the models. As we know, the larger the val-
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ues are, the better the procedure performs. Thus, we can
conclude that τ∗b -SIS performs well in identifying a set of
influential genes.

APPENDIX A. SOME LEMMAS

The following two lemmas are quoted from Lemma
5.6.1.A and Theorem 5.6.1.A in Serfling (2009), which play
an important role in the proof of Theorem 1.

Lemma 1. Let μ = E(Y ). If P (a ≤ Y ≤ b) = 1, then

E [exp {s(Y − μ)}] ≤ exp
{
s2(b− a)2/8

}
holds for any s > 0.

Lemma 2. Let h(Y1, . . . , Ym) be a kernel of the U–statistic
Un, and θ = E{h(Y1, . . . , Ym)}. If a ≤ h(Y1, . . . , Ym) ≤ b,
then for any t > 0 and n ≥ m,

P (Un − θ ≥ t) ≤ exp
{
−2�n/m�t2/(b− a)2

}
,

where �n/m� denotes the integer part of n/m.

Owing to the symmetry of U–statistics, it follows from
Lemma 2 that

P (|Un − θ| ≥ t) ≤ 2 exp
{
−2�n/m�t2/(b− a)2

}
.

APPENDIX B. PROOF OF THEOREM 1

Some notations are first introduced before giving the
proof. Let {X ′

k, Y
′}, {X ′′

k , Y
′′}, {X ′′′

k , Y ′′′} be independent
copies of {Xk, Y }, and define

Sk1 = E [I(Xk, X
′
k < X ′′

k , X
′′′
k )I(Y, Y ′ < Y ′′, Y ′′′)] ,

Sk2 = E [I(Xk, X
′
k < X ′′

k , X
′′′
k )I(Y, Y ′ > Y ′′, Y ′′′)] ,

Sk3 = E [I(Xk, X
′
k < X ′′

k , X
′′′
k )I(Y, Y ′ < Y ′′, Y ′′′)] ,

and their sample counterparts

Ŝk1 =
1

n4

n∑

i,j,l,m=1

[I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj < Yl, Ym)] ,

Ŝk2 =
1

n4

n∑

i,j,l,m=1

[I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj > Yl, Ym)] ,

Ŝk3 =
1

n4

n∑

i,j,l,m=1

[I(Xik, Xjk < Xlk, Xmk)I(Yi, Yl < Yj , Ym)] .

By the definitions of τ∗ and τ̂∗, it follows that

τ∗(Xk, Y ) = 4Sk1 + 4Sk2 − 8Sk3,

τ̂∗(Xk, Y ) = 4Ŝk1 + 4Ŝk2 − 8Ŝk3.

We aim to show the uniform consistency of the denomi-
nator and the numerator of ω̂k under regularity conditions,
respectively. And we only deal with the numerator in the fol-
lowing in that the denominator has a similar form compared

with the numerator. Throughout the proof, the notations C
and c are generic constants, which may take different values
at each appearance.

We first deal with Ŝk1. Define

Ŝ∗
k1 =

1(n
4

)
∑

1≤i<j<l<m≤n

[I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj < Yl, Ym)]

=
1

n(n− 1)(n− 2)(n− 3)

×
∑

i �=j �=l�=m

[I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj < Yl, Ym)],

where the second equality follows from the lemma in Ser-
fling (2009, Sec. 5.7.3). Clearly, Ŝ∗

k1 is a U statistic and the
following relation holds:

Ŝk1 =
(n− 1)(n− 2)(n− 3)

n3
Ŝ∗
k1.

We shall establish the uniform consistency of Ŝ∗
k1. By the

Cauchy-Schwartz inequality,

Sk1 = E [I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj < Yl, Ym)]

≤ {EI(Xik, Xjk < Xlk, Xmk)EI(Yi, Yj < Yl, Ym)} 1
2

≤ 1,

which implies that Sk1 is bounded. For any given ε > 0,
take n large enough such that Sk1/n < ε. Then, it can be
shown that

P
(∣∣∣Ŝk1 − Sk1

∣∣∣ ≥ 7ε
)

(B.1)

=P

(∣∣∣∣ (n− 1)(n− 2)(n− 3)

n3
Ŝ∗
k1 −

(n− 1)(n− 2)(n− 3)

n3
Sk1

−6n2 − 11n+ 6

n3
Sk1

∣∣∣∣ ≥ 7ε

)

≤ P

(∣∣∣∣ (n− 1)(n− 2)(n− 3)

n3
(Ŝ∗

k1 − Sk1)

∣∣∣∣
≥ 7ε− 6n2 − 11n+ 6

n3
Sk1

)

≤ P
(∣∣∣Ŝ∗

k1 − Sk1

∣∣∣ ≥ ε
)
.

To establish the uniform consistency of Ŝk1, it thus suffices
to show the uniform consistency of Ŝ∗

k1.
Let

h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

= I(Xik, Xjk < Xlk, Xmk)I(Yi, Yj < Yl, Ym)

be the kernel of the U statistic Ŝ∗
k1. We decompose the kernel

function h1 into two parts:

h1 = h1I(h1 ≤ M) + h1I(h1 > M),
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where M will be specified in the following. The U statistic
can now be written as follows:

Ŝ∗
k1 =

1

n(n− 1)(n− 2)(n− 3)

×
∑

i �=j �=l �=m

h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

× I{h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym) ≤ M}

+
1

n(n− 1)(n− 2)(n− 3)

×
∑

i �=j �=l �=m

h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

× I{h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym) > M}
:= Ŝ∗

k1,1 + Ŝ∗
k1,2.

Accordingly, we decompose Sk1 into two parts:

Sk1 = E [h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

×I{h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym) ≤ M}]
+ E [h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

×I{h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym) > M}]
:= Sk1,1 + Sk1,2.

Clearly, Ŝ∗
k1,1 and Ŝ∗

k1,2 are unbiased estimators of Sk1,1 and
Sk1,2, respectively.

We prove the consistency of Ŝ∗
k1,1 first. By Markov’s in-

equality, for any t > 0, we have

P
(
Ŝ∗
k1,1 − Sk1,1 ≥ ε

)
≤ exp(−tε) exp (−tSk1,1)E

{
exp

(
tŜ∗

k1,1

)}
.

Note that any U statistic can be represented as an average
of iid random variables by Serfling (2009, Sec. 5.1.6). That
is,

Ŝ∗
k1,1 = (n!)−1

∑
n!

Ω(X1k, Y1; . . . ;Xnk, Yn),

where
∑

n! denotes the summation over all possible per-
mutations of (1, . . . , n), and each Ω(X1k, Y1; . . . ;Xnk, Yn)
is an average of m = �n/4� iid random variables (i.e.,

Ω = m−1
∑

r h
(r)
1 I{h(r)

1 ≤ M}). Since the exponential func-
tion is convex, it follows from Jensen’s inequality that, for
0 < t ≤ 2s0,

E
{
exp

(
tŜ∗

k1,1

)}

= E

[
exp

{
t(n!)−1

∑
n!

Ω(X1k, Y1; . . . ;Xnk, Yn)

}]

≤ (n!)−1
∑
n!

E [exp{tΩ(X1k, Y1; . . . ;Xnk, Yn)}]

= Em
[
exp

(
m−1th

(r)
1 I

{
h
(r)
1 ≤ M

})]
.

The above inequality, together with Lemma 1, yields that

P
(
Ŝ∗
k1,1 − Sk1,1 ≥ ε

)
≤ exp(−tε)Em

{
exp

(
m−1t

[
h
(r)
1 I

{
h
(r)
1 ≤ M

}
− Sk1,1

])}
≤ exp{−tε+M2t2/(8m)}.

By choosing t = 4εm/M2, we have

P
(
Ŝ∗
k1,1 − Sk1,1 ≥ ε

)
≤ exp

{
−2ε2m/M2

}
.

Therefore, by the symmetry of U statistics, we can obtain
that

P
(∣∣∣Ŝ∗

k1,1 − Sk1,1

∣∣∣ ≥ ε
)
≤ 2 exp

{
−2ε2m/M2

}
.(B.2)

Then we show the consistency of Ŝ∗
k1,2. By Cauchy-

Schwartz and Markov’s inequalities, for any s′ > 0, we have

S2
k1,2 ≤ E

{
h2
1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)

}
× P{h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym) > M}

≤ E{h2
1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)}

× E[exp{s′h1(Xik, Yi;Xjk, Yj ;Xlk, Yl;Xmk, Ym)}]
· exp{−s′M}.

If we choose M = cnγ , where 0 < γ < 1/2−κ, then Sk1,2 ≤
ε/2 for sufficiently large n. Thus,

P
(∣∣∣Ŝ∗

k1,2 − Sk1,2

∣∣∣ > ε
)
≤ P

(∣∣∣Ŝ∗
k1,2

∣∣∣ > ε/2
)
.

Note that for any s > 0, there holds that

P
(∣∣∣Ŝ∗

k1,2

∣∣∣ > ε/2
)
≤ exp{−sε/2}E

{
exp

(
s
∣∣∣Ŝ∗

k1,2

∣∣∣)}
≤ C exp(−sε/2).

It follows that

P
(∣∣∣Ŝ∗

k1,2 − Sk1,2

∣∣∣ > ε
)
≤ C exp(−sε/2).(B.3)

Recall that M = cnγ , by (B.1), (B.2) and (B.3), we have

P
(∣∣∣Ŝk1 − Sk1

∣∣∣ ≥ 14ε
)
≤ 2 exp(−ε2n1−2γ/2)(B.4)

+ C exp(−sε/2).

The uniform consistency of Ŝk2 and Ŝk3 can be estab-
lished similarly, that is

P
(∣∣∣Ŝk2 − Sk2

∣∣∣ ≥ 14ε
)
≤ 2 exp(−ε2n1−2γ/2)(B.5)

+ C exp(−sε/2),

P
(∣∣∣Ŝk3 − Sk3

∣∣∣ ≥ 14ε
)
≤ 2 exp(−ε2n1−2γ/2)(B.6)

+ C exp(−sε/2).
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We thus have

P
{∣∣∣(4Ŝk1 + 4Ŝk2 − 8Ŝk3)− (4Sk1 + 4Sk2 − 8Sk3)

∣∣∣ ≥ ε
}

≤ P
(∣∣∣Ŝk1 − Sk1

∣∣∣ ≥ ε/16
)
+ P

(∣∣∣Ŝk2 − Sk2

∣∣∣ ≥ ε/16
)

+ P
(∣∣∣Ŝk3 − Sk3

∣∣∣ ≥ ε/16
)

= O
(
exp

{
−c1ε

2n1−2γ
})

,

where c1 > 0 is a constant. Till now, the convergence rate
of the numerator of ω̂k is obtained.

Following similar arguments, we can also obtain the con-
vergence rate of the denominator. In addition, it can be
shown that the convergence rate of ω̂k is the same as that
of its numerator. Now let ε = cn−κ, where κ is such that
0 < κ+ γ < 1/2, then it follows that

P
(
max
1≤k≤p

|ω̂k −ωk| ≥ cn−κ
)
≤ p max

1≤k≤p
P
(
|ω̂k −ωk| ≥ cn−κ

)
≤ O

(
p exp{−c1n

1−2(κ+γ)}
)

≤ O
(
p exp{−c1n

1−2κ}
)
.

Thus, the first part of Theorem 1 is proved.
Finally, we show the second part of Theorem 1. If D �

D̂∗, then there exists some k0 ∈ D such that ω̂k0 < cn−κ.
It follows from the condition (C1) that |ω̂k0 − ωk0 | > cn−κ.
Thus,

P
(
D � D̂∗

)
≤ P

(
max
k∈D

|ω̂k − ωk| ≥ cn−κ

)
.

Therefore,

P
(
D ⊆ D̂∗

)
≥ 1− P

(
max
k∈D

|ω̂k − ωk| ≥ cn−κ

)
≥ 1−O

(
sn exp{−c1n

1−2κ}
)
,

where sn is the cardinality of D. The proof of Theorem 1 is
completed.

APPENDIX C. PROOF OF THEOREM 2

The proof of Theorem 2 follows from that of Theorem 2.2
in Cui, Li and Zhong (2015). In fact,

P

{
min
k∈D

ω̂k −max
k∈I

ω̂k < c2/2

}

≤ P

{(
min
k∈D

ω̂k − max
k∈I

ω̂k

)
−
(
min
k∈D

ωk − max
k∈I

ωk

)
< −c2/2

}

≤ P

{∣∣∣∣
(
min
k∈D

ω̂k − max
k∈I

ω̂k

)
−
(
min
k∈D

ωk − max
k∈I

ωk

)∣∣∣∣> c2/2

}

≤ P

{
2 max
1≤k≤p

|ω̂k − ωk| > c2/2

}
≤ O

{
p exp(−c3n)

}
.

Note that log(p)/n = o(1) implies that p ≤ exp{(c3/2)n}
for sufficiently large n. Thus, for some sufficiently large n0,

∞∑
n=n0

p exp(−c3n) ≤ exp {(c3/2)n− c3n} ≤
∞∑

n=n0

n−2 < +∞.

Therefore, by the Borel–Contelli lemma, we have

lim inf
n→∞

{
min
k∈D

ω̂k −max
k∈I

ω̂k

}
≥ c2/2 > 0, a.s..

APPENDIX D. PROOF OF THEOREM 3

For any c > 0, the number of {k1 : |ωk1 | > (c/2)n−κ}
is bounded by O (nκ

∑p
k=1 |ωk|). Then on the set

Bn = {max1≤k≤p |ω̂k − ωk| ≤ (c/2)n−κ}, the number
of {k2 : |ω̂k2 | > cn−κ} can not exceed the number of
{k1 : |ωk1 | > (c/2)n−κ}. Therefore,

P

{∣∣∣D̂∗
∣∣∣ ≤ O

(
nκ

p∑
k=1

|ωk|
)}

≥ P (Bn) ,

which, together with Theorem 1, yields Theorem 3.
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