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Prior conditioned on scale parameter for Bayesian
quantile LASSO and its generalizations

ZHONGHENG CAI* AND DONGCHU SUN

Several undesirable issues exist in the Bayesian quantile
LASSO and its two generalizations, quantile group LASSO
and bridge quantile regression (Alhamzawi et al. [1]; Al-
hamzawi and Algamal [2]; Li et al. [21]). In this paper, we
numerically show that, the joint posterior may be multi-
modal using unconditional prior for the regression coeffi-
cients and the posterior estimates may be sensitive to the
hyperparameters in Gamma prior frequently used for the
scale parameter. We also theoretically illustrate that the
joint posterior may be improper when an invariant prior
is used for the scale parameter, especially when predictors
outnumber observations. To resolve the issues in a unified
framework, we propose applying the priors conditioned on
the scale parameter for the coefficients along with invari-
ant prior to the scale parameter. We justify the prior choice
under one general likelihood including asymmetric Laplace
density and the common class of conditioned priors by es-
tablishing the corresponding sufficient and necessary con-
dition of the posterior propriety. In addition, we develop
ready-to-use partially collapsed Gibbs sampling algorithms
for all methods to aid computations. Simulation studies and
a real data example demonstrate that our methods usually
outperform the original Bayesian approaches.

KEYWORDS AND PHRASES: Asymmetric Laplace den-
sity, Bayesian quantile LASSO, Bridge regression, Group
LASSO, Posterior propriety.

1. INTRODUCTION

While normal linear regression has been used for several
centuries, quantile regression, first proposed by Koenker and
Bassett [14], has emerged as a useful supplement to ordinary
mean regression and has widespread applications. Given a
fixed quantile level p, the linear quantile regression for the
response y; is

yi:w;ﬁ+uia i=1,---,m,

where x; € R™ is the explanatory variables with unknown
regression coefficients 8 = (81, -+, Bm) and p; is the inde-
pendent error term whose distribution is restricted to have
the pth quantile zero. From a Bayesian perspective, one
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could either model the error distribution as mixture distri-
butions based on the Dirichlet process (Kottas and Krnjaji¢
[16]) or assume p; follows asymmetric Laplace distribution
(ALD) proposed by Yu and Moyeed [36]. We focus on the
latter for guaranteeing posterior consistency of Bayesian es-
timators (Sriram et al. [30]) and robustness (Yu and Moyeed
[36]) even if the random errors do not follow ALD. The den-
sity of ALD(u,o,p) with location parameter p € R, scale
parameter o > 0 and pth quantile is

(1)

where p,(z) is called a check function,

pola) = {p‘”’

p(ylp, 0,p) = p(1 — p)oexp(—op,(y — 1)),

if x >0,
if x <0.

(2)

(p - 1)1‘,

Koenker and Bassett [14] firstly proposed to solve

(3) min} _ pp(yi — #8),
=1

to obtain the estimator of linear quantile coefficients. In
constrast, with ALD, the likelihood function based on y =

(y17 U 7yn)/ is
(4) p(ylp,B,0) =p" (1 —p)"c" exp(—0c pr(yi —x;0)).
=1

Clearly, with a constant prior on 3, the posterior mode of
B given o is the minimizer of (3).

Nowadays, regularization approaches for quantile regres-
sion have received considerable attention for improving pre-
diction accuracy and selecting active covariates among a
large set of candidate covariates (Jiang et al. [18]; Jiang
et al. [19]; Jiang et al. [20]; Li et al. [22]; Li and Zhu [23];
Wang et al. [33]; Wu and Liu [34]). It can be formulated as,

G)  min {Zm% ~ i)+ Af(ﬁ)} ,

where A > 0 is the regularization parameter and f(3) is
a given nonnegative penalty for 3. Three penalty functions
are considered in this paper.
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(a). Least absolute shrinkage and selection operator
(LASSO) (Tibshirani [31]) corresponds to

= 6l
i=1

. Suppose that the predictors are classified into G groups
and 3, is the coefficient vector of the gth group. Define

w; = (xiy, -, wig), B = (B, .Ba)s 1Bk,
1/[S’K' ,Bq,K is a known dg4 x dg positive definite ma-

trix and Z _, dg = m. Then the group LASSO (Yuan
and Lin [37T) corresponds to

G
= ZHﬁgHKg'
g=1

. The bridge quantile regression corresponds to

(6)

(7)

(®)

for some g > 0.

To solve (5) under the Bayesian framework, the prior for
B given (o, \)

(9> p(,3|07 )‘) = Co,)\ eXp<_0')\f(,6)>, B e ]Rm,

is utilized, where Cj , is the normalizing constant depending

on (o,A). The posterior mode of B is the solution to (5)

given (o,)\). In the fully Bayesian analysis, it is often to

set n = Ao and add the independent Gamma prior either
n (o,7n?) in Bayesian quantile LASSO (BQL) and Bayesian

quantile group LASSO (BQGL) (Alhamzawi et al. [2]; Li et

al., [21]) as,

(10) o ~ Gamma(a,b), n* ~ Gamma(c,d),

or (o,7n) in Bayesian bridge quantile regression (BBQR) (Al-

hamzawi and Algamal [1]) as,

(11)

where a random variable X ~ Gamma(c, /3) has the density
BT Y (a)z* L exp(—pBz),z > 0. In fact, the prior (9) turns
out to be irrelevant to ¢ when using the parametrization
1n = o). We refer it to the unconditional prior for 8. With
the unconditional prior for 3 and Gamma prior for o, several
issues arise.

o ~ Gamma(a,b), n ~ Gamma(c,d),

e The joint posterior may be multimodal. It slows down
the convergence of the Gibbs sampler and the point esti-
mate may be computed through multiple modes, which
leads to the inaccurate estimators (Kyung et al. [15];
Park and Casella [27]).

e The choices of the hyperparameters ¢ and b may have
strong influences on the posterior estimates.

460 Z. Cai and D. Sun

We demonstrate the two issues above via simulation studies
in Section 4. For the first, it was firstly observed by Park
and Casella [27] in the Bayesian LASSO. We observe the
similar phenomenon in BQL. For the second, it is common
to utilize invariant prior (Berger [5]) on o for an objective
purpose. However, as we prove in Section 2, the posterior
(B,0,m%|y) or (B,0,m|y) does not exist with the invariant
prior for ¢ when the predictors outnumber the observations
(large p and small n). We argue that the posterior impro-
priety deserves more attention since it exists not only in
the BQL and its generalizations but also in the counterpart
of Bayesian mean regularized regression such as Bayesian
bridge regression (BBR) (Polson et al. [28]). To demonstrate
this point, we propose one general density function including
normal distribution and ALD as special cases with one gen-
eral prior for 3 accommodating LASSO, group LASSO and
bridge penalty. We further establish conditions for posterior
propriety when the unconditional prior is imposed on the re-
gression coefficients. To solve all aforementioned problems,
we propose the prior for B conditioned on scale parameter
and obtain the sufficient and necessary conditions for the
existence of the joint posterior.

The remainder of this paper is as follows. In Section 2,
we formally define a general class of likelihood with a gen-
eralized prior for the regression coefficients and derive the
conditions of posterior propriety with respect to Bayesian
regularized approaches. In Section 3, we develop the par-
tially collapsed Gibbs sampling algorithm for BQL with its
two generalizations. In Sections 4 and 5, a wide range of sim-
ulation studies and one real data example are conducted. In
Section 6, we draw the conclusions and discuss some feasible
future directions of our work.

2. PRIOR CONDITIONED ON THE SCALE
PARAMETER

Suppose that e; in e = (e1,--- ,e,)" are independently
and identically distributed (i.i.d). We consider a general
class of density ((e) = [[i_, ((e;) and assume that there
exists ¢1 < 0,¢2 € R,q3 < 0 and ¢4 € R such that
(12) +aq2 < log(¢(e)) < gsllell;

el +q4

for any e € IR", where ||.||; and ||.||, are the pre-norms
(Horn and Johnson [11]) on R™ and k; > 0 is fixed. One
pre-norm is a real-valued function on a finite-dimensional
real or complex vector space satisfying the three hypotheses
of positivity, homogeneity, and continuity. All norms are the
pre-norms, however, the converse is not true. For example,
lally = (i, Jail9)Y/9 for 0 < ¢ < 1 is a pre-norm not a
norm.

(12) includes standard normal distribution, e; ~ N(0, 1),
by taking [|ll = [1lr = 1|2 k1 = 2.1 = a5 = —0.5,q2 =
qa = —nlIn(v/27) and e; ~ALD(0,1,p) by taking ||.||; =
Il» = 1I-ll1, k1 = 1,¢1 = —max(p,1 — p),q3 = —min(p,1 —



p),q¢2 = g4 = nln(p(l — p)), respectively. With the scale
parameter o and linear trend X 3, the likelihood of (o, B) is

n

o" [[¢(o(y: — zi8)).

i=1

(13)

For 3, we consider the generalized unconditional prior which
is proportional to

n*z exp(—nF(8)),

where F(0) satisfies that F'/%2(3) is a pre-norm on R™
for some ko > 0. (14) includes LASSO, group LASSO and
bridge penalty by ko taking 1,1, and ¢ with F(3) tak-
ing (6), (7) and (8), respectively. In addition, to include
the prior (10) and (11), we impose the independent Gamma
prior on (o1, n")

(14)

(15) (0™, 0") ~ Ga(a, b)Ga(c, d),

with two choices of h, h > 2 or h = 1. Here, we allow a,c
to be the real and b,d to be nonnegative to include some
limiting cases of Gamma priors such as invariant prior. With
the likelihood (13) and prior (14), (15), we have the following
theorem.

Theorem 1. Assume the design matriz X = (x1,- -+ ,@y)
has the rank v, a € R,b > 0,¢ € R and d > 0 in (15).
Define SSE = y/'(I,, — X(X'X)"1X")y.

(a). When h > 2, if the posterior of (B3, %, n"|y) is proper,
Conditions A, B and C hold.

Condition A. One of the following holds:

(A1.) d > 0,n+ aky > 0;

(A2.)d=0,c<0.

Condition B. One of the following holds:

(B1.) SSE+b > 0,1 + hkac > 0;

(B2.) SSE+b=0,n—1r+ak; <O0.

Condition C. n + aky + hkac > 0.

When h = 1, Condition A, B and C are also sufficient
for the posterior propriety of (3,*,n|y).

().

In Theorem 1, (a) provides necessary conditions of pos-
terior propriety for h > 2 and (b) indicates that Conditions
in (a) are also sufficient for A = 1. One case of interest is
that an invariant prior is imposed for o' (a = b = 0). Ta-
ble 1 presents the corresponding justifications of posterior
propriety using a normal distribution or ALD as the like-
lihood. Notice that implications of Theorem 1 include but
not limited to Table 1.

For BQL and BQGL, Li et al. [21] employed the prior
in (15) with k1 = 1, h = 2. For BBQR, Alhamzawi and Al-
gamal [1] utilized k; = 1,h = 1 for BBQR. They all chose
a=>b=c=d=0.1.Liet al. [21] stated that the vague
Gamma prior was employed for an almost noninformative
purpose. However, as demonstrated in Table 1, the joint pos-
terior is improper with invariant priors (a =b=c=d =0

n (15)) for (o,n). Hence, this specification for the hyperpa-
rameters is unfavorable. Furthermore, it is inconvenient to
utilize invariant prior for scale component ¢ with the uncon-
ditional prior (14) for 8. The reason is that the joint poste-
rior does not exist when SSE=0 even with a proper Gamma
prior for n". Therefore, we advise extra caution when one
intends to use prior (15) with an invariant prior for o.

To enable a safe use for invariant prior for o, we propose
a general prior for 3,

(16) A2 o™ exp(—AF (03)).

The main difference between prior (14) and (16) is that our
prior is associated with scale parameter ¢ and hence named
as conditional prior. For the prior on o, we adopt the in-
variant prior, p(c) o o~ !, which is preferable when little
information is available. For the prior on A\, we consider two
cases,

1. When k1 = ko = k, we assume a general type prior,
g(A), for A\, where g(.) is a pre-specified function.

2. When k; # ko, we impose a prior Gamma(ag, bg), ag >
0,5y > 0.

We have the following theorem.

Theorem 2. When ((e) is log-concave, F'/*2(8) is a norm
on R™, ke > 1 and m +n > ky, the posterior of (3,0 |y)
given A is unimodal. In addition,

(a). When ki = ko = k, the sufficient and necessary condi-
tion for the posterior propriety of (3,0", Ny) is

o When SSE=0, there exists € > 0 such that
(17) /0 AT g(\)dX + /Oo g(\)d < oco.

o When SSE > 0, there exists € > 0 such that
(18) /0 AEg(N)d\ + /Oo g(\)d\ < oco.

(b). When ki # ko, the sufficient and necessary condi-
tion for the posterior propriety of (B,c", A|y) is when
SSE=0, agks + 1 > n.

With Theorem 2, Table 2 displays conditions for posterior
propriety when L(y) is normal or ALD for a quick reference.
One case of interest is SSE=0. It occurs when predictors out-
number observations and X has full row rank (r = n). We
can see from Table 2, when k1 = k3, we only need a proper
prior for A to ensure a proper joint posterior. When k1 # ko,
there is no constraint on Gamma prior. Theorem 2 also im-
plies that, under our framework, the joint posterior given
A for BQL, BQGL and BBQR (¢ > 1) is unimodal. There-
fore, compared with existing literature of BQL, BQGL and
BBQR, our proposed priors guarantee a proper posterior
with an invariant prior for o when SSE=0. In addition, with
proposed priors, there is no concern for the multimodality
regarding BQL, BQGL and BBQR with ¢ > 1.

Prior conditioned on scale parameter for Bayesian quantile LASSO and its generalizations 461



Table 1. Summary of the posterior propriety under ALD and normal distribution by different penalties in Theorem 1. The

‘

symbol “+" indicates positive values and “«"” means that it holds when h = 1

Density Penalty c d SSE=0 SSE>0
LASSO 0 0 %mproper 1mpr0pir
+ + umproper proper
ALD Group LASSO 0 0 - PObe 1mpToper
+ + improper proper
Bridge 0 0 improper 1mprop<ir
+ + improper proper
LASSO 0 0 improper 1mprop<ir
+ + improper proper
Normal Group LASSO 0 0 HPToper HPTOPer
+ + improper proper
Bridge 0 0 improper 1mprop$r
+ + improper proper

Table 2. Summary of the posterior propriety under ALD and normal distribution by different penalties in Theorem 2

Likelihood Penalty Is k1 = ko Prior for A Is posterior unimodal Is posterior proper when SSE=0 and r = n
LASSO Yes g(N\) Yes Yes, if g(A) is proper
ALD Group LASSO Yes g(N\) Yes Yes, if g(\) is proper
Bridge No Gammal(ao, bo) Yes, if g > 1 Yes
LASSO Yes g(N) Yes Yes, if g(\) is proper
Normal Group LASSO Yes g(A\) Yes Yes, if g(A) is proper
Bridge No Gammal(ag, bo) Yes, if ¢ > 1 Yes
Remark 1. Polson et al. [28] proposed BBR based on ||y — X3|/** and F(B) in the joint posterior to tractable

two distinct scale mixture representations of the general-
ized Gaussian density. They employed the prior (15) with
a = b = 0. However, with the Gibbs sampling developed by
Polson et al. [28], Mallick and Yi [26] found that posterior
samples did not converge via simulation studies for large p
small n case. Table 1 shows that the joint posterior is im-
proper in this case, which provides a plausible explanation
for this failure in convergence.

Remark 2. When ((e) is normal, Theorem 1 and 2 corre-
sponds to the context of Bayesian regularized regression. In
fact, the advantage of conditional priors for regression coeffi-
cients with invariant prior for the scale parameter has been
identified as unimodality. For example, Park and Casella
[27] proposed these priors should be used for the Bayesian
LASSO to obtain a unimodal posterior. However, to the best
of our knowledge, there is no theoretical evidence to justify
the posterior propriety of such choice. Therefore, Theorem 1
and 2 serve as a complement rationale for using conditional
prior instead of unconditional prior along with the invariant
prior for o.

Remark 3. Notice that Theorem 2 states the conditions
of posterior propriety depends on whether k; is equal to ks.
When k1 = ko, we apply a general prior g(\) for A and estab-
lish the corresponding posterior propriety. However, when
k1 # ko, we employ the Gamma(ag, by) for A\ instead of a
general prior. The major challenge of developing a general
prior for ki # ko lies in transforming the intractable terms
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forms. This can be easily achieved for k1 = ko but not for
k1 # ko. Alternatively, when ki # ko, we specify a Gamma
prior to relate ||y — X8||* and F(8) to tractable expres-
sions. As for specifying a general prior for A, it is of great
interest and deserves further investigation.

3. PARTIALLY COLLAPSED GIBBS
SAMPLING

The Gibbs sampling for our proposed methods could be
performed by introducing latent variables. However, the
sampling for non-standard full conditional distributions,
such as A, is computationally expensive. The partially col-
lapsed Gibbs sampling improve the efficiency for those dis-
tributions by marginalizing out part of latent variables. In
this section, for a fast computation, we derive the partially
collapsed Gibbs sampling algorithms for BQL and its two
generalizations, respectively.

3.1 Bayesian quantile LASSO

We first consider quantile regression with the LASSO
penalty. To facilitate the Gibbs sampling involving ALD,
Kozumi and Kobayashi [17] proved that ALD can be de-
composed as a mixture of an exponential and a scaled
normal distribution. To be specific, if Y is distributed as
ALD(u,0,p),

(19) Yiﬁlsfl—kfzcr*%\/s—lz—!-,u,



where

1y [
& =y

p(1—-p)
s71 ~ Exp(c),z ~ N(0,1), s and z are independent. This
representation allows us to express the quantile regression
model as the normal distribution with the latent variable
s~ ! distributed as exponential.

For the prior of B, which corresponds to F(8) =
o, 1Bil and ko =1 in (16), Li et al. [21] utilized the scale
mixture of normal (SMN) distribution for the Laplace distri-
bution (Andrew and Mallows [4]) to obtain the Gibbs sam-
pler for BQL. Mallick and Yi [25] represented the Laplace
distribution as the scale mixture of uniform (SMU) distri-
bution. They illustrated that SMU provides slightly better
posterior predictions than SMN and has good mixing prop-
erty via extensive simulation studies. Hence, we employed
the SMU for the prior of ; by introducing the latent vari-
able v; as follows,

(20)  Bilvi ~U(—v4,14), v; ~ Gamma(2, o)),

where U(—v;, ;) is the uniform distribution on (—v;, ;). For
the prior of A, we take g(.) to be Gamma(a,b),a > 0,b > 0.
Based on Theorem 2(a), the sufficient and necessary condi-
tion for the posterior propriety of (3,0, A|ly) is a +r > n if
SSE=0. Hence, the shape parameter needs to be chosen care-
fully when SSE=0. As suggested by Park and Casella [27],
the prior density for A should approach 0 sufficiently fast as
A — oo and be relatively flat. We choose a = max(n — r, 1)
when SSE=0 and ¢ = 1 when SSE>0. For the selection
of b, notice that the A in our model can be exactly inter-
preted as the regularization parameter in (5). Therefore,
we could borrow information from the tuned A. We set the
mean of the prior to be the best option of A in (5) chosen by
some criteria including cross validation, BIC or EBIC (Chen
and Chen [7]). Let Aoy be the best A chosen in (5), we set
b= )‘()pt/a-

By introducing the latent variables s = (s1,---,8,)
from the likelihood using (19) and the latent variables
v = (vy, - ,Vy) from the prior using (20), the Gibbs sam-
plers for all the parameters but A can be drawn efficiently.
We marginalize the latent variables (s,v) in (A, s,v|o, B,vy)
using partially collapsed Gibbs sampling (van Dyk and Park
[32]). Define p,(x) = >0 pp(x;), & € R™ and B_y as
the parameter vector 3 excluding the component (;. We
call that a random variable is distributed as generalized in-
verse Gaussian distribution (Jgrgensen [12]), GIG(u, v, w),
if the density is proportional to y“~!exp(—(2vy)~! —
(2vu?)~ty), u > 0,v > 0,w € IR. The partially collapsed
Gibbs sampling procedure in our case is described as follows:

(a). Sample (Ao, B;y) from Gamma(m+a, > .-, |03 +b).

(b). Sample (0|8, s,v;y) from truncated Gamma distribu-
tion, Gammal(ky, k2)I (o < min;(v;]3;| 1)), where

3
k1= 571—&—7717
Zn — p(l —P) Zn -1 ’ a2
kg = 2 Si 1 —+ —4 £ (yz — 5181- — xl,@) Sz)

. Sample (Bx|), 0, B4, 8,v;y) from the truncated nor-
mal N (uy, 02)I(|8k] < vgo™'), where

n
2 -2 -
g = 0,08, E YikTijSi,

i=1
1
2
Ok = —2~m 2 .
o€ D1 TS
Jik=vi—s; = Y 3B
j=1,j#k
(d). Given (A, 0,8,v;y), sample
indep 2 2 13)2 242 -1
s " GIG(/ (€128 (i — wB)%, (0616, + 20)
—1/2),i=1,---,n.

. Given (\, 0,8, s;y), V1, -,V are independent and vy,
is distributed as Exp(A)I(vx > |oBk|). The sampling
can be done by

e Sample v} from Exp(A),
e Set vy = v} + |0fk|.
Since the joint distribution of 3 given other parameters is

(21) N(X'RX)"X'Rg, (X'RX) ) [] 105 < 22,

i=1

where R =diag(¢3s;',--- ,&3sy") and § = y — 871, the
inverse of X’ RX does not exist if X is not full column rank.
Hence, we update the elements of 3 one by one in (¢) rather
than all together.

3.2 Bayesian quantile group LASSO

The first generalization of LASSO is the group LASSO,
which considers the group structure among the predictors.
Suppose that the predictors are grouped into G groups.
With the ALD in (4) acting as the likelihood, the con-
ditional prior for 3 is proportional to (16) with F(3) =
25:1 1Bgl|K, and kz = 1. Using SMN for the generalized
Laplace distribution (Li et al. [21]), the prior can be repre-
sented as,

(22)
dy+1 X202

Bglvg ~ N(O,Vg_lKg), I/g_1 ~ Gamma/( 5 3 ).
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Similar to BQL, we adopt the Gamma prior, Gamma(a, b),
for A\. We propose setting a = max(n — r,1) when SSE=0
and a = 1 when SSE>0. For b, we set b = A\,,¢/a where Agp,
is chosen in (5) by some criteria.

With incorporating the latent variables s = (s, , Sn),
v = (v, - ,vqg) through (19) and (22), we marginalize out
the latent variables (s,v) in (o, ), s,v|3,y) and the par-
tially collapsed Gibbs sampling for (3,0, A, v, s|y) is as fol-
lows:

(a).
(b).

Sample (¢|8, \; y) from Gamma(n +m, p,(y — XB) +
A0 11Bsllxc,)
Sample (\|3,0;y) from

G
Gamma(a + m,UZ 18gllxc, +0).

i=g

. Sample (By|o, A, B—), 8, v;y) from N(py,X,), where

n
Hg = 2g052_2 Zgigzigsia

i=1

n
-1 _ —2 S
Y, =v,Ky+ 08, E $i%igLig,
i=1
G
~ _ —1 /
Uig = Yi —&§18; © — E z;;0;

Jj=1,j#g

. Given (o, A, B,v;y), sample

5: "V GIG(/(61+283) /(v — wB)2, (063652 + 20) 7,
_1/2)7i: L. n.

. Given (o, A, 3, s;vy), sample

v, P GIG(oA(B,K,By) V%, 072272, ~1/2),
g=1---.,G

3.3 Bayesian bridge quantile regression

The second generalization of the LASSO is penalized
quantile regression by solving (5) with penalty (8), which
is an analogy of the bridge regression (Frank and Friedman
[9]). Since k1 # ks for bridge quantile regression in general,
the prior we adopt for (3,0, A) is,

exp(-NoBil"), plo) x -

By Theorem 2(b), the sufficient and necessary condition for
the posterior propriety of (3, o, A|y) is apg+r > n if SSE=0.
In a similar spirit to BQL, we choose ag = max((n—r)/q,1)
for SSE=0 and ag = 1 for SSE>0. For by, one could employ
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the empirical Bayes approach (Casella [6]) to estimate bo,
where the updating rule for by is

k ag
b(() )=

24 -
(24) Eb[(]k—l)()\|y)

and bék) is the estimate of by at the kth iteration. Empiri-
cal Bayes approach may be computationally expensive be-
cause many Gibbs sampler runs are needed. As an alterna-
tive choice, we set by to some small values in the sense of a
flat prior. Our sensitivity analysis in Section 4.2 showed that
the posterior estimates are relatively robust to the choice of
ag and small bg.

We develop the partially collapsed Gibbs sampling to
draw the posterior samples from (8, o, Aly). Mallick and Yi
[26] extended (20) as below,

(25)

1 1
T4 ratt

T ep(—rlt]) = / B
2I‘(%+1) v>|t]a 2V%F(1+ %)

v exp(—7v)dv.

Using (25), generalized Gaussian (GG) prior can be rep-
resented as the SMU. Specifically, if the density of X is
proportional to exp(—7|z|?) given ¢ > 0 and T > 0,

d 1
X =uve,

(26)
where v ~ U[-1,1] and v ~ Gamma(l + 1/¢,7) are in-
dependent. In fact, this representation is universal for the
unimodal density by Khinchine’s theorem (Devroye [8], page
172). It implies that a random variable T' is unimodal if and
only if it is distributed as SY, S ~ UJ0,1] and the distribu-
tion of Y depends on T. S and Y are independent random
variables.

With the latent variables s = (s1,-- , s,) from the like-
lihood and latent variables v = (vq,- -+ ,vy,) from the prior
using (25), all the parameters can be sampled efficiently ex-
cept for A. Similar to BQL, the procedure of partially col-
lapsed Gibbs sampling is as follows,

(a) Sample (Ao, 3;y) from
Gamma(m/q + ag, Z loB:|T + bo).
i=1

(b) Sample (0|3, s,v;y) from truncated Gamma distribu-

1/
tion, Gamma/(ks, k4)I (0 < min; TTZT)’ where

3

ks = §n+m,

ky = zn: sl IM zn:(yi —&sit— w%/@)?si,
— % 4 — % 7



(c). Sample (Bx|\, 0, B4}, 8, ;y) from the truncated nor-
mal N(uux, 03)1(|Bx] < v/%0~"), where

n
2 -2 ~
He = 0,085 E YikLijSi,
i=1
9 1

O = —2 1 2 ’
08y " > i TixSi

m
ik = yi — &18; " — Z 505

J=1,j#k

(d). Given (A, 0,8,v;y), sample

57 GIG( (€ + 263) (91 — 4B, (061657 +20),
—1/2),i=1,---,n.

. Given (\, 0,08, s;y), v1, -,V are independent and vy
is distributed as Exp(A)I(vg > |0Bk|?). The sampling
can be done by

e Sample v} from Exp(A),

o Set v, = v + |ofk|?.

4. SIMULATION STUDIES
4.1 Multimodality of the joint posterior

In this subsection, we conduct the simulation studies to

demonstrate that the unconditional prior for 3 can result in
multimodality of the joint posterior. We generate the data
with the linear model as follows
(27) y=XB+e€ e~ALD(0,07t =0.03,p=0.5).
We take p = 0.5,8 = (5,0),n = 3, tr(X'X) =1 and a =
b =0 in (10) (Bimodality can occur even if the prior for o
is proper). In Figure 1, the joint posterior of (81, 0), (82,0)
and (f1, B2) exhibits severe bimodality. For 1, the center
of left corner is near 0, which is due to the shrinkage of
the LASSO penalty. In contrast, for 85, the posterior is still
bimodal even if the true value is zero. We also conduct the
simulations when p = 0.1 and p = 0.9 (not shown here),
both display the bimodality.

4.2 Sensitivity tests of the hyperparemeters

In this subsection, we test the sensitivity of hyperparam-
eters of Gamma prior in (10) and (23) on the posterior esti-
mates. We equally divide x € [—2,2] into 50 pieces and the
data are generated from

(28) yi=xB+e, & < ALD(0,07! = 0.03,p = 0.5),
i=1,---,50,
with z; = ((1 4 e—4(9c,3—0.3))—1’(1 4 63(3”"_0'2))_1,(1 4

e~ @0 =1 (1 4 5@ =08))=1) and B = (1,1,1,1)". It

) ) )

log(e)

Figure 1. Pairwise contour plot of a posterior density of
(B,log(c)) with p = 0.5. The logarithm of o is used only
because it provides better visual scaling.

indicates that the true curve is

f(x) — (1 + 674(170.3))71 + (1 +63(170.2))71 + (1+
e—4($—0.7))—1 + (1 +e5(x—0.8))—1.

In fact, this function was utilized in Jullion and Lam-
bert [13] to test the sensitivity of hyperparameters of the
Gamma prior on the scale component in Bayesian P-spline.
Figure 2 showed one representative sensitivity analysis. In
the figure, Graphs (a) and (b) used BQL, which is proposed
by Li et al. [21] and employed the unconditional prior (14)
for (3. Here, note that the sensitivity refers to the hyper-
parameters in Gamma prior in (10). Without of the loss of
generality, in Graphs (a) and (b), we keep a = 0.1 fixed
with b varied and b = 0.1 fixed with a varied a, respectively.
For both cases, we set ¢ = d = 0.1. These values are cho-
sen the same as those recommended by Li et al. [21] for an
illustrative and comparative purpose in terms of potential
limitations of using a Gamma prior. As we can see from
the top panel in Figure 2, the fitted curves fluctuate a lot
according to the choice of hyperparameters for ¢ and b. In
contrast, Graphs (c¢) and (d) are generated from BBQR with
the prior (23). Here, the hyperparameter refers to A in (23).
Follow the recommendation from Park and Casella [27], we
choose ap = max(n — r,1) when SSE=0 and a9 = 1 when
SSE>0 in Graph (c). We keep ag = 1 fixed with by varied.
Also, to explore the sensitivity of hyperparemeter ag, with-
out the loss of generality, in Graph (d), we keep by = 0.1
fixed and aq varied, respectively. In this case, the resulting
fitted curves are relatively robust to the choice of hyperpa-
rameter ag and bg.
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Graph (a) Graph (b)

- = a=0.1,6=0.01

- = a001b-0.1 i
.. as 0.1 o

Figure 2. All the curves are fitted with p = 0.5. The true
curve is the black solid line for four subgraphs. Graph (a):
Gamma prior (10) for o with a =0.1,b=0.01,c=d = 0.1
(dash-dotted), a = 0.1,b = 0.1,¢ = d = 0.1 (dotted) and
a=0.1,b=1,¢=d=0.1 (dash). Graph (b): Gamma prior
(10) for o with a = 0.01,b =0.1,¢ = d = 0.1 (dash-dotted),
a=0.5,b=0.1,c=d=0.1 (dotted) and
a=1,b=0.1,c=d=0.1 (dash). Graph(c): Gamma prior
(23) for A with ag = 1,by = 0.1 (dash-dotted),
ag =1,bg = 0.7 (dotted) and ag = 1,by = 0.9 (dashed). The
curves are fitted when q = 0.5. Graph(d): Gamma prior (23)
for X with ag = 0.1,bg = 0.1 (dash-dotted),
ag = 0.7,bp = 0.1 (dotted) and ag = 0.9,by = 0.1 (dashed).
The curves in Graphs (c)—(d) are fitted when ¢ = 0.5.

4.3 Comparisons with the original Bayesian
approaches

In this subsection, we compare our new methods for
Bayesian regularized quantile regression with the exist-
ing Bayesian regularized quantile regression methods using
Monte Carlo simulation studies. The six candidate methods
we employ are listed as below,

. New Bayesian quantile LASSO (NBQL).

. Original Bayesian quantile LASSO (OBQL) in Li et al.
[21].

. New Bayesian quantile group LASSO (NBQGL).

. Original Bayesian quantile group LASSO (OBQGL) in
Li et al. [21].

. New Bayesian bridge quantile regression (NBBQR).

. Original Bayesian bridge quantile regression (OBBQR)
in Alhamzawi and Algamal [1].
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The data in the simulation studies are generated by

(29) yi:w;’ﬁ+ap+ui7i:17"'an7
where p1; is the random error and a,, is utilized to make the
pth quantile of u; zero.

4.3.1 Independent and identically distributed random errors

We consider four simulation studies in the i.i.d random
error settings.

e Simulation 1: 8 = (3,1.5,0,0,2,0,0,0) for the sparse
case.

e Simulation 2: 8 = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,
0.85) for the dense case.

e Simulation 3: 3 = (5,---,5,0,---,0,5,--- ,5) for more
5 20 5

predictors than sample size case.
e Simulation 4: 3 = ((-1.2,1.8,0),(0,0,0),(0.5,1,0),
(0,0,0),(1,1,0)) for group structure case.

In Simulations 1-3, each row in X is generated indepen-
dently from N(0,X;), where the (i,j) element of 3; is
0.5/"=7!. In Simulation 4, we first draw the latent variable
Z = (Z1, - ,Z5) from N(0,3), where the (i,j) element
of 3 is 0.5/“=7I. Then, each Z; is trichotomized as 0, 1 and
2, which depends on whether it is smaller than ®~1(1/3),
between ®~1(1/3) and ®~1(2/3), or larger than ®~1(2/3).
Here, ®(x) is the cumulative function of standard normal
distribution. The rows of X are given by (I(Z, =0),I(Z, =
1),I(Z1=2),-- ,1(Z5=0),1(Zs = 1), I(Z5 = 2)). Within
each simulation study, we consider four different choices for
the distribution of ;.

e normal distribution with N(0,22).

e normal mixture distribution, 0.1N(0,1) + 0.9N (0, 22).

e ALD(0,07! = 1,p = 0.5), so that the variance of ran-
dom error is 4.

e ALD mixture with 0.1ALD(0,0~! = 1,p = 0.5)+0.9
ALD(0,07! = v/2,p = 0.5).

We simulate a training dataset with 20 observations, a val-
idation dataset with 20 observations to obtain the optimal
Aopt by 10-fold cross validation in the BQL and BQGL and
a testing dataset with 200 observations. We consider three
choices of p, p = 0.1, p = 0.3 and p = 0.5. In Simulations
1-3, there is no group structure in the predictors, so BQGL
reduces to BQL. In Simulation 4, as suggested in Yuan and
Lin [37], we choose K, = dyI;, where dg is the dimension
of B,. For BBQR, ¢ € (0,1) enjoys many desirable statisti-
cal properties such as oracle, sparsity, and unbiasedness. We
choose ¢ = 0.5 to preserve these properties and for a repre-
sentative purpose (Xu et al. [35]). Although the unimodality
of BBQR under is only proved for ¢ > 1, we ensure the uni-
modality of posterior in the simulation study by directly
plotting the density functions of each 3; in B. For an illus-
tration, we offer marginal density plots for the first element
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Figure 3. Marginal density plot of 51 € B with ALD random

error and p = 0.1. Graphs (a)—(d) corresponding to
Simulations 1-4, respectively.
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B1 in B as a visual aid across Simulations 1-4. In detail,
we used the first dataset among 50 datasets considered in
Section 4.3.1 with ALD random errors and quantile level
0.1. From Figure 3, we may find that all the marginal den-
sities of 81 are unimodal. It is worth investigating whether
unimodality holds for ¢ € (0,1) from a theoretical view-
point. We evaluate the performance by median of mean ab-
solute deviation (MMAD) and median of mean square error
(MMSE) based on the 50 replications,

200
MMAD = median(% ; |$;B —z;0|),
MMSE = median((ﬁ_ﬁ);nM).

In Simulation 1, we may find NBQL have better per-
formance compared with OBQL in terms of MMAD (12
out of 12 comparisons) and MMSE (9 out of 12 compar-
isons). NBBQR have smaller MMAD in 12 out of 12 compar-
isons and MMSE in 9 out of 12 comparisons. Moreover, our
methods tend to outperform original Bayesian approaches
in more and more cases as p is away from 0.5. Similar find-
ings can be found for Simulation 2. In Simulation 3, our two
methods defeat the original approaches for all the selected
quantiles except two cases, which show great advantages of
our method in the large p and small n case. Moreover, for
the overall performances in Simulations 1-3, there seems to

be a tendency that all the methods behave better when the
selected quantile is close to 0.5.

Simulation 4 corresponds to the case with group struc-
tures among the predictors. BQGL gives the better estima-
tions than the other methods and NBQGL tends to behave
the best in the most of times. For BQL and BBQR, NBQL
and NBBQR tend to have the smaller MMAD while OBQL
and OBBQR performs better in terms of MMSE in each
comparison.

4.3.2 Heterogeneous random errors

We consider the case with non-i.i.d random errors. The
data set were simulated according to the model proposed in
Wu and Liu [34],

(30)  wi= 14wy +x + a3 + (1 + 230)€,

where x1; ~ N(O,l), T34 NU(O,l) and x9; = x1; + T3; +
ziy 2 ~ N(0,1), ¢, ~ N(u,1), with g chosen so that pth
quantile zero. There are also five more independent noise
random variables, x4, - ,xs, distributed as N(0,1). Each
simulated sample is partitioned into a training set with 20
observations, a validation set with 20 observations, and a
testing set with 200 observations. Methods are evaluated
based on MMAD and the test error, which refers to the
median of average check loss (MACL) on the testing dataset,

MACL = median(mean(p,(y — X3))).

From Table 7, our methods have the better predictions
in each comparison in terms of MMAD for all the selected
quantiles and have the smaller MACLs in 4 out of 6 com-
parisons. Moreover, we find that NBQL has the smallest
error in terms of MMAD for each quantile, which reveals
the efficiency of our new methods.

5. BOSTON HOUSING DATASET

We evaluate the performances of the six candidate meth-
ods, NBQL, OBQL, NBBQR, OBBQR, quantile LASSO
(QL) and LASSO on the Boston Housing data. Boston Hous-
ing dataset was first analyzed by Harrison and Rubinfeld
[10] in a study on the influence of clean air on house prices
and became a standard dataset in investigating the nor-
mality assumption of residuals for robust estimation meth-
ods. The Boston housing dataset contains the census tracts
in the greater Boston area with 506 cases. The response
variable is defined as the logarithm of the median hous-
ing price (LMHP) in the tract associated with 13 explana-
tory variables representing various measurements: per capita
crime (CRIM), proportions of residential land zoned for lots
over 25,000 square feet per town (ZN), proportions of non-
retail business acres per town (INDUS), a factor indicating
whether tract borders Charles River (CHAS), nitric oxides
concentration (parts per 10 million) per town (NOX), av-
erage numbers of rooms per dwelling (RM), proportions of
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Table 3. MMADs and MMSEs from Simulation 1 with p = 0.1,0.3 and 0.5. In the parentheses are standard deviations of the
MMADs and MMSEs obtained by 500 bootstrap resampling. The bold numbers correspond to the smallest MMAD and
MMSE in each comparison

Method Error distribution
Normal Normal mixture ALD ALD mixture
MMAD MMSE MMAD MMSE MMAD MMSE MMAD MMSE
NBQL 1.143(0.0587) .3593(.0840) 1.3077(.0387) .4811(.0334) 1.6193(.1398) .8210(.1355) 2.0468(.1515) .9672(.1714)
p=01 OBQL 1.165(.0493)  .3653(.0701) 1.3331(.0661) .4900(.0628) 1.6461(.1382) .8390(.1385) 2.1180(.1244) 1.0073(.1492)
NBBQR(q = 0.5) 1.239(.0566) .4339(.0606) 1.2530(.0636) .4577(.0546) 1.7492(.0845) .8291(.0891) 2.1165(.1424) 1.0258(.1483)
OBBQR(q = 0.5) 1.241(.0539) .4330(.0577) 1.2578(.0603) .4652(.0558) 1.7555(.1094) .8364(.1094) 2.2035(.1268) 1.0753(.1311)
NBQL 1.0315(.0566) .2986(.0589) 1.1913(.0653) .3872(.0571) 1.2348(.1120) .3908(.1171) 1.7735(.0750) .6927(.0742)
p =03 OBQL 1.0452(.0553) .2995(.0618) 1.1951(.0747) .3772(.0713) 1.2692(.1107) .3979(.1209) 2.0663(.1797) .8331(.1910)
NBBQR(q = 0.5) 1.0444(.0689) .3169(.0680) 1.1745(.0519) .3936(.0529) 1.3091(.1452) .4013(.1439) 1.8983(.1174) .8438(.1649)
OBBQR(¢ = 0.5) 1.0959(.0664) .2929(.0707) 1.1822(.0526) .4089(.0498) 1.3152(.1569) .4606(0.1554) 2.1255(.1831) .7710(.1382)
NBQL 1.1453(.0522) .3318(.0455) 1.0809(.1102) .3069(.0653) 1.0407(.0935) .2996(.0968) 1.4219(.0882) .5257(.0745)
p=05 OBQL 1.1620(.0421) .3360(0.0506) 1.0934(.1052) .3187(0.1041) 1.0611(.0974) .2928(.1072) 1.4573(.0725) 0.4625(.0920)

NBBQR(q = 0.5)
OBBQR(q = 0.5)

1.1219(.0551)
1.1349(.0426)

.3499(.0609)

.3601(.0500)

1.0725(.0692)
1.1092(.1238)

.2872(.0664)

.2879(.0652)

1.0784(.1024)
1.0889(.1112)

-3124(.1052)

.3159(.0984)

1.4723(.0957)
1.4823(.0892)

.5293(.0886)
.5592(.0863)

Table 4. MMADs and MMSEs from Simulation 2 with p = 0.1,0.3 and 0.5. In the parentheses are standard deviations of the
MMADs and MMSEs obtained by 500 bootstrap resampling. The bold numbers correspond to the smallest MMAD and
MMSE in each comparison

Method Error distribution
Normal Normal mixture ALD ALD mixture
MMAD MMSE MMAD MMSE MMAD MMSE MMAD MMSE
NBQL 1.5302(.0770) .3427(.0801) 1.1499(.0474) .2498(.0564) 1.4271(.0727) .3469(.0741) 1.9286(.1233) .5161(.1269)
p=01 OBQL 1.5568(.1051)  .3766(.1051) 1.1569(.0562) .2599(.0605) 1.4501(.0501) .3485(.1069) 2.1043(.1297) .5011(.1234)
NBQBR(¢ = 0.5) 1.7043(.0985) .4443(.1031) 1.3548(.0562) .3644(.0606) 1.6736(.0572) .4952(.0801) 2.1849(.1167) .6159(.1126)
OBQBR(q = 0.5) 1.7164(.1122) .4479(.1254) 1.3812(.0537) .3901(.0561) 1.7117(.0601) .4667(.0733) 2.3183(.1203) .6187(.1222)
NBQL 1.0109(.0719) .2509(.0588) 1.0446(.0477) .2347(.0625) 1.2421(.0693) .3166(.0578) 1.7522(.0647) .4699(.1011)
p=03 OBQL 1.0398(.06221) .2605(.0687) 1.0503(.0547) .2464(.0505) 1.2338(.0631) .3344(.0629) 1.9584(.1035) .4223(.07877)
NBBQR(g = 0.5) 1.2012(.0745) .3485(.06698) 1.1695(.0599) .3248(.0622) 1.5116(.0774) .4266(.0778) 1.9734(.0901) .5281(.0929)
OBBQR(q = 0.5) 1.2166(.0676) .3593(.0722) 1.2157(.0667) .3294(.0668) 1.5173(.0836) .4091(.0956) 2.2444(.1189) .6135(.1166)
NBQL 1.0277(.0572) .2399(.0582) 1.0129(.0385) .2368(.0447) 1.1301(.0335) .3246(.0549) 1.3620(.1039) .3055(.3055)
p=05 OBQL 1.0556(.0470) .2703(.0595) 1.0095(.0511) .2523(.0675) 1.1319(.0437) .3464(.0691) 1.3474(.0884) .3276(.3276)
NBBQR(q = 0.5) 1.2007(.0494) .3656(.0551) 1.1631(.0581) .3381(.0504) 1.3578(.0425) .4413(.0636) 1.6641(.1031) .4615(.4615)
OBBQR(q = 0.5) 1.2189(.0527) .3903(.0634) 1.1977(.0461) .3397(.0675) 1.3318(.0445) .4471(.0619) 1.6431(.0843) .4895(.1042)

Table 5. MMADs and MMSEs from Simulation 3 with p = 0.1,0.3 and 0.5. In the parentheses are standard deviations of the
MMADs and MMSEs obtained by 500 bootstrap resampling. The bold numbers correspond to the smallest MMAD and
MMSE in each comparison

Method Error distribution

Normal
MMAD MMSE

7.4779(.3780) 3.1625(.3863)
7.7125(.4873) 3.2823(.4799)
7.6591(.3609) 4.4418(.3489)
8.8848(.6677) 5.5295(.6615)
6.4815(.2007) 2.1457(.2253)
6.7701(.1747) 2.7660(.1715)
6.7237(.3166) 3.2115(.1782)
6.9624(.2093) 3.2506(.3254)

NBQL 6.4848(.1327) 2.1096(.1219)

OBQL 6.6855(.1439) 1.9313(.1721)
NBBQR(q = 0.5) 6.7548(.1921) 2.8133(.1934)
OBBQR(q = 0.5) 7.0114(.1310)

Normal mixture ALD
MMAD MMSE MMAD MMSE
5.8921(.2509) 2.1615(.2029) 6.2122(.1946) 2.2825(.1987)
6.0044(.2148) 2.3335(.2373) 6.2224(.2961) 2.3592(.2912)
5.2168(.2694) 2.4616(.2100) 6.5778(.2192) 3.4921(.2200)
5.3179(.1972) 2.5577(.2636) 7.0862(.2457) 3.8539(.2536)
5.7440(.1465) 2.0637(.1475) 6.4395(.2652) 2.4138(.2552)
5.9356(.2802) 2.3216(.2503) 6.5778(.2070) 2.6229(.1945)
5.0394(.2699) 2.1982(.2548) 6.8224(.2612) 3.1276(.2725)
5.4999(.4102) 2.7484(.3764) 7.0062(.2852) 3.6604(.2986)
5.4239(.2592) 1.8175(.1966) 6.6349(.2329) 2.3996(.2639)
5.5085(.1814) 1.9139(.2745) 6.8397(.2434) 2.8514(.2310)
4.8667(.1790) 1.8850(.1840) 7.2224(.2380) 3.5822(.2221)
2.9513(.1100) 4.9570(.1821) 1.9407(.1915) 8.0200(.4426)

ALD mixture
MMAD MMSE
9.3929(.1872) 3.6611(.2053)
9.6099(.2511) 3.7234(.2356)
9.8055(.2991) 4.7411(.3026)
9.9535(.2155) 4.8084(.2137)
5.0492(.2816) 1.7124(.1672)
5.3888(.1639) 1.6195(.2791)
5.4150(.4051) 2.3685(.4106)
5.8272(.3733) 2.5466(.3603)
6.9855(.2221) 2.7138(.2285)
7.1836(.2401) 2.7290(.2381)
7.2151(.3925) 3.0601(.3996)
4.3862(.4527) 7.4434(.4326) 3.2155(.4189)

NBQL
OBQL
NBBQR(q = 0.5)
OBBQR(q = 0.5)
NBQL
OBQL
NBBQR(q = 0.5)
OBBQR(q = 0.5)
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Table 6. MMADs and MMSEs from Simulation 4 with p = 0.1,0.3 and 0.5. In the parentheses are standard deviations of the
MMADs and MMSEs obtained by 500 bootstrap resampling. The bold numbers correspond to the smallest MMAD and
MMSE in each comparison

Method Error distribution
Normal Normal mixture ALD ALD mixture
MMAD MMSE MMAD MMSE MMAD MMSE MMAD MMSE

NBQL 1.1473(.0478) .5087(.0202) 1.2381(.0301) .5106(.0134) 1.2594(.0403) .5003(.0141) 1.1545(.0817) .5257(.0152)
OBQL 1.2155(.0129) .4415(.0176) 1.2396(.0447) .4391(.0186) 1.4690(.1364) .4991(.0304) 1.3803(.2261) .6099(.0769)
b— o1 NBBQR(q = 0.5) 1.1623(.0425) .5186(.0176) 1.2286(.0202) .5229(.0084) 1.3451(.0968) .5180(.0105) 2.7796(.1235) .9075(.1235)
OBBQR(¢g = 0.5) 1.2175(.0314) .4976(.0224) 1.2620(.1408) .4698(.0335) 1.2660(.0598) .5106(.0298) 2.8942(.1213) .9649(.1213)
NBQGL 1.0792(.0424) .4239(.0169) 1.2169(.0878) .4004(.0288) 1.2257(.0182) .4633(.0968) 1.1483(.0533) .5282(.0036)
OBQGL 1.1130(.0307) .4253(.0307) 1.2179(.0586) .4060(.1408) 1.2744(.0894) .5080(.1364) 1.1855(.1394) .5408(.0347)
NBQL 1.2329(.0102) .5179(.0041) 1.1372(.0451) .4652(.0192) 1.2473(.0182) .4932(.0199) 1.1394(.0473) .4986(.0081)
OBQL 1.2343(.0303) .4916(.0106) 1.1940(.0282) .4169(.0184) 1.2666(.0519) .3887(.0315) 1.1544(.0146) .5122(.0041)

NBBQR(q = 0.5)

1.2509(.0226)

.5271(.0016)

1.1941(.0393)

.5107(.0085)

1.2471(.0473)

.4478(.0335)

1.1437(.0023)

.5256(.0022)

p=03 OBBQR(q = 0.5) 1.2518(.0706) .5206(.0058) 1.2046(.0179) .4477(.0164) 1.3015(.0802) .5197(.0109) 1.1484(.0082) .5203(.0043)
NBQGL 1.2302(.0013) .4351(.0171) 1.047(.0751) .3964(.0122) 1.2224(.0316) .3889(.0473) .8983(.0718) .4704(.0718)

OBQGL 1.2289(.0043) .4478(.0706) 1.0858(.0664) .3816(.0751) 1.2297(.0042) .3776(.0802) 1.0081(.0829) .4435(.0829)

NBQL 1.0285(.0576) .3421(0.0405) 1.0254(.0651) .4049(.0241) 1.0675(.0344) .4651(.0146) 1.1290(.0209) .4834(.0097)

OBQL 1.0331(.0442) .3323(.0307) .8664(.0805) .3545(.0266) 1.1317(.0336) .4225(.0208) 1.1378(.0207) .4637(.0151)

b—05 NBBQR(g=05) .9761(0871) .3663(.0411) .8728(.0992) .4049(.0386) 1.0591(.0624) .4497(.0209) 1.1339(.0091) .5222(.0047)
OBBQR(q = 0.5) 1.0286(.0397) .3522(.0296) .9466(.0805) .3898(.0433) 1.1729(.0283) .5020(.0101) 1.1191(.0208) .5118(.0086)

NBQGL .8897(.0657) .3345(.0442) .8067(.0605) .3407(.0678) 1.0133(.0485) .3855(.0189) .5379(.0258) .4565(.0258)

OBQGL .9466(.0621)  .3367(.0397)  .8158(.0733)  .3415(.0605) 1.0758(.0429) .4046(.0429) .7223(.0350) .4395(.0350)

Table 7. MMADs and MACLs from heterogeneous random
errors with p = 0.3,0.5 and 0.7. In the parentheses are
standard deviations of the MMADs and MMSEs obtained by
500 bootstrap resampling. The bold numbers correspond to
the smallest MMAD and MACL in each comparison

Method MMAD MACL
NBQL .9656(.0979)  .5774(.0522)
s OBQL 1.0525(.0854)  .5897(.0682)
P=Y9 "NBBQR(q=0.5) 1.1056(.1476) .5982(.0748)
OBBQR(g=0.5)  1.1108(.1288)  .6039(.0921)
NBQL 7618(.0455)  .3855(.0243)
p=05 OBQL 7711(.0521)  .3809(.0187)
® TNBBQR(q=05) .7881(.0631)  .3941(.0287)
OBBQR(q=0.5)  .8431(.0561)  .4215(.0258)
NBQL 7865(.0839)  .3234(.0243)
p= 0.7 OBQL 8447(.0847)  .3301(.0299)

NBBQR(q = 0.5)
OBBQR(q = 0.5)

.7905(.1071)
.8037(.0884)

:3149(.0361)
.2947(.0355)

owner-occupied units built prior to 1940 (AGE), weighted
distances to five Boston employment centers (DIS), index of
accessibility to radial highways per town (RAD), full-value
property tax rate per USD 10,000 per town (TAX), pupil-
teacher ratios per town (PTRATIO), 1000(bk —0.63)? where
bk is the proportion of blacks by town (BLACK) and per-
centage values of lower status population (LSTAT). This
dataset is available in the R package MASS.

We consider three choices of p, p = 0.4, 0.5 and 0.7 to be
the representatives of quantile level smaller than median,
median level and greater than median levels, respectively.
We take ¢ = 0.5 in NBBQR and OBBQR. We choose the

optimal regularization parameter in quantile LASSO and
LASSO using 10-fold cross validation. For each method, the
median absolute deviation (MAD) is recorded, where the
MAD is defined as

(31) MAD = median(|y; — 9;]), ¢ =1,--- ,506.

The MADs for each method with different quantiles are sum-
marized in Table 8. We may find that all the Bayesian meth-
ods outperform frequentist approaches uniformly in all the
quantiles. Moreover, compared with the original Bayesian
approaches, our methods have the smaller MADs in 5 out
of 6 comparisons, which indicate that our methods could
provide more accurate prediction.

Additionally, we compute posterior medians of the coef-
ficients with their 95% credible intervals for the Bayesian
methods and coefficient estimators for the frequentist meth-
ods. Note that the Bayesian methods can provide the inter-
val estimations simultaneously while the frequentist meth-
ods usually do not have simply implemented interval estima-
tors. Figure 4 illustrates these estimations with p = 0.7. For
brevity, we drop the names of above predictors and keep the
corresponding number to indicate each predictor. In this fig-
ure, we add a slight horizontal shift to the estimators given
by NBQL, NBBQR(q = 0.5), OBQL and OBBQR(¢g = 0.5)
to make it more readable.

From Figure 4, we can see that all the Bayesian methods
tend to behave similarly and the estimation are pretty close.
For predictors 2, 8 and 9, quantile LASSO tends to behave
differently compared with Bayesian methods, since the es-
timators lie outside the 95% credible intervals. For LASSO,
it gives different estimation in terms of predictors 5, 6, 12
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Table 8. MADs from the six methods. The bold number is
the smallest number in the category

Method MAD
NBQL 0835
OBQL 0853
b—o04 NBBQR(g=05) 0831
*  OBBQR(g=0.5) .0836
QL .0889
LASSO .0933
NBQL 10833
OBQL 0848
_ o5 NBBQR(g=05) .0822
P=Y9  OBBQR(g=0.5) .0837
QL .0879
LASSO .0933
NBQL 10838
OBQL .0849
p—o07 NBBQR(g3=05) 082
* OBBQR(g=0.5) .0821
QL 0878
LASSO .0933
p=0.7

v NBQL
A NBBQR(G=0.5)
o oBaL

© OBBQR(G=0.5)

+ LASSO
x QL

estimates

predictor index

Figure 4. The estimates of the predictor effects for the

Boston Housing data using different methods with p = 0.7.
The 95% credible intervals given by NBQL,
NBBQR(q = 0.5), OBQL and OBBQR(q = 0.5) are plotted.

and 13 compared with Bayesian methods. The similar per-
formances can also be found in p = 0.4 and p = 0.5. For
the variable selection, all the Bayesian regularized quantile
methods and LASSO select all the predictors except predic-
tors 4 and 6. In contrast, QL selects all the predictors except
predictors 2, 3, 9.
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6. CONCLUSION AND DISCUSSION

In this paper, we have mainly investigated the Bayesian
methods for quantile regression with LASSO penalty and its
two generalizations. We have presented the multimodality
of the joint posterior and the sensitivity of hyperparame-
ter specifications existing in the current popular methods.
We also have demonstrated that using the invariant prior
is not favorable for the scale component by establishing the
conditions of the posterior propriety under the generalized
likelihood and prior. To solve all problems with one frame-
work, we propose the conditional prior for the regression
coefficients and derive the conditions for posterior propriety
for our proposed methods. Researchers who are interested
in the topic could easily use Theorem 1 and 2 for an im-
mediate guidance in terms of choosing appropriate priors.
Meanwhile, the guidance could be applied to the context
of Bayesian mean regression without efforts. For example,
we have provided theoretical evidence about the improper
joint posterior in Bayesian bridge regression (Polson et al.
[28]) when predictors outnumbered observations. Addition-
ally, the partially collapsed Gibbs sampling procedures have
been developed for a fast and convenient use. Simulation
studies and real data example have shown that our new
Bayesian methods generally perform better than the exist-
ing Bayesian regularized quantile regression methods.

Our work highlights the importance of using the condi-
tional priors for Bayesian regularized quantile regression for
its sound characteristics of the posterior distribution. It also
opens a gate for researchers to generalize the conditional pri-
ors to other related contexts. For instance, adaptive regu-
larization has been proven to enjoy the oracle property (Zou
[38]), one possible direction is to extend the theoretical re-
sults to the regularization with adaptive penalties such as
the Bayesian quantile adaptive LASSO (Alhamzawi et al.
[3]), adaptive group LASSO and adaptive bridge regression.
Furthermore, we do not consider the crossing problem for
different quantiles. Without special restriction, quantile re-
gression functions estimated at different orders can cross
each other. It disobeys the rule of the probability. There-
fore, another concern is to develop the theoretical results
for the noncrossing Bayesian regularized quantile regression
(Liu and Wu [24]; Reich et al. [29]).

APPENDIX A

Proof of Theorem 1. We write 2 if right hand side quantity
is bounded by the left hand side up to a universal constant.

For (a), without loss of generality, we take ||.||; = ||.]|» =
|.]|- By (12), we only need to consider the integrability of

(B,0",n") in

otz exp(o® gy — XB||F — nF(B))(0*)!

32
32 exp(—a*1b) (")  exp(—n"d),i = 1,3.



With loss of generality, we set ¢ = g3 = —1. Since

h bh 1/h
\/E<(C‘;r ) a>0,b>0,h>0,

we have

(33)

(32) > 0"t exp(—oflly — XB|* —47% (14" F"(8))7)
(o) exp(—o™b) (") exp(—n"d)
2 o™z exp(—of|ly—XB|/" 4~ i F(B))(c*) !
exp(—a*1b) (")~ exp(—n"d).

The second inequality is due to the monotonicity of a”,a >
1 and h > 2. Integrating out 1" in (33) yields the result
proportional to

(34)

o™ exp(—o™ |ly — X B||*1) (™)

(P (B) + ) e
exp(—a*1b).

For a > 0,b > 0, consider a' + b' and (a + b)! for any given
[ >0. When [ > 1, we have 2~ (a +b)! < a' +b' < (a+b)".
When 0 <1 <1, (a+b)! <al+ b <2'7(a+b)l. Hence,

(35) min(1,2'7Y) < (a'+0")/(a+b)" < max(1,2"71), 1 > 0.
Therefore, we can replace
4=+ FMB) + d,
with
__1 1 1
(47 5 (8) + dFT )t

In addition, F*/*2(8) is a pre-norm on R™, by Theorem
5.4.4 in Horn and Johnson [11], there exist 4; > 0 and
Ay > 0 such that

Al|Bll2 < F™(8) < As|B]lo.
Hence, we can replace
4~ % FMB) + d,
with
(4750 4213 + dFm) i = 1,2

That’s to say, the integrability of (34) is equivalent to the
integrability of

(36)

1 k k
m+hkgc a" exp(—a 1||y - Xﬁ” 1)

47T 4|3 + der )
( 118113 )

(o")o = exp(—a*1b).

with respect to (B,0"'). For sake of simplicity, we set
A; = 1,4 = 1,2, since the values have no influence on the
conclusion. When integrating out o** in (36), n+ak; > 0 is
necessary. We integrate out o*' using the similar argument
for integrating out 1™ and it boils down to considering

(37)
1 1

m+hkgc

2
(477|813 + d=e7) 3

akytn °

(ly — XBlI3+b2) ">

In contrast, if integrating out (s,t) in

mthkgc

(38) 5B Lexp(— (47 ||B|)2 + dFn)s)t
exp(—(|ly — XB||2 +b2)),

aki+n
5——1

the result is proportional to (37). Therefore, we only need
to consider (38), which is tractable.
Set (d,t) = (s/t,t) and integrate out 3 in (38), we obtain

aki+n+hkoc 1
—l a2

(39) exp(—(y (I, — X(X' X+

| X' X +4_’°2%6Im|%
4R SL,) X Yy + b 4 R o))

mithkge |
miakac

(39) is integrable with respect to ¢ iff aky +n + hkac > 0
and it yields

m-+hkgc
mrsted g

(40)

) )
| X/ X 447 527 51, [2Q4
where

Q1 =(y (I — X(X'X + 47 =7 §1,) " X' )y)+
bF g drr )
By the fact (I + AB)~'A = A(I + BA)~",

! 2
(41) y (In - X(XIX + 4 k2h2 6Im>—1Xl)y

=y (I, - XX'(XX' +4 =7 5L,) V)y.

By spectral decomposition of XX’ = QAQ', A =

diag(t1,--+ ,7,0,---,0). Assume Q/y = d, using the fact
that (41) is SSE when § = 0, we obtain
el
koh
(42) ) =SSE+S —— % @

im1 4 R2P? S 4o
By spectral decomposition, X'X =SA, S/, where A and
A; share the same nonzero eigenvalues.

r+hkoc
Til

)
VI (i + 4757 5)Q,

(43) (40)

)
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where

VD)
Qs = (SSE-i-Z S E—
i1 4 FRi+T7

akqi+nthkge

2 8 3
A2+ b7 4 dRrs) T

We need discuss whether SSE+b%1/2 or SSE+b and d are
positive or not. We have the following cases:
(1) SSE+b =0, d = 0;
(2) SSE+b =0, d > 0;
(3) SSE+b > 0, d = 0;
(4) SSE+b > 0, d > 0.
We take the first as an example. When SSE+b = 0 and
d =0, (43) = O(r—ak1=m)/271) a5 § — 0 and (43) =
O(8"*2¢/2=1) as § — oo. Hence, n —r +ak; < 0 and ¢ < 0.
Other cases can be obtained in the same way. Notice that
n + aky > 0 is implied by Condition A, B and C, the result
hold.

For (b), we could use the same argument in (a) with
h = 1 except the the integration of (32) with respect to
7 is proportional to (34). O

APPENDIX B

Proof of Theorem 2. For (a), we only need to consider the
integrability of (3, 0%, A|ly) in

min _

(44) (o")7F

INF exp(—a*|ly — XB||* — A" F(8))g(\).

Integrating out ¢* in (44), the result is proportional to

m

A&
A).
T EOE ek

By (35), we just need to consider

(45)

m

A&

(46) e
(ly = X8l + A Fx(8))m+n

g(A)-

Since F/¥() is pre-norm on IR™, we only need to consider
A%
(Ily — XBll2 + A% 8] |2)m+n

Using (35) again, we just need focus on

(47)

g(A).

(48)

A%
2 2 2 m-+n g()\)
(ly = XBl5 + A+ [Bl[3)

In contrast, if integrating out s in

m

mtn 2 m
s 5 hexp(—(Ily — XBII3 + AFIBI3)s)A T g(N),

the result is proportional to (48). Integrating out (3,s)
in (49) yields the result proportional to

(49)

(50)
A%
(X' X +N L3 (y (I, — X(X'X + AFL,) 1 X")y)%

g(A).
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By (42), we obtain

\E
g
2 n
VITiz (7 + M) (SSE+30, :_:% d?)?

When SSE=0, (51) = O(A"=™/%) ag A — 0 and (51) = O(1)
as A — oo. When SSE>0, (51) = O(X"/¥) as A — 0 and
(51) = O(1) as A — oo. Hence, the results hold.

For (b), we only need to consider the integrability of

(52)
(O'kl)%ln_lexp(—dkluy _ XIBHkl _ )\Jng(ﬁ))A%—&-ao—l
exp(—bo)).

Integrating out A yields the result proportional to

(53)
1

(%2 F(B) + bo) T2 T

1) exp(—oF ||y — X B)1).

Using the same argument in (a), we only need to consider

(54)
1

m+n

GO

“exp(—aF1|ly—XB|F).

m+tagky

k1
(@™ ]1BI[Fr +bg?) ™

Hence, we only consider

m+agk
1

“exp(—o™ [y — XB|F — Adt|B|F)ATE T
By

exp(—by? A).

Integrating o* in (55) yields

1 m+tagka -1

(56) AR

m+n

(Ily = XBII* + AllB[[F)

The remaining is exactly the same as (a).

To prove the unimodality of the joint posterior of (3, %)
give A, we follow the similar argument in Park and Casella
[27]. We only need to prove the upper level set of joint pos-
terior p(3, 0" |y)

{(8,0")| p(B.o"|y) > c},

is connected for any ¢ > 0. The logarithm of posterior is

exp(—bg? \).

n—+m

(57) (

— - 1)log(c**) + In(¢(o(y — X B))) — AF(0B),

after dropping the terms free of (3,0%1). The coordinate
transformation defined by

(58) ¢=0B,7=0,



is one-to-one and thus the unimodality in the original coor-
dinate is equivalent to unimodality in the transformed co-
ordinates. For the transformed coordinates, (57) becomes

(59)  (n+m —k1)log(r) + In(¢(Ty — X)) — AF ().

The first term and the third term is concave in (¢, 7), since
F'/*2 () is a norm and z*2 is convex in 2. The second term
is also concave in (¢, 7). 7y — X ¢ is the linear transforma-
tion of (¢, 7) and In(¢(y)) is concave. Hence, (59) is concave
in (¢, 7). O
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