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Estimation of Hilbertian varying coefficient
models∗
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†
,

Hyerim Hong, and Dongwoo Kim

In this paper we discuss the estimation of a fairly general
type of varying coefficient model. The model is for a re-
sponse variable that takes values in a general Hilbert space
and allows for various types of additive interaction terms
in representing the effects of predictors. It also accommo-
dates both continuous and discrete predictors. We develop
a powerful technique of estimating the very general model.
Our approach may be used in a variety of situations where
one needs to analyze the relation between a set of predic-
tors and a Hilbertian response. We prove the existence of
the estimators of the model itself and of its components,
and also the convergence of a backfitting algorithm that re-
alizes the estimators. We derive the rates of convergence of
the estimators and their asymptotic distributions. We also
demonstrate via simulation study that our approach works
efficiently, and illustrate its usefulness through a real data
application.
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1. INTRODUCTION

One of the main issues in nonparametric regression is
the curse of dimensionality, which one faces when one deals
with multivariate predictor. The difficulties are that, theo-
retically, the estimation accuracy deteriorates rapidly as the
dimension of predictor increases and that, in practice, the
implementation of the method gets easily in jeopardy due
to sparsity of data points on the domain of the predictor.
Structured nonparametric regression is a useful option of
avoiding the curse of dimensionality. Among various struc-
tured models, the simplest one is additive model. A powerful
technique of estimating additive model, called smooth back-
fitting, was proposed and studied by Mammen et al. (1999).
The idea has been developed further for generalized additive
model by Yu et al. (2008), for additive quantile model by
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Lee et al. (2010), and for errors-in-variables additive model
by Han and Park (2018). These are all for Euclidean re-
sponses. Recently, analysis of non-Euclidean data has been
one of the main focuses in statistics. Among others, Han et
al. (2020) developed the idea of smooth backfitting for the
case where the response variable is a random density. The
space of density functions is an example of Hilbert space.
Jeon and Park (2020) extended the work of Mammen et
al. (1999), in full generality, to the case where the response
variable takes values in a general Hilbert space.

Although additive modeling has a number of advantages,
evidenced by Jeon and Park (2020) for Hilbertian response
and by the aforementioned earlier works for Euclidean re-
sponse, it may not accommodate discrete predictors. Miss-
ing important predictors results in inferior prediction accu-
racy. An example is given in Section 4.3, where we build up a
varying coefficient model that predicts household electricity
consumption trajectory for 24 hours based on the informa-
tion of the two continuous (temperature, cloudiness) and
one discrete (an indicator of weekday or weekend) predic-
tors. Comparing with the additive regression approach by
Jeon and Park (2020) that used only the information of the
two continuous predictors, our approach improved the pre-
diction accuracy by a factor of 13.5%. The improvement is
demonstrated by Figure 1 that depicts the prediction results
for six randomly chosen months.

In this paper, we study the estimation of a general type of
varying coefficient models with Hilbertian responses, which
includes as a special case the model used to predict electric-
ity consumption. Varying coefficient model, proposed ini-
tially by Hastie and Tibshirani (1993), is known to be an-
other important structured model with which one may deal
with discrete predictors. Some of the main developments for
this type of model with Euclidean response include Yang
et al. (2006) and Lee et al. (2012a,b). For a comprehensive
review, see Park et al. (2015) and the references therein.
A varying coefficient model consists of additive terms that
are of the form Xk · fj,k(Xj) for some predictors and coeffi-
cient functions fj,k. The simplest case is that the whole set
of predictors is divided into two groups, one group for ‘linear
part’ taking the role of Xk in Xk · fj,k(Xj), and the other
for ‘nonlinear part’ taking the role of Xj in Xk · fj,k(Xj),
and each predictor in the linear group is paired up with one
in the nonlinear group to form an additive term. Specifi-
cally, with two types of predictors X = (X1, . . . , Xd0) and
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Z = (Z1, . . . , Zd0) it is to postulate the model E(Y |X,Z) =
Z1 · f1(X1) + · · ·+Zd0 · fd0(Xd0). This is the model studied
by Yang et al. (2006) and Lee et al. (2012a) in the case of
Euclidean response. One of the main difficulties with this
formulation is that the total number of predictors should be
even and one needs to decide which predictors to put in the
linear part and which in the nonlinear part. Another limita-
tion is that it does not allow a predictor in an additive term
to appear in the linear or nonlinear part of another addi-
tive term. This means that each predictor is paired up with
only one other predictor, which requires us to determine
a single set of pairs for the implementation of the model.
The work of Lee et al. (2012b) completely removed these
limitations in the Euclidean case by allowing a predictor to
enter any number of additive terms, i.e., allowing Xj and
Xk in an additive term Xk · fj,k(Xj) to be identical either
to Xj′ or to Xk′ in another additive term Xk′ · fj′,k′(Xj′).
Thus, the general formulation includes the model studied by
Yang et al. (2006) and Lee et al. (2012a) as a special case,
and also the full model that involves all possible interac-
tion terms Xk · fj,k(Xj), j �= k for a given set of predictors
{X1, . . . , Xd}.

In the present paper we consider the general formulation
of varying coefficient model proposed in Lee et al. (2012b),
but for general Hilbertian response. The general framework
enables us to analyze the electricity consumption data with
the discrete predictor indicating weekday or weekend. We
note that the extension of the work, Lee et al. (2012a), to the
Hilbertian case, i.e., the simplest varying coefficient model
at (2.2), is rather straightforward. However, the extension
in the general formulation of Lee et al. (2012b) is challeng-
ing since the theory in the identification and the estimation
of individual component maps in conjunction with Hilber-
tian vector operation is more complex than the Euclidean
case. In fact, the technical details of the theory for the Eu-
clidean case are missing in Lee et al. (2012b). Furthermore,
we discuss the estimation of the parametric part that arises
from implementing a set of constraints on the component
maps, and also give a full account of its influence on the
accuracy of the estimators of the normalized nonparametric
component maps, which were largely neglected in Lee et al.
(2012b). Thus, the present work enhances the theory of Lee
et al. (2012b) in several important respects.

In the next section, we describe the methodology. In Sec-
tion 3 we present the theory, which includes the existence of
the estimators, the convergence of a backfitting algorithm
that realizes the estimators, the rates of convergence and
the asymptotic distributions of the estimators. In Section 4
we report the results of a simulation study and a real data
application. Appendices A and B are for technical details.

2. METHODOLOGY

2.1 Some terminologies

We denote by H the Hilbert space where the response
variable Y takes values. Let ⊕ and �, respectively, be the

addition operation and the scalar multiplication for H. For
some examples of Hilbert space and the associated vector
operations, see Jeon and Park (2020). We denote the zero
vector by 0.

We introduce several conventions in Hilbertian vector op-
erations. This is for simplicity of presentation. For cj ∈ R

and v ∈ H, we write c1 ·c2�v for c1�(c2�v), c1 ·c2 ·c3�v for
c1�(c2�(c3�v)) and so on. We let � denote the subtraction
operation defined by v1�v2 = v1⊕(−1�v2) for v1,v2 ∈ H.
For a tuple of k Hilbertian values, v = (v1, . . . ,vk)

� ∈ H
k

and for c = (c1, . . . , ck)
� ∈ R

k, we write c� � v for⊕k
j=1(cj �vj). Likewise, for an l× k real matrix A = (aij),

we write A � v for
(⊕k

j=1 a1j � vj , . . . ,
⊕k

j=1 alj � vj

)�
.

We let 0k denote (0, . . . ,0)� ∈ H
k. For u ∈ H and

c = (c1, . . . , ck)
� ∈ R

k, we write c � u to indicate (c1 �
u, . . . , ck � u)� ∈ H

k. For c ∈ R and v = (v1, . . . ,vk)
�,

we write c � v for (c � v1, . . . , c � vk)
�. W also extend

the addition and subtraction operations to tuples of Hilber-
tian values. For example, for v = (v1, . . . ,vk)

� ∈ H
k and

w = (w1, . . . ,wk)
� ∈ H

k,

v ⊕w = (v1 ⊕w1, . . . ,vk ⊕wk)
�,

v �w = (v1 �w1, . . . ,vk �wk)
�.

We let 〈·, ·〉
H
be an inner product of H. Let ‖ · ‖H be the

associated norm defined by ‖v‖H = 〈v,v〉
H
for v ∈ H. For

H
k, we define 〈·, ·〉

Hk by

〈v,w〉
Hk =

k∑
j=1

〈vj ,wj〉H

for v = (v1, . . . ,vk)
�, w = (w1, . . .wk)

� and the associ-

ated norm ‖ · ‖Hk by ‖v‖2
Hk =

∑k
j=1 ‖vj‖2. Our method-

ology involves integration of Hilbertian maps taking values
in H

k. We adopt the notion of Bochner integral that gener-
alizes the conventional Lebesgue integral to functions that
take values in a Hilbert space. The statistical properties of
Bochner integral were well studied by Jeon and Park (2020),
see also Cohn (2013). Below throughout this paper, we do
not distinguish in notation between Lebesgue integral and
Bochner integral. It should be understood as Bochner inte-
gral in case the integrand is a map taking values in H

k for
some k ≥ 1. Finally, for an index set I, we let |I| denote its
cardinality.

2.2 The model

Suppose that we have d predictors, X1, . . . , Xd. Let Y be
a response that takes values in a separable Hilbert space H.
Write X = (X1, . . . , Xd). We assume that E(Y|X) equals
the sum of the terms, Xk � fj,k(Xj), over (j, k) in a subset
of {(j, k) : 1 ≤ j �= k ≤ d}, where fj,k : R → H are un-
known, termed (Hilbertian) component maps. Each additive
term Xk � fj,k(Xj) is an interaction of the ‘linear’ effect of
Xk and the ‘nonlinear’ effect of Xj . We say that Xk and Xj
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in Xk � fj,k(Xj) are in linear and nonlinear parts, respec-

tively. Among the d predictors, let X1, . . . , Xd0 (d0 ≤ d) be

the collection of continuous-type predictors that enter some

nonlinear parts. The case d0 = d means that all predictors

are in nonlinear parts. We allow some of X1, . . . , Xd0 to ap-

pear in linear parts as well. Without loss of generality, we

assume that they are Xd0−r+1, . . . , Xd0 with 0 ≤ r ≤ d0.

Here, r = 0 means that there is no predictor that appears in

both linear and nonlinear parts, which is the case with the

real data example we discussed in Section 1 and will treat

in Section 4.3. The case r = d0 corresponds to the situation

where all predictors in nonlinear parts also appear in linear

parts. The remaining predictors, Xd0+1, . . . , Xd appear only

in linear parts and they are either continuous- or discrete-

type. In this formulation, Xj (1 ≤ j ≤ d0) are in nonlinear

parts and of continuous-type, Xj (d0 − r + 1 ≤ j ≤ d) are

in linear parts, and Xj (d0 − r + 1 ≤ j ≤ d0) are in both.

For 1 ≤ j ≤ d0, let Ij be the set of indices k such that Xk

is in a linear part and interacts with Xj . The index set Ij is

a subset of {d0 − r + 1, . . . , d0, d0 + 1, . . . , d} \ {j}. Define

Zj = (Xk : k ∈ Ij), fj = (fj,k : k ∈ Ij), 1 ≤ j ≤ d0.

The model we study in this paper assumes

(2.1) E(Y|X) =

d0⊕
j=1

Z�
j � fj(Xj).

The above model is general to include all types of varying

coefficient models. The case with r = 0, Ij = {d0 + j} and

d = 2d0 corresponds to the simplest model,

E(Y|X) = Xd0+1 � f1,d0+1(X1)

⊕ · · · ⊕X2d0 � fd0,2d0(Xd0),
(2.2)

which was studied in Lee et al. (2012a) for scalar responses

Y = Y . Our general framework also includes the following

model, which corresponds to the special case where r = 0

and Ij ≡ {d0 + 1, . . . , d} for all 1 ≤ j ≤ d0:

E(Y|X) = Xd0+1 �
( d0⊕

j=1

fj,d0+1(Xj)
)

⊕ · · · ⊕ Xd �
( d0⊕

j=1

fj,d(Xj)
)
.

(2.3)

In the above case, Zj ≡ (Xd0+1, . . . , Xd) for all 1 ≤ j ≤
d0. We note that it is the model we used in the real data

application discussed in Section 1 where all entries in Zj are

discrete-type random variables. In the case where r = d0
and Ij = {1, . . . , d} \ {j} for 1 ≤ j ≤ d0, the model (2.1) is

reduced to

E(Y|X) =

d0⊕
k=1

Xk �
( d0⊕

j=1,�=k

fj,k(Xj)
)

⊕
d⊕

k=d0+1

Xk �
( d0⊕

j=1

fj,k(Xj)
)
.

(2.4)

In the above case, Zj = (X1, . . . , Xj−1, Xj+1, . . . , Xd) for
1 ≤ j ≤ d0.

The component maps fj,k in the model (2.1) are not iden-

tifiable in case Ĩk = {j : 1 ≤ j ≤ d0, Ij � k} are not single-
tons for some d0 − r + 1 ≤ k ≤ d. To see why, we rewrite
the model (2.1) as

E(Y|X) =

d⊕
k=d0−r+1

Xk �
( ⊕

j∈Ĩk

fj,k(Xj)
)
.

For each d0 − r + 1 ≤ k ≤ d, the components fj,k for j ∈ Ĩk
are not identified with fj,k ⊕ a for a constant a ∈ H. For
those k with d0 − r + 1 ≤ k ≤ d0, in particular, Xk in
Xk � fj,k(Xj) for some j ∈ Ĩk may also appear in another
additive term Xj�fk,j(Xk). Note that Xk� [fj,k(Xj)⊕Xj�
a]⊕Xj�[fk,j(Xk)�Xk�a] = Xk�fj,k(Xj)⊕Xj�fk,j(Xj).
Thus, for d0 − r + 1 ≤ j �= k ≤ d0 such that k ∈ Ij and
j ∈ Ik, fj,k and fk,j in Xk � fj,k(Xj) and Xj � fk,j(Xk),
respectively, are identifiable only up to an additive linear
term. To identify the component maps and estimate them,
we put the following constraints on fj,k.∫ 1

0

wj(xj)� fj,k(xj) dxj = 0,

j ∈ Ĩk, d0 − r + 1 ≤ k ≤ d,∫ 1

0

xjwj(xj)� fj,k(xj) dxj = 0,

j ∈ Ĩk, d0 − r + 1 ≤ k ≤ d0,

(2.5)

where wj : R → [0,∞) are some nonnegative weight func-
tions and the integrals are in the Bochner sense.

Let J = {(j, k) : j ∈ Ĩk, d0 − r + 1 ≤ j < k ≤ d0}. With
the constraints at (2.5) we may rewrite the model (2.1) as

E(Y|X) =

( d⊕
k=d0−r+1

Xk �α0
+,k

)

⊕
( ⊕

(j,k)∈J

XjXk �α1
j,k

)

⊕
( d0⊕

j=1

⊕
k∈Ij

Xk � fj,k(Xj)

)
,

(2.6)

where α0
+,k and α1

j,k are unknown constants in H. Let PX

denote the distribution of X and PXj the marginal distri-
bution of Xj . For continuous-type predictors Xj , let pj be
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the density of PXj with respect to Lebesgue measure. For
discrete-type predictors Xj , we assume that PXj have finite
support. Let

‖α‖2∗ =

∫ ∥∥∥ ⊕
d0−r+1≤k≤d

xk �α0
+,k

⊕
⊕

(j,k)∈J

xjxk �α1
j,k

∥∥∥2
H

PX(dx).

Under the following conditions, the Hilbertian maps fj,k in
(2.6) are identifiable, as demonstrated in Proposition 1 be-
low.

(A0) The product measure PX1 × · · · × PXd
has a density

with respect to the joint probability measure PX and
the density is bounded away from zero and infinity on
the support of PX. The marginal distributions are ab-
solutely continuous with respect to Lebesgue measure
and their densities are supported on bounded inter-
vals, or they are discrete measure with finite support.
The marginal densities pj for 1 ≤ j ≤ d0 satisfy that
wj/pj are bounded away from zero and infinity on the

support of the respective pj .
(A1) The smallest eigenvalues of E(ZjZ

�
j |Xj = xj) · pj(xj)

for 1 ≤ j ≤ d0 are bounded away from zero on the
support of the respective pj .

Proposition 1. Assume that the conditions (A0) and (A1)
hold. For a set of Hilbertian constants a0+,k, a

1
j,k ∈ H and

Hilbertian maps gj,k : R → H satisfying the constraints
(2.5), let

μ(x) =

( d⊕
k=d0−r+1

xk � a0+,k

)
⊕
( ⊕

(j,k)∈J

xjxk � a1j,k

)

⊕
( d0⊕

j=1

⊕
k∈Ij

xk � gj,k(xj)

)
.

Then, there exist constants 0 < c < C < ∞ such that

c

∫
‖μ(x)‖2

H
PX(dx)

≤ ‖a‖2∗ +
d0∑
j=1

∑
k∈Ij

‖gj,k(xj)‖2H pj(xj) dxj

≤ C

∫
‖μ(x)‖2

H
PX(dx).

To see that the above proposition implies the identifi-
cation of fj,k, suppose that the true regression map m =
E(Y|X = ·) admits two representations as at (2.6), one with
α0

+,k,α
1
j,k, fj,k and the other with α̃0

+,k, α̃
1
j,k, f̃j,k. Then,

Proposition 1 ensures

‖α� α̃‖2∗ +
d0∑
j=1

∑
k∈Ij

‖fj,k(xj)� f̃j,k(xj)‖2H pj(xj) dxj

≤ C

∫
‖0‖2

H
PX(dx) = 0,

which implies that fj,k ≡ f̃j,k for all (j, k) with k ∈ Ij and
1 ≤ j ≤ d0.

2.3 Estimation of the model

Throughout this paper, we assume that all continuous-
type predictors in the nonlinear parts (Xj with 1 ≤ j ≤ d0)
have compact supports. Without loss of generality, we as-
sume that they are supported on [0, 1]. We note that the
constraints (2.5) on fj,k are needed only in case we want to
identify and estimate fj,k. They are not needed for estimat-
ing the regression map m := E(Y|X = ·). In the description
of the methodology here and its theory in Section 3 we ne-
glect the parametric part for simplicity of presentation. In
practice, one may simply replace Yi in the description given
below by

Yi(α̂) = Yi �
( d⊕

k=d0−r+1

Xik � α̂0
+,k

)

�
( ⊕

(j,k)∈J

XijXik � α̂1
j,k

)

and applies (2.5) in case one estimates fj,k, where α̂’s are
suitable estimators of α’s. In fact, the effect of estimating
the parameters α’s on the estimation of normalized fj,k can
be made negligible. In the Appendix B, we give a full ac-
count of the issues in estimating the parametric part. Be-
low, we first describe our method of estimating m and then
present a way of implementing the constraints (2.5) that
gives estimators of the individual fj,k. In the representation

m(x) =
⊕d0

j=1 z
�
j � fj(xj), we suppress the dependence of

zj = (xk : k ∈ Ij) on x, and likewise the dependence of
Zij = (Xik : k ∈ Ij) on Xi as well, here and throughout

the paper. Recall fj =
(
fj,k : k ∈ Ij

)�
, where fj,k in fj is

enumerated in the same order as xk in zj .
We use normalized kernel functions of the form

(2.7) Kh(u, v) =
Kh(u− v)∫ 1

0
Kh(w − v) dw

, u, v ∈ [0, 1],

where Kh(u− v) = h−1K((u− v)/h), h is a bandwidth and
K : R → [0,∞) is a baseline kernel function. This type of
normalized kernels has been used in the smooth backfitting
(SBF) literature. Throughout this paper we assume that K
is bounded, symmetric, Lipschitz continuous, vanishing on
R \ (−1, 1) and positive on (−1, 1). The normalized kernels

have the property that
∫ 1

0
Kh(u, v) du = 1 for all v ∈ [0, 1].
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We estimate m(x) by m̂(x) =
⊕d0

j=1 z
�
j � f̂j(xj) where the

tuple (f̂1, . . . , f̂d0) minimizes

∫
[0,1]d0

n−1
n∑

i=1

∥∥∥Yi �
d0⊕
j=1

Z�
ij � gj(xj)

∥∥∥2
H

·
d0∏
j=1

Khj (xj , Xij) dxd0

(2.8)

over (g1, . . . ,gd0) in an appropriate function class, where

xd0 = (x1, . . . , xd0). The function class over which we

minimize (2.8) is the space of tuples of Hilbertian maps

(g1, . . . ,gd0) with gj : [0, 1] → H
|Ij |.

By considering the Fréchet derivative of the objective

functional at (2.8) on the function class, we may see that

the minimizer of (2.8) satisfies

∫
[0,1]d0−1

n⊕
i=1

n−1 · Zij ·
d0∏
l=1

Khl
(xl, Xil)

�
(
Yi �

d0⊕
l=1

Z�
il � f̂l(xl)

)
dx−j

= 0|Ij | for xj a.e. on [0, 1], 1 ≤ j ≤ d0,

(2.9)

where x−j = (x1, . . . , xj−1, xj+1, . . . , xd0). In the above inte-

gration, the integrand is a Hilbertian map: [0, 1]d0−1 → H
|Ij |

and thus the integral is in the Bochner sense. Define |Ij |×|Ij |
and |Ij | × |Il| real matrices

M̂jj(xj) = n−1
n∑

i=1

ZijZ
�
ijKhj (xj , Xij),

1 ≤ j ≤ d0,

M̂jl(xj , xl) = n−1
n∑

i=1

ZijZ
�
ilKhj (xj , Xij)

×Khl
(xl, Xil), 1 ≤ j �= l ≤ d0,

(2.10)

respectively. Also, define

ν̂j(xj) = M̂jj(xj)
−1 · n−1 �

( n⊕
i=1

Zij

·Khj (xj , Xij)�Yi

)
, 1 ≤ j ≤ d0.

(2.11)

The above ν̂j : [0, 1] → H
|Ij | is nothing else than an estima-

tor of the marginal regression map νj(·) := E(ZjZ
�
j |Xj =

·)−1 � E(Zj � Y |Xj = ·), which minimizes E‖Y �
Z�

j � νj(Xj)‖2H. From the normalization property that∫ 1

0
Kh(u, v) du = 1 for all v ∈ [0, 1], the system of equations

(2.9) is equivalent to

f̂j(xj) = ν̂j(xj) �
d0⊕

l=1:�=j

∫ 1

0

M̂jj(xj)
−1

· M̂jl(xj , xl)� f̂l(xl) dxl, 1 ≤ j ≤ d0.

(2.12)

We note that the system of equations at (2.12) defines

only an estimator of the form m̂(x) =
⊕d0

j=1 z
�
j � f̂j(xj)

without specifying individual components f̂j,k. In Section 3.2
we will show that a solution m̂ of the system of equations
(2.12) exists and is unique under mild conditions. To identify
the individual components satisfying the constraints (2.5),
define

δ̂0j,k =

(∫ 1

0

wj(xj) dxj

)−1

�
∫ 1

0

wj(xj)� f̂j,k(xj) dxj ,

k ∈ Ij , d0 + 1 ≤ k ≤ d,(
δ̂0j,k

δ̂1j,k

)
=

( ∫ 1

0
wj(xj) dxj

∫ 1

0
xjwj(xj) dxj∫ 1

0
xjwj(xj) dxj

∫ 1

0
x2
jwj(xj) dxj

)−1

�
( ∫ 1

0
wj(xj)� f̂j,k(xj) dxj∫ 1

0
xjwj(xj)� f̂j,k(xj) dxj

)
,

k ∈ Ij , d0 − r + 1 ≤ k ≤ d0.

Then, the normalized component maps are given by

f̂j,k(xj) � δ̂0j,k, k ∈ Ij , d0 + 1 ≤ k ≤ d,

f̂j,k(xj) � δ̂0j,k � xj � δ̂1j,k,

k ∈ Ij , d0 − r + 1 ≤ k ≤ d0.

(2.13)

2.4 Backfitting algorithm

The solution of the system of equations at (2.12) is not
explicit. We present an iterative algorithm which is easy to

implement. Suppose that we are given initial estimates f̂
[0]
j .

Let f̂
[r]
j denote the update for the jth component map in

the rth iteration step. For a concise presentation define f̂
[r]
+j

for 2 ≤ j ≤ d0 and f̂
[r]
j+ for 1 ≤ j ≤ d0 − 1 by

f̂
[r]
+j(xj) =

⊕
l≤j−1

∫ 1

0

M̂jj(xj)
−1 · M̂jl(xj , xl)

� f̂
[r]
l (xl) dxl,

f̂
[r]
j+(xj) =

⊕
l≥j+1

∫ 1

0

M̂jj(xj)
−1 · M̂jl(xj , xl)

� f̂
[r]
l (xl) dxl.

(2.14)

We put f̂
[r]
+1 ≡ 0|Ij | and f̂

[r]
d0+

≡ 0|Ij |. Then, the Hilbertian
SBF iterative algorithm that is driven from (2.12) is given
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by

f̂
[r]
j (xj) = ν̂j(xj) � f̂

[r]
+j(xj)

� f̂
[r−1]
j+ (xj), 1 ≤ j ≤ d0.

(2.15)

We note that the integrals in (2.15) are in the Bochner
sense and thus they are abstractly defined. We present a
useful way of computing these Bochner integrals based on
Lebesgue integration. The main idea is based on the fact
that, for any (Lebesgue) integrable gj : [0, 1] → R

|Ij | and
for any constant b in a Banach space, the Bochner inte-
gral of the map gj � b : [0, 1] → B

|Ij | over [0, 1] equals∫ 1

0
gj(xj) dxj �b. Note that the integration

∫ 1

0
gj(xj) dxj is

in the Lebesgue sense. To implement (2.15) using this idea,

we take initial estimates f̂
[0]
j which are linear in Yi:

(2.16) f̂
[0]
j (xj) = n−1 �

n⊕
i=1

r
[0]
ij (xj)�Yi, 1 ≤ j ≤ d0,

where r
[0]
ij : [0, 1] → R

|Ij | are vectors of real-valued func-
tions depending solely on {Xij : 1 ≤ i ≤ n, 1 ≤ j ≤ d}
and do not involve Hilbertian responses Yi. For a choice of

r
[0]
ij one may take zero functions, which corresponds to the

choice f̂
[0]
j ≡ 0|Ij |. Now, given r

[r]
ij , r ≥ 0 define r

[r]
i,+j and

r
[r]
i,j+, respectively, just like f̂

[r]
+j and f̂

[r]
j+ are defined from

(f̂
[r]
1 , . . . , f̂

[r]
d ) at (2.14). From the initial r

[0]
ij , define r

[r]
ij for

r ≥ 1 and for 1 ≤ i ≤ n recursively by

r
[r]
ij (xj) = M̂−1

jj (xj)ZijKhj (xj , Xij)

− r
[r]
i,+j(xj)− r

[r−1]
i,j+ (xj), 1 ≤ j ≤ d0.

Then, we may express the rth updates f̂
[r]
j as

(2.17) f̂
[r]
j (xj) = n−1 �

n⊕
i=1

r
[r]
ij (xj)�Yi, 1 ≤ j ≤ d0.

In Section 3.2 we will show that the backfitting algorithm
(2.15) converges to the solution of the system of the back-
fitting equations at (2.12).

The implementation of the SBF algorithm (2.15) via

(2.17) requires only updating the weights r
[r]
ij (xj) ∈ R

|Ij |

for 1 ≤ i ≤ n and 1 ≤ j ≤ d0. For functional responses
Yi ≡ Yi(·) sitting on a time domain T , this means that the

rth updates f̂
[r]
j (xj) ≡ f̂

[r]
j (xj)(·) for each xj are obtained

on the entire T all at once after the weights are updated.
The computation does not need to be done for each point t
on a fine grid of T , so that the computation is fast. In case
Yi(·) are not observed on the entire domain T but only on
a discrete subset of T , one may still apply our method after
a pre-smoothing step where one can use popular nonpara-
metric smoothing techniques. For example, in the real data
example to be discussed in Section 4.3 we used the local

linear smoothing technique. Our theory given in the next
section assumes that Yi are completely observed. It does
not take into account the errors in the reconstruction of Yi

from incomplete observations.

3. THEORY

Here, we discuss the theoretical properties of the Hilber-
tian SBF estimation that we described in Section 2. For this
we first introduce some relevant spaces of Hilbertian maps
and associated linear operators.

3.1 Projection onto model space

Let Xj be the support of the predictor Xj in the linear

parts (d0+1 ≤ j ≤ d). We let X := [0, 1]d0×
∏d

j=d0+1 Xj de-
note the support of the distribution PX . The space of func-
tions that embodies the true regression map is the collection
of μ : X → H with ‖μ‖22 :=

∫
‖μ(x)‖2

H
dPX(x) < ∞. We

denote the function class by M . Clearly, ‖ ·‖2 is a norm and
M is a Hilbert space. Now, let Mvc be a subspace of M such
that its elements are of the form μ(x) =

⊕d0

j=1 z
�
j � gj(xj)

with gj : [0, 1] → H
|Ij | for 1 ≤ j ≤ d0. The space Mvc

embodies the true regression map m(·) = E(Y|X = ·) un-
der the model (2.1). Also, let Mj denote subspaces of Mvc

(and M ) such that μ(x) = z�j � gj(xj), which embodies
each additive interaction term in the model (2.1). Thus,
Mvc = M1 + · · · + Md0 . The Hilbertian SBF estimation
that we introduced in Section 2.3 is expressed in terms of
linear operators, π̂j defined at (3.4) below, that map Mvc

to Mj . The existence of an estimator m̂ of m that takes the

form m̂(x) =
⊕d0

j=1 z
�
j f̂j(xj) with f̂j satisfying (2.12) and

the convergence of the backfitting algorithm (2.15), depend
on the contraction property of a linear operator that maps
Mvc to itself. The latter linear operator is constructed from
π̂j , see T̂ defined at (3.7) below.

We first introduce the population versions of π̂j . Let
〈·, ·〉2 : M × M → [0,∞) denote the inner product of M ,
which is defined by 〈μ1,μ2〉2 =

∫
〈μ1(x),μ2(x)〉H dPX(x).

Let πj : M → Mj with πj(μ)(x) = z�j � g∗
j (xj) be the

projection operator characterized by∫
〈μ(x)� πj(μ)(x), zj � gj(xj)〉H dPX(x) = 0

for all gj : gj : [0, 1] → H
|Ij |.

(3.1)

Define |Ij |× |Ij | and |Ij |× |Il| real matrices, respectively, by

Mjj(xj) = E(ZjZ
�
j |Xj = xj) · pj(xj), 1 ≤ j ≤ d0

Mjl(xj , xl) = E(ZjZ
�
l |Xj = xj , Xl = xl) · pjl(xj , xl),

1 ≤ j �= l ≤ d0,

where pjl are the two-dimensional joint densities of (Xj , Xl).

These are the population versions of the empirical M̂jj and
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M̂jl, respectively, introduced in Section 2.3. Then, we may
derive from (3.1) that

πj(μ)(x) = z�j ·Mjj(xj)
−1 · pj(xj)

� E(Zj � μ(X) |Xj = xj), 1 ≤ j ≤ d0.
(3.2)

The projection of μ ∈ Mvc onto Mj is a restriction of πj

to the domain space Mvc. For this let μ(x) = μ1(x)⊕ · · · ⊕
μd0(x) with μl(x) = z�l � gl(xl). Applying (3.2) to μl for
l �= j, we get

πj(μl)(x) = z�j ·Mjj(xj)
−1 �

∫ 1

0

Mjl(xj , xl)� gl(xl) dxl.

This gives that, for μ ∈ Mvc of the form μ(x) =
⊕d0

l=1 z
�
l �

gl(xl),

πj(μ)(x) = z�j �
(
gj(xj) ⊕

d0⊕
l=1:�=j

Mjj(xj)
−1

�
∫ 1

0

Mjl(xj , xl)� gl(xl) dxl

)
.

(3.3)

The empirical versions of πj restricted to Mvc are ob-
tained if we replace Mjj(xj) and Mjl(xj , xl), respectively,

by M̂jj(xj) and M̂jl(xj , xl) at (2.10). Indeed, we get

π̂j(μl)(x) = z�j · M̂jj(xj)
−1 �

∫ 1

0

M̂jl(xj , xl)� gl(xl) dxl

for μl (l �= j) of the form μl(x) = z�l � gl(xl). We define
π̂j : Mvc → Mj by

π̂j(μ)(x) = z�j �
(
gj(xj) ⊕

d0⊕
l=1:�=j

M̂jj(xj)
−1

�
∫ 1

0

M̂jl(xj , xl)� gl(xl) dxl

)
,

(3.4)

where μ(x) =
⊕d0

l=1 z
�
l � gl(xl).

We note that, under the condition (A1), Mjj(xj) are in-
vertible for all xj ∈ [0, 1] and for all 1 ≤ j ≤ d0. Define

μl,j(xj) =
∫ 1

0
((v − xj)/hj)

lKhj (xj , v) dv. Then,

(3.5) M̂jj(xj) = μ0,j(xj) ·Mjj(xj) + op(1)

uniformly for xj ∈ [0, 1] under some mild conditions, see the
proof of Lemma A.1 in Section A. Since K is symmetric, if
hj ≤ 1/2, then

∫ 1

0

K(u) du =

∫ 0

−1

K(u) du

≤
∫ 1

0

Kh(u− v) du ≤
∫ 1

−1

K(u) du for all v ∈ [0, 1].

This entails that infxj∈[0,1] μ0,j(xj) ≥ 1/2, which with the

uniform convergence at (3.5) implies that M̂jj(xj) is invert-
ible for all xj ∈ [0, 1] with probability tending to one.

We express the backfitting equation at (2.12) using the
linear operators π̂j . For concise representation, we define

f̂j,vc : X → H by f̂j,vc(x) = z�j � f̂j(xj). Similarly, define fj,vc

with fj taking the role of f̂j . Also, let m̂j(x) = z�j � ν̂j(xj).
Then, we may rewrite (2.12) as

f̂j,vc(x) = m̂j(x)�
d0⊕

l=1,�=j

π̂j(f̂l,vc)(x), 1 ≤ j ≤ d0.

This gives

(3.6) m̂ = m̂j ⊕ (I − π̂j)(m̂), 1 ≤ j ≤ d0,

where m̂(x) =
⊕d0

j=1 z
�
j � f̂j(xj) =

⊕d0

j=1 f̂j,vc(x) and I is

the identity map. Define T̂ : Mvc → Mvc by

(3.7) T̂ = (I − π̂d0) ◦ · · · ◦ (I − π̂1).

Applying (3.6) successively from j = d0 to j = 1, we obtain

(3.8) m̂ = m̂⊕ ⊕ T̂ (m̂),

where m̂⊕ = m̂d0 ⊕ π̂⊥
d0
(m̂d0−1) ⊕ (π̂⊥

d0
◦ π̂⊥

d0−1)(m̂d0−2) ⊕
· · · ⊕ (π̂⊥

d0
◦ · · · ◦ π̂⊥

2 )(m̂1) and π̂⊥
j = I − π̂j . Note that here

we continue to use ⊕ to denote the map-addition operation,
i.e., (μ1⊕μ2)(x) = μ1(x)⊕μ2(x). We also get an analogue
of (3.8) for the backfitting iteration (2.15) as

(3.9) m̂[r] = m̂⊕ ⊕ T̂ (m̂[r−1]),

where m̂[r](x) =
⊕d0

j=1 z
�
j � f̂

[r]
j (xj) for r ≥ 0.

3.2 Existence of estimator and convergence
of algorithm

Let T be the population version of T̂ at (3.7) defined
by (I − πd0) ◦ · · · ◦ (I − π1). They are bounded linear op-
erators that map M to M . Here, we consider their re-
strictions on Mvc. Let L(Mvc,Mvc) denote the space of all
bounded linear operators mapping Mvc to itself. We endow
L(Mvc,Mvc) with the operator norm ‖ ·‖L(Mvc,Mvc) defined
by

‖L‖L(Mvc,Mvc) = sup{‖L(μ)‖2 : μ ∈ Mvc with ‖μ‖2 = 1}.

According to the theory developed in Jeon and Park (2020),
the equation (3.8) has a unique solution m̂ ∈ Mvc and
the iteration of m̂[r] at (3.9) converges to the solution if
‖T̂‖L(Mvc,Mvc) < 1, see Section 3.2 of the aforementioned

paper. In Lemma A.1 in Section A we show that ‖T̂ −
T‖L(Mvc,Mvc) converges to zero in probability as n → ∞.

Thus, if ‖T‖L(Mvc,Mvc) < 1, then ‖T̂‖L(Mvc,Mvc) < γ with
probability tending to one for some 0 < γ < 1. According to
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Theorem 4.6 in Xu and Zikatanov (2002) and Lemma 2.1 in
Blot and Cieutat (2016), the statement ‖T‖L(Mvc,Mvc) < 1
is equivalent to the following one:

There exists a constant 0 < c < ∞ such that

each μ ∈ Mvc admits a decomposition

μ =

d0⊕
j=1

gj,vc with gj,vc ∈ Mj and

d0∑
j=1

‖gj,vc‖2 ≤ c‖μ‖2.

(3.10)

In Lemma A.2 in Section A we prove that (3.10) holds. In
the lemma we allow H to be any separable Hilbert space of
finite- or infinite-dimension.

The foregoing discussion gives the following Theorem 1.
Before stating the theorem we collect some additional as-
sumptions we need for the theorem. The following condi-
tions are used to prove the consistency of M̂jj and M̂jj′ as
estimators of Mjj and Mjj′ , respectively, see Lemma A.1
in the Appendix A. In particular, the restriction cj+cj′ < 1

in (A4) makes the variances of M̂jj′ , which is of magnitude
(nhjhj′)

−1, converge to zero.

(A2) The joint density p is bounded away from zero and
infinity on [0, 1]d0 , and Mjj and Mjj′ are continuous
on [0, 1] and [0, 1]2, respectively, for 1 ≤ j �= j′ ≤ d0.

(A3) There exists a constant α > 2 such that the followings
hold: (i) for all 1 ≤ j ≤ d0, E(|XlXm|α) < ∞ and
E(|XlXm|2 |Xj = ·) are bounded on [0, 1] for all l,m ∈
Ij ; (ii) for all 1 ≤ j �= j′ ≤ d0, E(|XlXm|α) < ∞ and
E(|XlXm|2 |Xj = ·, Xj′ = ·) are bounded on [0, 1] ×
[0, 1] for all l ∈ Ij and m ∈ Ij′ .

(A4) The bandwidths hj for 1 ≤ j ≤ d0 satisfy that hj =
o(1) as n → ∞ and ncjhj are bounded away from zero
for some 0 < cj < (α − 2)/2 with cj + cj′ < 1, where
α is the constant in (A3).

Theorem 1. Assume that the conditions (A1)–(A4) hold.
Then, there exists a unique solution of the Hilbertian back-
fitting equation at (3.8). Moreover, the Hilbertian backfitting
algorithm at (3.9) converges to the solution in the following
sense: with probability tending to one

‖m̂[r] � m̂‖2 ≤ c · γr
(
‖m̂⊕‖2 + ‖m̂[0]‖2

)
, r ≥ 1,

where 0 < c < ∞ and 0 < γ < 1 are absolute constants.

3.3 Rates of convergence of backfitting
estimators

With a slight abuse of notation we continue to let f̂j,k
denote the normalized component estimators satisfying the
constraints (2.5). The construction of the normalized ver-
sions is described in (2.13). We also continue to write fj,k
for the normalized versions of the true component maps.

Let f̂j = (f̂j,k : k ∈ Ij). Likewise, put fj = (fj,k : k ∈ Ij).

Here, we derive the rates of convergence of f̂j in various
modes. For a sequence of random elements {Zn : n ≥ 1}
taking values in H

k for some k ≥ 1, we write Zn = op(1) if
P (‖Zn‖Hk > ε) → 0 as n → ∞ for any ε > 0. We also write
Zn = Op(1) if limC→∞ lim supn→∞ P (‖Zn‖Hk > C) = 0.

For each fj,k : [0, 1] → H constituting fj , its first Fréchet
derivative Dfj,k(xj) at xj ∈ [0, 1] is a bounded linear map
from R to H such that Dfj,k(xj)(w) = w �Dfj,k(xj)(1) for
w ∈ R, where Dfj,k(xj)(1) is defined by

lim
|ε|→0

1

|ε| ·
∥∥fj,k(xj + ε)� fj,k(xj)�

(
ε�Dfj,k(xj)(1)

)∥∥
H
= 0.

The second Fréchet derivative of fj,k : [0, 1] → H, which we
denote by D2fj,k, is a map from [0, 1] to L(R×R,H), so that
D2fj,k(xj) for xj ∈ [0, 1] is a bounded linear map from R×R

to H. Specifically, D2fj,k(xj)(w,w
′) = w′�D2fj,k(xj)(w, 1),

where D2fj,k(xj)(w, 1) is defined by

lim
|ε|→0

1

|ε| · ‖Dfj,k(xj + ε)(w)�Dfj,k(xj)(w)

�
(
ε�D2fj,k(xj)(w, 1)

)∥∥
H
= 0

for w ∈ R. It holds that D2fj,k(xj)(w,w
′) = w · w′ �

D2fj,k(xj)(1, 1).

To derive the rates of convergence of f̂j to fj , we make the

following additional assumptions. Let ε = Y �
⊕d0

j=1 Z
�
j �

fj(Xj).

(A5) E(‖ε‖α
H
) < ∞ for some α > 5/2 and E(‖ε‖2

H
|Xj = ·)

for 1 ≤ j ≤ d0 are bounded on [0, 1].
(A6) Each entry of fj for 1 ≤ j ≤ d0 are twice continuously

Fréchet differentiable on [0, 1].
(A7) Each entry of Mjj′ , for 1 ≤ j �= j′ ≤ d0, are continu-

ously differentiable on [0, 1]2.
(A8) For all 1 ≤ j ≤ d0, it holds that n

1/5hj → cj for some
constants 0 < cj < ∞.

Theorem 2. Assume (A0)–(A3) and (A5)–(A8). Let (fj :

1 ≤ j ≤ d0) and (f̂j : 1 ≤ j ≤ d0) are the tuple of the true
component maps and of their estimators, respectively, that
satisfy the constraints (2.5). Then, for all 1 ≤ j ≤ d0, it
holds that

(i) (pointwise convergence)

f̂j(xj)� fj(xj)=Op(n
−2/5), xj ∈ [2hj , 1− 2hj ],

f̂j(xj)� fj(xj)=Op(n
−1/5), xj ∈ [0, 1] \ [2hj , 1− 2hj ];

(ii) (L2 convergence)∫ 1−2hj

2hj

‖f̂j(xj)� fj(xj)‖2
H

|Ij | · pj(xj) dxj = Op(n
−4/5),

∫
[0,1]\[2hj ,1−2hj ]

‖f̂j(xj)� fj(xj)‖2
H

|Ij | · pj(xj) dxj

= Op(n
−3/5);
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(iii) (uniform convergence)

sup
xj∈[2hj ,1−2hj ]

‖f̂j(xj)� fj(xj)‖H|Ij | = Op(n
−2/5

√
logn),

sup
xj∈[0,1]\[2hj ,1−2hj ]

‖f̂j(xj)� fj(xj)‖H|Ij | = Op(n
−1/5).

3.4 Asymptotic distributions of backfitting
estimators

Here, we present the joint asymptotic distribution of(
f̂j(xj) : 1 ≤ j ≤ d0

)
. Let {el : 1 ≤ l ≤ L} be an or-

thonormal basis of H, where we allow L = ∞. We make the
following additional assumptions.

(A9) For all l, l′ and 1 ≤ j �= j′ ≤ d0, it holds that
E
(
〈ε, el〉 · 〈ε, el′〉H |Xj = ·

)
is continuous on [0, 1],

and for the constant α in (A5) the real-valued func-
tions E(‖ε‖α

H
|Xj = ·) and E

(
〈ε, el〉 · 〈ε, el′〉H |Xj = ·,

Xj′ = ·
)
are bounded on [0, 1] and [0, 1]2, respectively.

Define e
(j)
k,l = (0, . . . ,0, el,0, . . . ,0)

� ∈ H
|Ij |, where el

appears at the same position as Xk in Zj = (Xk : k ∈
Ij). We note that {e(j)k,l : k ∈ Ij , 1 ≤ l ≤ L} constitutes

an orthonormal basis of H
|Ij |. For each 1 ≤ j ≤ d0 and

xj ∈ [0, 1], define a linear operator Cj(·, xj) : H
|Ij | → H

|Ij |

characterized by

〈Cj(e(j)k,l , xj),e
(j)
k′,l′〉H|Ij | = c−1

j ·
(
Mjj(xj)

−1
)
k,k′

· E
(
〈ε, el〉 · 〈ε, el′〉H |Xj = xj

)
·
∫

K(t)2 dt,

where
(
Mjj(xj)

−1
)
k,k′ denotes the entry of the |Ij | × |Ij |

matrix Mjj(xj)
−1 at the same position as E(XkXk′ |Xj =

xj) · pj(xj) in Mjj(xj). Let Wj(xj) ≡ Gj(0|Ij |, Cj(·, xj))

denote a Gaussian random element taking values in H
|Ij |,

with mean 0|Ij | and covariance operator Cj(·, xj) : H
|Ij | →

H
|Ij |. This means that, for each ηj ∈ H

|Ij |, the real-valued
random variable 〈Wj(xj),ηj〉H|Ij | is normally distributed

with mean zero and variance E
(
〈Wj(xj),ηj〉2H|Ij |), and that

E
(
〈Wj(xj),ηj〉H|Ij | · 〈Wj(xj),η

′
j〉H|Ij |

)
= 〈Cj(ηj , xj),η

′
j〉H|Ij | , η,η′ ∈ H

|Ij |.

For the constants cj in (A8), define the non-stochastic terms

β̃j(xj) = μ2 · c2j ·Mjj(xj)
−1 ·

( ∂

∂xj
Mjj(xj)

)
�Dfj(xj)(1)

⊕
d0⊕

k=1:�=j

∫ 1

0

μ2 · c2k ·Mjj(xj)
−1

·
( ∂

∂xk
Mjk(xj , xk)

)
�Dfk(xk)(1) dxk,

where μ2 =
∫
t2K(t) dt. Consider the following system of

equations in (ξj : 1 ≤ j ≤ d0) with ξj : [0, 1] → H
|Ij |:

ξj(xj) = β̃j(xj) �
d0⊕

k=1:�=j

∫ 1

0

Mjj(xj)
−1

·Mjk(xj , xk)� ξk(xk) dxk, 1 ≤ j ≤ d0.

(3.11)

An equivalent version of (3.11) in terms of ξj,vc ∈ Mj ⊂ Mvc

is

ξj,vc(x) = β̃j,vc(x) �
d0⊕

k=1:�=j

πj(ξk,vc)(x), 1 ≤ j ≤ d0,

where β̃j,vc(x) = z�j � β̃j(xj). The latter system of equa-
tions defines a unique map in Mvc. Call it βvc, which
is represented as βvc(x) =

⊕d0

j=1 z
�
j � ξj(xj) for some

ξj : [0, 1] → H
|Ij |. Recall that each component map ξj is

identified only up to an additive constant or up to an addi-
tive linear term. Let (βj : 1 ≤ j ≤ d0) denote a version of
(ξj : 1 ≤ j ≤ d0) that satisfies∫ 1

0

wj(xj)� βj,k(xj) dxj

= (−μ2c
2
j/2)�

∫ 1

0

wj(xj)�D2fj,k(xj)(1, 1) dxj ,

j ∈ Ĩk, d0 − r + 1 ≤ k ≤ d,∫ 1

0

xjwj(xj)� βj,k(xj) dxj

= (−μ2c
2
j/2)�

∫ 1

0

xjwj(xj)�D2fj,k(xj)(1, 1) dxj ,

j ∈ Ĩk, d0 − r + 1 ≤ k ≤ d0.

Here, we write βj(xj) = (βj,k(xj) : k ∈ Ij) and
D2fj(xj)(1, 1) =

(
D2fj,k(xj)(1, 1) : k ∈ Ij

)
. Define

θj(xj) = βj(xj) ⊕ 1

2
μ2 · c2j �D2fj(xj)(1, 1).

We note that θj satisfy the constraints (2.5).

Theorem 3. Assume that the conditions (A0)–(A3) and
(A5)–(A9) hold. Then, for each xc = (x1, . . . , xd0)

� ∈
(0, 1)d0 , the joint distribution of

(
n2/5 � (f̂j(xj) � fj(xj)) :

1 ≤ j ≤ d0
)
converges to

(
θj(xj)⊕Gj(0|Ij |, Cj(·, xj)) : 1 ≤

j ≤ d0
)
, where Gj(0|Ij |, Cj(·, xj)) are independent. More-

over, for each x ∈ (0, 1)d0 ×
∏d

j=d0+1 Xj, the distribution of

n2/5 �
(
m̂(x) � m(x)

)
converges to

⊕d0

j=1 z
�
j �

[
θj(xj) ⊕

Gj(0|Ij |, Cj(·, xj))
]
.

Remark 1. If we choose hj going to zero faster than
n−1/5, then the asymptotic biases θj(xj) are of negligi-
ble magnitudes. Specifically, if hj = o(n−1/5) for all 1 ≤
j ≤ d0, then we may show that the joint distribution of
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(
n1/2h

1/2
j � (f̂j(xj) � fj(xj)) : 1 ≤ j ≤ d0

)
converges to(

Gj(0|Ij |, C∗
j (·, xj)) : 1 ≤ j ≤ d0

)
, where Gj(0|Ij |, C∗

j (·, xj))

are independent and C∗
j (·, xj) are defined as Cj(·, xj) with

cj in the definition being replaced by 1. Furthermore, if

all hj are of the same magnitude such that hj = c̃jn
−a

for some constants a > 1/5 and 0 < c̃j < ∞, then

the distribution of n(1−a)/2 �
(
m̂(x) � m(x)

)
converges to⊕d0

j=1 c̃
−1/2
j z�j �Gj(0|Ij |, C∗

j (·, xj)).

4. NUMERICAL PROPERTIES

4.1 Density responses

Since we deal with random densities as response vari-

ables in the simulation study and real data example in the

next two subsections, we briefly introduce the associated

vector operations and the inner product acting on the space

of probability density functions that makes the space be a

Hilbert space. Let U be a subset of R with finite Lebesgue

measure. Consider the space of density functions y ≡ y(·),
with respect to the Lebesgue measure on R, supported on

U such that
∫
U
log2(y(u)) du < ∞. For this space, the zero

vector is the constant density 0 = Leb(U)−1, where Leb

denotes the Lebesgue measure. For a scalar c ∈ R and for

density functions y1 ≡ y1(·) and y2 ≡ y2(·), the vector ad-

dition y1 ⊕ y2 and scalar multiplication c � y are defined

by

y1 ⊕ y2 =
y1(·) · y2(·)∫

U
y1(u) · y2(u) du

, c� y =
y(·)c∫

U
y(u)c du

.

The inner product and norm are

〈y1,y2〉H =
1

2Leb(U)

∫
U2

log

(
y1(u)

y1(u′)

)

· log
(
y2(u)

y2(u′)

)
du du′,

‖y‖H =

(
1

2Leb(U)

∫
U2

[
log

(
y(u)

y(u′)

)]2
du du′

)1/2

.

(4.1)

The space of density functions with the above vector oper-

ations and inner product is then a separable Hilbert space,

see van den Boogaart et al. (2014).

4.2 Simulation study

We considered one varying coefficient (VC) model and

two non-VC models for each of the dimensions d0 = 2 and

3. The inclusion of the non-VC models was to see the sen-

sitivity of our approach to model violation. The response

variables Y = Y (·) were random densities.

The VC models were of the form

Y (·) =

⎛
⎝∫

U

d0∏
j=1

(fj(Xj)(u))
Zj ε(u) du

⎞
⎠

−1

·
d0∏
j=1

(fj(Xj)(·))Zj ε(·),

(4.2)

where U = [−1/2, 1/2] and we write fj(xj)(·) for fj(xj) and
ε(·) for ε. The model falls into the type of model given at
(2.2) with Zj here corresponding to Xd0+j there and fj here
to fj,d0+j there, so that we do not need to implement the

constraints (2.5) since r = 0 and all Ĩd0+j = {j} are single-

tons. We took fj(xj)(u) = exp(−jxj
ju

j) for 1 ≤ j ≤ d0 and

ε(u) = exp(−Wu4) with W being a uniform [−1, 1] random
variable. The predictors (X1, . . . , Xd0) and (Z1, . . . , Zd0)
were chosen to be independent. Specifically, Z1 ≡ 1 and
Z2 ∼ N(0, 1) for the case d0 = 2, and Z1 ≡ 1 and (Z2, Z3) is
bivariate normal with mean (0, 0) and variance-covariance
(1, 1, 0.5).

The first non-VC scenario was

Y (u) =

∏2
j=1(fj(Xj)(u))

Zjf12(X1, X2)(u)ε(u)∫
U

∏2
j=1(fj(Xj)(u))Zjf12(X1, X2)(u)ε(u) du

(d0 = 2),

Y (u) =

∏3
j=1(fj(Xj)(u))

Zjf123(X1, X2, X3)(u)ε(u)∫
U

∏3
j=1(fj(Xj)(u))Zjf123(X1, X2, X3)(u)ε(u) du

(d0 = 3).

where fj(xj)’s and ε are as defined in the VC sce-
nario at (4.2) and f12(x1, x2)(u) = exp(−x1x2u

2) and
f123(x1, x2, x3)(u) = exp(−(x1x2 + x1x3 + x2x3)u

2). The
second non-VC scenario was

Y (u) =
log((X1 +X2)u/2 + 2)(Z1+Z2)/2ε(u)

∫ 1/2

−1/2
log((X1 +X2)u/2 + 2)(Z1+Z2)/2ε(u) du

(d0 = 2),

Y (u) =
log((X1 +X2 +X3)u/2 + 2)(Z1+Z2+Z3)/2ε(u)

∫ 1/2

−1/2
log((X1 +X2 +X3)u/2 + 2)(Z1+Z2+Z3)/2ε(u) du

(d0 = 3).

We generated training samples of sizes n = 100 and 400 and
a test sample of sizeN = 100, repeatedly forM = 100 times.
We used the Epanechnikov kernelK(u) = 3/4(1−u2)I(|u| <
1).

We chose the initial estimators with weights r
[0]
ij (xj) ≡ 0

for 1 ≤ i ≤ n, 1 ≤ j ≤ d0, i.e., f̂
[0]
j (xj) = f̂

[0]
j (xj)(·) = 0,

which means that f̂
[0]
j (xj)(u) ≡ 1 for all u ∈ [−1/2, 1/2]. We

set the convergence criterion of the backfitting algorithm as

max
1≤j≤d0

∫ 1

0

‖f̂ [r]
j (xj)(·)� f̂

[r−1]
j (xj)(·)‖2H dxj < 10−4.
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We adopted the coordinate-wise bandwidth selection (CBS)
scheme proposed by Jeon and Park (2020) to choose the
bandwidths hj . It is an iterative method of updating hj

in such a way that at the �th iteration step one performs
the one-dimensional minimization of an objective func-

tion L(h
(�)
1 , . . . , h

(�)
j−1, gj , h

(�−1)
j+1 , . . . , h

(�−1)
d0

) with respect to
gj successively from j = 1 to j = d0. We chose a 10-fold
cross-validation criterion for L. The grid over which we min-
imized L was H =

∏d0

j=1{aj+0.01×� : � = 0, . . . , 20}, where
aj = max{(X(i+1),j −X(i),j)/2 : 0 ≤ i ≤ n}+ 0.001 with

−X(1),j =:X(0),j < X(1),j < · · ·
< X(n),j < X(n+1),j := 2−X(n),j ,

so that infxj∈[0,1] max1≤i≤n Khj (xj , Xij) > 0 for hj ∈ H.
We compared our approach with the full-dimensional

methods: the functional Nadaraya-Watson (Ferraty et al.,
2012) and the kernel-based functional k-NN (Lian, 2011,
2012), in terms of prediction accuracy. For the Nadaraya-
Watson estimator, we used Epanechnikov kernel and tuned
the bandwidth on {b+0.001×� : 1 ≤ � ≤ 200} for some small
b. For the k-NN estimator, we selected k from {1, 2, . . . , 30}.
Both the bandwidth and k were determined by 10-fold cross-
validation. We measured prediction accuracy by the mean
squared prediction error (MSPE),

MSPE = M−1
M∑

m=1

N−1
N∑
i=1

∥∥∥Y test(m)
i (·)� Ŷ

test(m)
i (·)

∥∥∥2
H

.

Here, Y
test(m)
i (·) denotes the ith response in the mth test

sample and

Ŷ
test(m)
i (·) =

d0⊕
j=1

Z
test(m)
ij � f̂j(X

test(m)
ij )(·),

where
(
(Z

test(m)
ij , X

test(m)
ij ) : 1 ≤ j ≤ d0

)
is the ith predictor

vector in the mth test sample and (f̂j : 1 ≤ j ≤ d0) is the
tuple of component estimators we computed using the mth
training sample.

Table 1 reports the values of the MSPE. It is observed
that our method dominates the full-dimensional approaches
except for non-VC (II). In the non-VC (II) scenario, the
functional k-NN shows the best performance, but it be-
comes comparable to our approach in the higher dimension.
The performance of our approach does not change much as
the dimension increases in the VC-scenario, but the full-
dimensional methods deteriorate very fast.

For the VC scenario and for our methods where individ-
ual component estimators are available, we calculated the
Monte Carlo approximations of the integrated squared bias
(ISB), the integrated variance (IV) and the mean integrated
squared error (MISE) as follows:

ISBj(f̂j) =

∫ 1

0

∥∥∥M−1 �
M⊕
�=1

f̂
(�)
j (xj) � fj(xj)

∥∥∥2
H

dxj ,

IVj(f̂j)

= M−1
M∑
�=1

∫ 1

0

∥∥∥f̂ (�)j (xj) � M−1 �
M⊕

�′=1

f̂
(�′)
j (xj)

∥∥∥2
H

dxj ,

MISEj(f̂j) = ISBj(f̂j) + IVj(f̂j),

where f̂
(�)
j denotes the estimate of fj based on the �th Monte

Carlo training sample. Table 2 presents the results. It sug-
gests that our approach does not suffer from the dimension-
ality problem and is quickly stabilized as the sample size
increases.

4.3 Real data example

Prediction of electricity load over time is very impor-
tant for efficient power supply. There has been a recent
study on an application of additive regression to predict-
ing electricity consumption, done by Jeon and Park (2020).
In the application, the response (Y) was the trajectory of
household electricity consumption on time domain (0–24
hour) and the predictors were temperature (X1) and cloudi-
ness (X2). They used the data from January 2008 to De-
cember 2016, collected from KOSIS (Korean Statistical In-
formation Service, http://kosis.kr/statHtml/statHtml.do?
orgId=310&tblId=DT 3664N 2008) and the Korea mete-
orological administration (https://data.kma.go.kr/cmmn/
main.do). However, they did not use the important predictor
indicating whether it is weekday or weekend. In the present
application, we added it as a new predictor Z.

To apply our approach with the additional discrete pre-
dictor, we obtained the monthly averages of the consump-
tion trajectories, temperatures and amounts of cloud, for
week days and for weekends. This means that for each month
we had two observations of (Z,X1, X2,Y), one for weekdays
and one for weekend. We set Zi = 1/2 if i corresponds to an
index for weekdays and Zi = −1/2 otherwise. The sample
size was thus n = 2 × 12 × 9 = 216. Then, we applied the
model at (2.3) with d0 = 2, d = 4, X3 ≡ 1 and X4 = Z,
that is,

E(Y|X) =f1,3(X1)⊕ f2,3(X2)

⊕ Z �
(
f1,4(X1)⊕ f2,4(X2)

)
.

(4.3)

We describe the response variable Y ≡ Y (·) in more de-
tails. The original data were given in the form of hourly tra-
jectories of relative electricity loads measured at each hour.
Specifically, the original data were Y unsmth

i (·) observed on
the discrete time domain {1, 2, . . . , 24} such that

Y unsmth
i (t) = 1, 000× Zi(t)∑24

s=1 Zi(s)/24
,

where Zi(s) denotes the electricity consumption during the
one hour time interval [s − 1, s] averaged for weekdays
or weekend days in the month corresponding to the in-
dex i. Thus, at the outset we did not know the absolute
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Table 1. The values of the mean squared prediction error (MSPE), multiplied by 103, for our approach, the functional
Nadaraya-Watson, and the kernel-based functional k-NN

Scenario d0 n
Our

approach
Functional

Nadaraya-Watson
Kernel-based

functional k-NN

VC
models

2
100 0.1340 3.7001 1.9280
400 0.1023 2.5293 0.7632

3
100 0.1612 8.0108 5.6271
400 0.1102 6.5733 3.2092

Non-VC
models (I)

2
100 0.3230 3.9033 1.9901
400 0.2686 2.6356 0.7813

3
100 1.4707 9.0964 6.3030
400 1.1995 7.4041 3.5241

Non-VC
models (II)

2
100 0.7040 0.7398 0.4531
400 0.6353 0.4580 0.2343

3
100 2.7435 4.9497 2.9849
400 2.3269 3.1537 1.6614

Table 2. The values of the ISB, IV and MISE, multiplied by
103, of the varying coefficient estimators for the VC scenario.
The last column contains the averages of ISB, of IV and of

MISE

d0 n f1 f2 f3 average

2 100 ISB 0.00138 0.01562 0.00850
IV 1.81114 2.17359 1.99237
MISE 1.81252 2.18921 2.00087

400 ISB 0.00013 0.00330 0.00172
IV 0.45556 0.45745 0.45651
MISE 0.45569 0.46075 0.45822

3 100 ISB 0.00115 0.01216 0.00098 0.00476
IV 2.02386 2.13758 2.61169 2.25771
MISE 2.02501 2.14974 2.61267 2.26247

400 ISB 0.00032 0.00205 0.00028 0.00088
IV 0.48699 0.50092 0.53160 0.50650
MISE 0.48731 0.50296 0.53188 0.50739

magnitudes of daily electricity consumptions. We obtained
smoothed trajectories Y smth

i (·) from these un-smoothed ob-
servations Y unsmth

i (·) by employing the local linear smooth-
ing technique: Y smth

i (s) = a(s) for (a(s), b(s)) that mini-
mized

24∑
t=1

φ

(
s− t

h

)(
Y unsmth
i (t)− a(s)− b(s)(t− s)

)2
,

where φ is the standard Gaussian density function and h =
1/2. Then, we normalized the smoothed Y smth

i (·) as follows:

Yi(t) =

(∫ 24

0

Y smth
i (s) ds

)−1

· Y smth
i (t), t ∈ [0, 24].

The smoothed and normalized Yi(·) are considered as ob-
served values of a random density, which was the response
variable Y in the working model (4.3).

For comparison, we also applied the additive model that
involves only X1 and X2, which was analyzed by Jeon and
Park (2020). Specifically, we considered

(4.4) E(Y|X1, X2) = f1(X1)⊕ f2(X2).

and applied the Bochner smooth backfitting technique they
developed. In this application and also for our method, we
used the Epanechnikov kernel as the baseline kernel K and
used the CBS algorithm that we described in Section 4.2. As
a measure of performance, we used the leave-one-curve-out
average squared prediction error (ASPE) defined by

ASPE = n−1
n∑

i=1

‖Yi(·)� Ŷ
(−i)
i (·)‖2

H
,

where ‖ · ‖H here is as defined at (4.1) with U = [0, 24].
We found that the value of ASPE for our approach

based on the model (4.3) was 0.0052, while the value
for the additive regression based on the model (4.4) was
0.0385. Figure 1 depicts the predicted electricity consump-

tion curves Ŷ
(−i)
i (·) with the actual trajectories Yi(·) for six

randomly chosen months. We note that both Ŷ
(−i)
i (·) and

Yi(·) are densities supported on [0, 24]. They clearly show
the superior prediction performance done by our method.
These results demonstrate that there is a marked differ-
ence in the usage of electricity between weekday and week-
end, and that our approach improves prediction accuracy
greatly by taking into account the difference very effi-
ciently.

To see how different the effects of temperature and cloudi-
ness are between weekday and weekend, we computed the
estimates of the component maps in the model (4.3). For
this, we used the constraints given at (2.5) with wj ≡ 1. In
the estimation of fj,k, we actually do not need to estimate
the parametric part, which is α3 and α4 in α3 ⊕ Zi � α4

in this example, but may apply the method described in
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Figure 1. Prediction results for six randomly chosen months: solid (actual trajectory); dashed (prediction based on (4.3), the
VC model); dotted (prediction based on (4.4), the additive model).

Section 2.3 directly to Yi. This is because the model (4.3)
corresponds to the case r = 0, so that the estimators of fj,k
based on Yi, prior to implementing the constraints, differ
from those based on Ỹi = Yi �

(
α̂3 ⊕ Zi � α̂4

)
, only by

(random) constants, see the Appendix B.1. The differences
vanish when one implements the constraints on the first line
of (2.5).

Figure 2 depicts the estimated f̂j,k. We note that f̂j,k(xj)
for each fixed xj and fixed (j, k) is a density function sup-
ported on [0, 24]. The three left panels are for the effect
of temperature and the three right for the effect of cloudi-
ness. Comparing them, we see that the effect of cloudi-

ness is relatively weaker than that of temperature. Tem-
perature has quite prominent effect on daily electricity us-
age. The overall picture of electricity usage as a map on
the (temperature)×(hour) domain for weekday looks simi-
lar to that for weekend, but the joint effect of temperature
and hour is stronger for weekday than for weekend. There
are marked differences in strength for mid-level temperature
and for the time period 8am–3pm, which is well reflected
on the left-bottom panel that depicts (weekday effect) �
(weekend effect). We note that the substraction operation
at each temperature level also gives a density over the time
domain.
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Figure 2. The estimated component maps. The two panels on the bottom depict (weekday effect) � (weekend effect) for
temperature (left) and cloudiness (right).

5. A CONCLUDING REMARK

The present paper considered the estimation of the gen-
eral varying coefficient model (2.1) with given index sets Ij
for 1 ≤ j ≤ d0. In reality one may not know Ij . Thus, at
the beginning one may fit the full model (2.4), identify Ij
by searching for significant component maps fj,k in the full

model, and then refit a reduced varying coefficient model of

the form at (2.1) with the chosen index sets Ij . This might

be too much dependent on subjective judgement, however.

An alternative but better way is to apply a penalized ap-

proach to the selection of significant components (such as

LASSO and SCAD). To the best of our knowledge, there
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has not been any attempt for developing a methodology
of this sort in structured nonparametric regression based
on kernel smoothing, even for real-valued responses. This
is an important and challenging topic for future study. An-
other topic that might be of interest is bandwidth selec-
tion. In this paper we employed the CBS scheme with a
10-fold cross-validation criterion in our numerical studies.
It is well admitted that cross-validation is subject to large
sampling variability. For smooth backfitting additive regres-
sion, Mammen and Park (2005) proposed and studied three
fully automatic bandwidth selection methods. One may ex-
tend the work to the current setting, which could be also a
topic for future study.

APPENDIX A. PROOF OF THEOREMS

The proof of Proposition 1 is essentially the same as the
proof of Lemma 1 in Lee et al. (2012b), thus is omitted.
Below, we sketch the proofs of Theorems 1–3.

A.1 Proof of Theorem 1

Theorem 1 is a consequence of the following two lemmas.

Lemma A.1. Under the conditions of Theorem 1, it holds
that ‖T̂ − T‖L(Mvc,Mvc) → 0 in probability.

Lemma A.2. Under the conditions (A1) and (A2), the
statement (3.10) holds.

Proof of Lemma A.1. Under the conditions (A2)–(A4), we
may prove

M̂jj(xj) = μ0,j(xj) ·Mjj(xj) + op(1),

1 ≤ j ≤ d0,

M̂jk(xj , xk) = μ0,j(xj) · μ0,k(xk) ·Mjk(xj , xk)

+ op(1), 1 ≤ j �= k ≤ d0,

(A.1)

uniformly for xj ∈ [0, 1] and (xj , xk) ∈ [0, 1]2. Recall that
μ0,j(xj) = 1 for all xj ∈ [2hj , 1−2hj ] and μ0,j(xj) ≥ 1/2 for
all xj ∈ [0, 1]\ [2hj , 1−2hj ]. Now, according to Lemma A.2,

each μ ∈ Mvc admits a decomposition μ =
⊕d0

j=1 gj,vc with

gj,vc(x) = z�j � gj(xj) such that max{‖gj,vc‖2 : 1 ≤ j ≤
d0} ≤ c‖μ‖2, where 0 < c < ∞ is universal for all μ. This
and an application of the Hölder inequality with (A.1) give
that, for all μ ∈ Mvc,

‖(π̂j − πj)(μ)‖2 ≤ op(1) ·
d0⊕

k=1:�=j

‖gj,vc‖2

≤ op(1) · ‖μ‖2.

(A.2)

This proves ‖π̂j − πj‖L(Mvc,Mvc) = op(1), which concludes
the proof of the lemma.

Proof of Lemma A.2. We first consider the case of infinite-
dimensional H. In this case, the lemma may be proved along
the lines of the proof of Theorem 3.3 in Jeon and Park

(2020), with Mvc taking the role of their additive map space
SH(p) and X taking the role of their [0, 1]d. Below, we sketch
the proof for the case of finite-dimensional H. We prove that
the projection operators πj restricted to Mk for k �= j are
all compact. According to Proposition A.4.2 in Bickel et al.
(1993), this implies the lemma.

Recall that πj restricted to Mk for k �= j is given by

πj(μk)(x) = zj(x)
� ·Mjj(xj)

−1

�
∫ 1

0

Mjk(xj , uk)� gk(uk) duk

(A.3)

for μk(u) = zk(u)
� � gk(uk), where and in this proof we

restore the dependence of zj and zk on the points in X =

[0, 1]d0 ×
∏d

j=d0+1 Xj . Define Kjk : X × X → L(H,H) by

Kjk(x,u)(g) = zj(x)
�Mjj(xj)

−1Mjk(xj , uk)

·Mkk(uk)
−1zk(u)� g, g ∈ H.

Then, from (A.3) we may see that

(A.4) πj(μk)(x) =

∫
X
Kjk(x,u)

(
μk(u)

)
dPX(u).

Clearly, under the conditions (A1) and (A2), Kj,k(x,u) :
H → H is a compact operator for all x,u ∈ X . We note
that the integrals at (A.3) and (A.4) are Bochner integrals.
Due to Theorem 3.1 in Jeon and Park (2020), which is an
extended version of Proposition 4.7 in Conway (1985) for
Lebesgue integrals, we conclude that πj restricted to Mk

for k �= j are all compact. This completes the proof of the
lemma.

A.2 Proof of Theorem 2

Let ν̂A
j (xj) =

⊕n
i=1 κij(xj) � εi, where κij(xj) = n−1 ·

M̂jj(xj)
−1ZijKhj (xj , Xij) and εi := Yi �

⊕d0

k=1 Z
�
ik �

fk(Xik). Also, define

ν̂B
j (xj) =

n⊕
i=1

κij(xj) · Z�
ij � (fj(Xij)− fj(xj)),

ν̂C
jk(xj) =

n⊕
i=1

κij(xj) · Z�
ik

�
∫ 1

0

Khk
(xk, Xik)� (fk(Xik)� fk(xk)) dxk.

Due to the normalization property of the kernel
Khk

(xk, Xik) we get that

n⊕
i=1

κij(xj) · Z�
ik � fk(Xik)

= ν̂C
jk(xj) ⊕

n⊕
i=1

κij(xj) · Z�
ik
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·
∫ 1

0

Khk
(xk, Xik)� fk(xk) dxk.

This with (2.12) and the fact that
∑n

i=1 κij(xj)Z
�
ij equals

the identity real matrix, gives

f̂j(xj) = fj(xj) ⊕ ν̂A
j (xj) ⊕ ν̂B

j (xj) ⊕
d0⊕

k=1:�=j

ν̂C
jk(xj)

�
d0⊕

k=1:�=j

∫ 1

0

M̂jj(xj)
−1 · M̂jk(xj , xk)

� (f̂k(xk)� fk(xk)) dxk

for 1 ≤ j ≤ d0.

We approximate ν̂B
j and ν̂C

jk. Recall the definition of

μl,j(xj) given in Section 3.1. Let μl =
∫ 1

−1
tlK(t) dt. Note

that μl,j(xj) = μl for xj ∈ Intj := [2hj , 1 − 2hj ]. Using the

standard theory of kernel smoothing and the approximation

fj(v) − fj(xj) � (v − xj) � Dfj(xj)(1) ⊕ (1/2)(v − xj)
2 �

D2fj(xj)(1, 1), we may prove

ν̂B
j (xj) = hj ·

μ1,j(xj)

μ0,j(xj)
�Dfj(xj)(1)

⊕ μ2 · h2
j ·Mjj(xj)

−1

·
( ∂

∂xj
Mjj(xj)

)
�Dfj(xj)(1)

⊕ 1

2
· μ2 · h2

j �D2fj(xj)(1, 1)⊕ rj(xj).

(A.5)

Here and below, we let rj : [0, 1] → H
|Ij | denote a generic

stochastic term with the following properties.

sup
xj∈Intj

‖rj(xj)‖H|Ij | = op(n
−2/5),

sup
xj∈Intcj

‖rj(xj)‖H|Ij | = Op(n
−2/5),

where Intcj = [0, 1] \ [2hj , 1− 2hj ]. Furthermore, we get

ν̂C
jk(xj) =

∫ 1

0

M̂jj(xj)
−1M̂jk(xj , xk)

�
(
hk · μ1,k(xk)

μ0,k(xk)
�Dfk(xk)(1)

⊕ 1

2
· μ2 · h2

k �D2fk(xk)(1, 1)

)
dxk

⊕
∫ 1

0

μ2 · h2
k · M̂jj(xj)

−1

·
( ∂

∂xk
Mjk(xj , xk)

)
�Dfk(xk)(1)dxk

⊕ op(n
−2/5)

(A.6)

uniformly for xj ∈ [0, 1]. Define

Δ̂j(xj) = f̂j(xj) � fj(xj) � ν̂A
j (xj)

� hj ·
μ1,j(xj)

μ0,j(xj)
�Dfj(xj)(1)

� 1

2
· μ2 · h2

j �D2fj(xj)(1, 1) ⊕ rj(xj),

1 ≤ j ≤ d0.

Also, define bj(xj) as we defined β̃j(xj) in Section 3.4
with cj there being replaced by hj . They are non-stochastic
terms. Then, the expansions (A.5) and (A.6) entail

Δ̂j(xj) = bj(xj)�
d0⊕

k=1:�=j

∫ 1

0

M̂jj(xj)
−1

· M̂jk(xj , xk)� Δ̂k(xk) dxk ⊕ op(n
−2/5)

(A.7)

uniformly for xj ∈ [0, 1] for all 1 ≤ j ≤ d0.

Now, define the varying coefficient terms Δ̂j,vc : X → H,

corresponding to Δ̂j , by

Δ̂j,vc(x) = z�j � Δ̂j(xj),

where, as before, zj ≡ zj(x) denotes the column real
vector (xk : k ∈ Ij) for x = (x1, . . . , xd) ∈ X . Let

Δ̂vc =
⊕d0

j=1 Δ̂j,vc. Then, (A.7) implies that Δ̂vc = b⊕,vc ⊕
T̂ (Δ̂vc), where b⊕,vc = bd0,vc ⊕ π̂⊥

d0
(bd0−1,vc) ⊕ (π̂⊥

d0
◦

π̂⊥
d0−1)(bd0−2,vc)⊕· · ·⊕(π̂⊥

d0
◦· · ·◦ π̂⊥

2 )(b1,vc) and bj,vc(x) =

z�j � bj(xj). We observe that ‖b⊕,vc‖2 = Op(n
−2/5). Also,

from Lemmas A.1 and A.2 we get that ‖T̂‖L(Mvc,Mvc) < 1

with probability tending to one. This implies ‖Δ̂vc‖2 =
Op(n

−2/5). Furthermore, Lemma A.2 allows us apply (3.10)

to μ = Δ̂vc. Thus, there exist (Δ̃j,vc : 1 ≤ j ≤ d0) such

that Δ̂vc =
⊕d0

j=1 Δ̃j,vc and max{‖Δ̃j,vc‖2 : 1 ≤ j ≤ d0} ≤
c·‖Δ̂vc‖2 for some absolute constant 0 < c < ∞. This shows
that ‖Δ̃j,vc‖2 = Op(n

−2/5) for all 1 ≤ j ≤ d0. Because of
the conditions (A1), we have

‖Δ̃j,vc‖22 =

∫ 1

0

〈Δ̃j(xj), E(ZjZ
�
j |Xj = xj)� Δ̃j(xj)〉H|Ij |

· pj(xj) dxj ≥ c0

∫ 1

0

‖Δ̃j(xj)‖2
H

|Ij | pj(xj) dxj

for some constant 0 < c0 < ∞. Thus,

∫ 1

0

‖Δ̃j(xj)‖2
H

|Ij | pj(xj) dxj = Op(n
−4/5)

for all 1 ≤ j ≤ d0. We claim

(A.8)

∫ 1

0

‖Δ̂j(xj)� Δ̃j(xj)‖2
H

|Ij | pj(xj) dxj = Op(n
−4/5)
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for all 1 ≤ j ≤ d0. This establishes

(A.9)

∫ 1

0

‖Δ̂j(xj)‖2
H

|Ij | pj(xj) dxj = Op(n
−4/5)

for all 1 ≤ j ≤ d0. By applying the Hölder inequality to

(A.7), we get

sup
xj∈[0,1]

‖Δ̂j(xj)‖H|Ij |

≤ sup
xj∈[0,1]

‖bj(xj)‖H|Ij |

+

d0∑
k=1:�=j

(∫ 1

0

‖Δ̂k(xk)‖2H|Ik| pk(xk) dxk

)1/2

·Op(1)

+ op(n
−2/5).

This with (A.9) and the fact that

sup
xj∈[0,1]

‖bj(xj)‖H|Ij | = O(n−2/5)

implies

(A.10) sup
xj∈[0,1]

‖Δ̂j(xj)‖H|Ij | = Op(n
−2/5)

for all 1 ≤ j ≤ d0. The theorem now follows from (A.10),

the fact that μ1,j(xj) = 0 for xj ∈ Intj and

sup
xj∈[0,1]

‖ν̂A
j (xj)‖H|Ij | = Op(n

−2/5
√

logn),

∫ 1

0

‖ν̂A
j (xj)‖2

H
|Ij | pj(xj) dxj = Op(n

−4/5).

It remains to prove (A.8). Note that Δ̂j,vc(x) �
Δ̃j,vc(x) = z�j �[Δ̂j(xj)�Δ̃j(xj)] =

⊕
k∈Ij

xk�[Δ̂j,k(xj)�
Δ̃j,k(xj)]. Since

⊕d0

j=1(Δ̂j,vc � Δ̃j,vc) = 0, the differences

Δ̂j,k(xj) � Δ̃j,k(xj) are constant for d0 + 1 ≤ k ≤ d and

j ∈ Ĩk, and are linear in xj for d0 − r + 1 ≤ k ≤ d0 and

j ∈ Ĩk. We let

Δ̂j,k(xj)� Δ̃j,k(xj) = d
(0)
j,k,

j ∈ Ĩk, d0 + 1 ≤ k ≤ d,

Δ̂j,k(xj)� Δ̃j,k(xj) = d
(0)
j,k ⊕ xj � d

(1)
j,k,

j ∈ Ĩk, d0 − r + 1 ≤ k ≤ d0

(A.11)

for some Hilbertian constants d
(0)
j,k and d

(1)
j,k. From the def-

inition of Δ̂j , the constraints (2.5) for both f̂j and fj and∫ 1

0
‖Δ̃j(xj)‖2

H
|Ij | pj(xj) dxj = Op(n

−4/5), we get that, for

(j, k) with k ∈ Ij and d0 − r + 1 ≤ k ≤ d0,∫ 1

0

wj(xj)�
(
Δ̂j,k(xj)� Δ̃j,k(xj)

)
dxj

= Op(n
−2/5),∫ 1

0

xjwj(xj)�
(
Δ̂j,k(xj)� Δ̃j,k(xj)

)
dxj

= Op(n
−2/5).

(A.12)

Also, for (j, k) with k ∈ Ij and d0 + 1 ≤ k ≤ d,

∫ 1

0

wj(xj)�
(
Δ̂j,k(xj)� Δ̃j,k(xj)

)
dxj

= Op(n
−2/5).

(A.13)

From the results at (A.12) and by multiplying wj(xj) and
xjwj(xj) to the right hand side of the second equation at
(A.11) and then integrating them, we obtain that, for (j, k)
with k ∈ Ij and d0 − r + 1 ≤ k ≤ d0,( ∫ 1

0
wj(xj) dxj

∫ 1

0
xjwj(xj) dxj∫ 1

0
xjwj(xj) dxj

∫ 1

0
x2
jwj(xj) dxj

)
�
(
d
(0)
j,k

d
(1)
j,k

)
= Op(n

−2/5)

This gives ‖d(0)
j,k‖H = Op(n

−2/5) = ‖d(1)
j,k‖H for all (j, k) with

k ∈ Ij and d0 − r+ 1 ≤ k ≤ d0. Similarly, now using (A.13)

and the first equation at (A.11), we may verify ‖d(0)
j,k‖H =

Op(n
−2/5) for all (j, k) with k ∈ Ij and d0+1 ≤ k ≤ d. These

and (A.11) imply that ‖Δ̂j(xj)� Δ̃j(xj)‖H|Ij | = Op(n
−2/5)

uniformly for xj ∈ [0, 1], concluding the claim (A.8).

A.3 Proof of Theorem 3

We first note that the stochastic term ν̂A
j (xj) has the

same asymptotic distribution as

Sn,j(xj) := n−3/5 �
n⊕

i=1

Mjj(xj)
−1ZijKhj (xj , Xij)� εi.

We write xN = (x1, . . . , xd0) for x = (x1, . . . , xd). Let

Sn(x
N) =

(
Sn,1(x1)

�, . . . ,Sn,d0(xd0)
)�

. Note that Sn,j is

a map from [0, 1] to H
|Ij |, and thus Sn is a map from [0, 1]d0

to H|I1|+···+|Id0 |. To characterize the asymptotic distribution
of Sn(x

N), we take the collection of H|I1|+···+|Id0 |-vectors

ejk,l :=
(
0�
|I1|+···+|Ij−1|, e

(j)�
k,l , 0�

|Ij+1|+···+|Id0 |
)�

,

1 ≤ j ≤ d0, k ∈ Ij , l ≥ 1

as an orthonormal basis of H|I1|+···+|Id0 |. Using the standard
kernel smoothing theory, we may show that

E
(
〈Sn(x

N), ejk,l〉H∗ · 〈Sn(x
N), ej′k′,l′〉H∗

)
→ 0,

j �= j′, k ∈ Ij , k
′ ∈ Ij′ , l, l

′ ≥ 1,
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where we wrote H
∗ for H|I1|+···+|Id0 | for brevity. In the case

where j = j′, we get that, for all k, k′ ∈ Ij and l, l′ ≥ 1,

E
(
〈Sn(x

N), ejk,l〉H∗ · 〈Sn(x
N), ejk′,l′〉H∗

)
= E

(
〈Sn,j(xj), e

(j)
k,l〉H|Ij | · 〈Sn,j(xj), e

(j)
k′,l′〉H|Ij |

)
→ c−1

j ·
∫

K(t)2 dt ·
(
Mjj(xj)

−1
)
k,k′

· E
(
〈ε, el〉 · 〈ε, el′〉H |Xj = xj

)
.

(A.14)

Arguing as in the proof of Theorem 4.2 in Jeon and Park
(2020) using (A.14) and Theorem 1.1 in Kundu et al. (2000),
we may show that Sn(x

N) converges to
(
Gj(0|Ij |, Cj(·, xj)) :

1 ≤ j ≤ d0
)
. Then, we may proceed as in the proof of

Theorem 4.3 in Jeon and Park (2020) to complete the proof
of our Theorem 3.

APPENDIX B. ESTIMATION OF
PARAMETRIC PART

Here, we show that the effect of estimating the paramet-
ric part in the model specification at (2.6) is negligible if
the estimators of α’s converge to the corresponding α’s at
a certain rate. We also present a construction of such esti-
mators.

B.1 Effect of estimating parametric part

For a given set of Hilbertian constants a0+,k for d0−r+1 ≤
k ≤ d and a1j,k for (j, k) ∈ J , define

Yi(a) = Yi �
d⊕

k=d0−r+1

Xik � a0+,k �
⊕

(j,k)∈J

XijXik � a1j,k.

Let a0j and a1j be |Ij |-vectors such that

d⊕
k=d0−r+1

Xik � a0+,k =

d0⊕
j=1

Z�
ij � a0j ,

⊕
(j,k)∈J

Xij ·Xik � a1j,k =

d0⊕
j=1

Xij · Z�
ij � a1j .

(B.1)

In fact, a0j = (a0j,k : k ∈ Ij)
� is the |Ij |-vector for some

Hilbertian constants a0j,k such that
⊕

j∈Ĩk
a0j,k = a0+,k. We

may also identify (a1j : 1 ≤ j ≤ d0) from (a1j,k : (j, k) ∈ J)
based on the configuration of Ij . Define ν̂j(·,a) as ν̂j at

(2.11) with Yi being replaced by Yi(a). Let (f̂j(·,a) : 1 ≤
j ≤ d0) be a tuple of component maps that satisfies

f̂j(xj ,a) = ν̂j(xj ,a)

�
d0⊕

l=1:�=j

∫ 1

0

M̂jj(xj)
−1 · M̂jl(xj , xl)

� f̂l(xl,a) dxl, 1 ≤ j ≤ d0.

(B.2)

Let α̂0
j and α̂1

j be some estimators of α0
j and α1

j , respec-
tively.

Theorem B.1. Assume that the conditions (A1)–(A3) and
(A8) hold. If ‖α̂1

j �α1
j‖H|Ij | = op(n

−1/5) for all 1 ≤ j ≤ d0,

then the normalized version of f̂j(xj , α̂) for each 1 ≤ j ≤ d0
according to the constraints (2.5) differs by op(n

−2/5), uni-
formly for xj ∈ [0, 1], from the respective normalized version

of f̂j(xj ,α).

The above theorem has an important implication that, in
general, the effects of the errors in estimating the parametric
part are negligible if their magnitudes are op(n

−1/5). Note
that in the present case the errors of α̂’s as the estimators of
α’s are directly transmitted to the errors in the ‘adjusted’
responses Yi(α̂) as the estimators of Yi(α). According to
the standard theory in the smooth backfitting literature, the
effects of errors in responses are negligible if the errors are of
smaller order than the nonparametric rate n−2/5, see Park
et al. (2018) and Han et al. (2020), for example. The present
case under study makes an example where the condition on
errors in responses can be relaxed.

Theorem B.1 also indicates that, in case r = 0, i.e.,
no predictor appears both in linear and nonlinear parts
so that α1

j,k do not appear in the model specification at
(2.6), there is no need to estimate the parametric part at
all. Thus, when r = 0, one can simply apply the method
described in Section 2.3 directly to Yi. This would give
the same normalized components as those obtained from
Yi(α).

Proof of Theorem B.1. First, we observe from the represen-
tations at (B.1) that, for 1 ≤ j ≤ d0,

M̂jj(xj)�
(
ν̂j(α̂) � ν̂j(α)

)
=

n⊕
i=1

n−1 · Zij ·Khj (xj , Xij)�
( d0⊕

l=1

Z�
il � (α0

l � α̂0
l )

⊕
d0⊕
l=1

Xil · Z�
il � (α1

l � α̂1
l )

)
.

Using this and the property of the kernel that∫ 1

0
Khj (xj , v) dxj = 1 for all v ∈ [0, 1], we may express the

system of equations at (B.2) for a = α̂ as

M̂jj(xj)�
[
f̂j(xj , α̂) � (α0

j � α̂0
j )

� xj � (α1
j � α̂1

j )
]

=

[
n−1

n∑
i=1

ZijZ
�
ij(Xij − xj) ·Khj (xj , Xij)

]

� (α1
j � α̂1

j )

⊕
d0⊕

l=1:�=j

[
n−1

n∑
i=1

∫ 1

0

ZijZ
�
il (Xil − xl)
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(B.3)

·Khj (xj , Xij)Khl
(xl, Xil)dxl

]

� (α1
j � α̂1

j )

⊕ M̂jj(xj)� ν̂j(α)

�
d0⊕

l=1:�=j

∫ 1

0

M̂jl(xj , xl)�
[
f̂l(xl, α̂)

� (α0
l � α̂0

l )� xl � (α1
l � α̂1

l )
]
dxl,

1 ≤ j ≤ d0.

The sums in the brackets in the first two terms on the right
hand side of (B.3) are of size Op(n

−1/5) uniformly for xj ∈
[0, 1] since

sup
xl∈[0,1]

max{|Xil − xl| : Khl
(xl, Xil) > 0, 1 ≤ i ≤ n} ≤ hl,

1 ≤ l ≤ d0.

Thus, we get

f̂j(xj , α̂) � (α0
j � α̂0

j )� xj � (α1
j � α̂1

j )

= ν̂j(α) �
d0⊕

l=1:�=j

∫ 1

0

M̂jl(xj , xl)�
[
f̂l(xl, α̂)

� (α0
l � α̂0

l ) � xl � (α1
l � α̂1

l )
]
dxl ⊕ op(n

−2/5),

1 ≤ j ≤ d0

uniformly for xj ∈ [0, 1]. This implies that f̂j(·, α̂) differ from

the corresponding f̂j(·,α) by linear terms up to op(n
−2/5).

The differences by linear terms vanish if we normalize the
component functions according to (2.13). This completes the
proof of the theorem.

B.2 Construction of estimators

We first note that the index set {(j, k) : k ∈ Ij , 1 ≤ j ≤
d0} can be expressed as {(j, k) : j ∈ Ĩk, d0 − r+1 ≤ k ≤ d}.
Let XN = (X1, . . . , Xd0)

� be the vector of all predictors
in the nonlinear part, and XR = (Xd0+1, . . . , Xd)

� be
the vector of the remaining predictors. Recall that Xk for
d0 − r+ 1 ≤ k ≤ d0 also appear in the linear part, and that
some of Xk constituting XR may be of continuous-type.
Let P̃X denote the product measure such that dP̃X(x) =∏d0

j=1 wj(xj)dwj(xj)×dPXR(xR). Because of the constraints
(2.5), we obtain

∫
xl �

d0⊕
j=1

⊕
k∈Ij

xk � fj,k(xj) dP̃X(x)

= 0, d0 − r + 1 ≤ l ≤ d,
(B.4)

∫
xl · xl′ �

d0⊕
j=1

⊕
k∈Ij

xk � fj,k(xj) dP̃X(x)

= 0, (l, l′) ∈ J.

For concise representation, let vec(α) denote the vector of
α0

+,k for d0 − r + 1 ≤ k ≤ d and α1
j,k for (j, k) ∈ J , enu-

merated in a certain order. Also, let vec(x) be the resulting
vector of xk for d0 − r+1 ≤ k ≤ d and xj ·xk for (j, k) ∈ J ,
enumerated in the same way as α’s. Then, (B.4) gives∫

[0,1]d0
vec(x)�m(x) dP̃X(x)

=

(∫
[0,1]d0

vec(x) · vec(x)� dP̃X(x)

)

� vec(α).

(B.5)

Now, define

A(xR) =

∫
[0,1]d0

vec(xN,xR) · vec(xN,xR)�

·
d0∏
j=1

wj(xj) dwj(xj),

a(xR) =

∫
[0,1]d0

vec(xN,xR)� E(Y|XN = xN,XR = xR)

·
d0∏
j=1

wj(xj) dwj(xj).

Then, the equation (B.5) may be written as

(B.6) Ea(XR) = EA(XR)� vec(α).

We may prove that A ≡ EA(XR) is positive definite under

the assumptions (A0) and (A1). Let Â = n−1
∑n

i=1 A(XR
i ).

Then, ‖Â−A‖ = Op(n
−1/2) where ‖·‖ is either the Frobenius

or the spectral norm. We may also find an estimator â of
a ≡ Ea(XR) such that

(B.7) â� a = op(n
−1/5).

By (B.7) we mean that the Hilbert norm ‖ ·‖H of each entry

of â�a is op(n
−1/5). Then, the estimator Â−1�â of vec(α) =

A−1 � a satisfies Â−1 � â � vec(α) = op(n
−1/5). Below, we

construct an estimator â that fulfills (B.7).

We start with a full-dimensional nonparametric estimator
m̃(x) of m(x). Suppose that we adopt the approach studied
in Park et al. (2017) for real-valued responses with suitable
modification for Hilbertian responses. The latter is based
on a product kernel with smoothing parameters, say bj , for
the continuous-type predictors and those, say sj , for the
discrete-type predictors. Let â(·) be an estimator of a(·)
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defined by

â(xR) =

∫
[0,1]d0

vec(xN,xR)

� m̃(xN,xR)

d0∏
j=1

wj(xj) dwj(xj).

(B.8)

Define

â = n−1 �
n⊕

i=1

â(XR
i ).

The above estimator â satisfies (B.7) if we let hj and sj
converge to zero fast enough. To see this, we decompose
m̃ into m̃ = m̃A + m̃B , where m̃A is a local smoother of
Yi − m(Xi) and m̃B is the corresponding local smoother
of m(Xi). The stochastic part m̃A(xN,xR) is of the mag-

nitude n−1/2
∏

j∈Ic b
−1/2
j for each point (xN,xR), where

Ic is the index set for the continuous-type predictors Xj .
We note that its magnitude does not depend on sj (Park
et al., 2017). Now, define âA and âB as â at (B.8) with
m̃ being replaced by m̃A and m̃B , respectively. Then, the
standard kernel smoothing theory shows that âA(xR) is of

the magnitude n−1/2
∏

j∈IR,c b
−1/2
j for each point xR, where

IR,c = {j ∈ Ic : d0 + 1 ≤ j ≤ d}. This is due to the inte-
gration over xN ∈ [0, 1]d0 , see Lee et al. (2017), e.g., for a
detailed argument in a similar but more involved problem.
The bandwidth effect on the magnitude of the stochastic
function âA(·) is completely removed by averaging its val-
ues at XR

i . Indeed, we may prove

(B.9) n−1 �
n⊕

i=1

âA(XR
i ) = Op(n

−1/2).

On the other hand, the effects of the smoothing parameters
bj and sj on the deterministic part m̃B do not vanish by
integration or averaging. However, we can make it negligible
by choosing proper speeds of bj → 0 and sj → 0. In fact, if
we take bj = o(n−1/10) and sj = o(n−1/5), then

(B.10) n−1 �
n⊕

i=1

âB(XR
i ) � a = op(n

−1/5).

The properties (B.9) and (B.10) give (B.7).

Received 4 March 2020
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