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Discussion on “Estimation of Hilbertian varying
coefficient models”

Xiongtao Dai

The authors Lee, Park, Kong, and Kim are to be con-
gratulated on their comprehensive work. It is encouraging
that the varying coefficient models and the smooth back-
fitting algorithm can be successfully extended to Hilbertian
responses. The estimators enjoy nice theoretical properties
akin to those in the Euclidean space.

While the challenge of infinite-dimensional responses has
been solved, a related question is how to deal with non-
linear responses in varying coefficient models. In the elec-
tricity consumption application, the densities are modeled
in a linear space after applying a logarithm transformation.
However, if the geometry specified for the densities is non-
Euclidean, the Hilbertian techniques must be modified. For
example, when there are zero values in the densities, the
densities are better modeled as square-root densities on the
Hilbert sphere [3], which has a non-linear geometry.

More generally, consider response Y lying on a
m-dimensional Riemannian manifold M endowed with
geodesic distance metric ρ : M×M → R≥0, paired with d-
dimensional Euclidean predictorsX = (X1, . . . , Xd). Adopt-
ing the Fréchet mean [6] as a notion of average, define the
conditional Fréchet mean function as μ : Rd → M,

μ(x) = argmin
p∈M

EY|X=x[ρ
2(p,Y)],

where the expectation is taken w.r.t. the conditional distri-
bution of Y given X = x.

Let φ : U ⊂ M → R
m be a chart where U is an open set

covering the conditional Fréchet means ofY given predictors
running through their support. A Riemannian varying coeffi-
cient model considers φ(μ(X)) = η(X), where η : Rm → R

m

is an index function that depends on the inputs in a varying
coefficient fashion. For an error model, assume that

Y = expμ(X)(ε),

where expμ(X) : Tμ(X)M → M is the Riemannian expo-
nential map at μ(X) ∈ M, and ε ∈ Tμ(X)M is the error
on the linear tangent space Tμ(X)M. The exponential map
plays the role of addition on a Riemannian manifold. This
error structure has been considered on matrix Lie groups
[1], Riemannian symmetric spaces [2] which is more general
than Lie groups, and general Riemannian manifolds [5, 4],
only to cite a few.
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