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Longitudinally measured phenotypes are important for
exploring genetic and environmental factors that affect com-
plex traits over time. Genetic analysis of multiple measures
in longitudinal studies provides a valuable opportunity to
understand genetic architecture and biological variations of
complex diseases. In this paper, stochastic functional lin-
ear models are developed for temporal association analysis
at gene levels to analyze sequence data and longitudinally
measured quantitative traits. Functional data analysis tech-
niques are utilized to reduce high dimensionality of sequence
data and draw useful information. A variance-covariance
structure is constructed to model the measurement varia-
tion and correlations of the traits based on the theory of
stochastic processes. Spline models are used to estimate the
time-dependent trajectory mean function. By intensive sim-
ulation studies, it is shown that the proposed stochastic
models control type I errors well, and have higher power
levels than those of the perturbation tests. In addition, the
proposed methods are robust when the correlation function
is mis-specified. We test and refine the models and related
software using real data sets of Framingham Heart Study.
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1. INTRODUCTION

Longitudinally measured phenotypes are important for
exploring key genetic and environmental factors that affect
complex traits over time. Genetic analysis of multiple mea-
sures in longitudinal studies provides a valuable opportunity
to understand genetic architecture and biological variations
of complex diseases. Many genetic studies have been con-
ducted in cohorts in which repeated measures on the trait
of interest are collected on each participant over a period
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of time and sequence data are available [1, 2, 3]. Such stud-
ies not only provide a more accurate assessment of disease
condition, but enable us to investigate gene’s influencing on
the trajectory of a trait and disease progression, which are
likely to help reduce the remaining missing heritability of
these traits [4, 5].

Although they are important, there is a paucity of sta-
tistical methods to analyze human genetic sequence data in
longitudinal studies. The sequence data consist of rare vari-
ants, or common variants, or a combination of both, where
the minor allele frequencies (MAFs) of rare variants are less
than 0.01∼0.05. It is important to develop powerful meth-
ods to analyze sequence data in longitudinal studies. The
genetic variants of an individual are assumed to be fixed
due to low probability of mutation. However, the pheno-
typic traits and associated genetic effect vary with time.
Statistical models which may better use longitudinal data
and may reflect temporal trends of traits are needed. For
many traits of complex diseases, genetic determinants can
be important at some time period. At other time periods,
environmental factors can be more important. It is impor-
tant to develop models which can reflect the genetic effect
as well as environmental effect on the traits over the time.

In this paper, stochastic functional linear models are de-
veloped for temporal association analysis at the gene level
to analyze quantitative traits in longitudinal studies. In the
presence of a large number of rare variants, gene-based anal-
ysis is a more powerful tool for gene mapping than testing of
individual genetic variants. In the analysis of a single time
measurement, functional regression models were found to
perform markedly better than sequence kernel association
tests (SKAT) procedure when the genetic effects of a gene
are relatively large while SKAT procedure performs better
in analysis of polygenes [6, 7, 8, 9, 10].

The functional models have not been developed to ana-
lyze longitudinal traits. To perform gene-based analysis of
sequencing data for longitudinal traits, there are two major
difficulties: (1) high dimension sequence data and (2) varia-
tion and correlation of longitudinally measured phenotypes.
For unrelated individuals in the sample, it is reasonable to
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assume that their quantitative traits are independent. For
the same individual, the quantitative traits at different times
depend on each other, however. Hence, it is necessary to
consider the variance-covariance structure carefully. In the
literature of functional regression models, there are no meth-
ods which model variation and correlation of longitudinally
measured phenotypes [11, 12, 13, 14, 15, 16].

To fill the gap, stochastic functional regression models
are developed to analyze longitudinally measured quantita-
tive traits. To analyze sequence data, functional data anal-
ysis techniques are utilized to reduce high dimensionality
of sequencing data. A variance-covariance structure is con-
structed to model the measurement variation and corre-
lations of an individual based on the theory of stochastic
processes [17, 18]. The stochastic models can capture the
temporal trend and detect the temporal genetic effects of
complex traits. Spline models are used to estimate the time-
dependent mean function [19, 20, 21, 22].

To evaluate the performance of the proposed stochastic
models, extensive simulations are performed to calculate the
empirical type I errors to check if false positives are well
controlled. In addition we compare power performance with
the perturbation tests proposed in He et al. (2017) [23], i.e.,
P-Dispersion, P-Burden, P-Fisher, and P-MinP. We test and
refine the models and related software using real data sets
of Framingham Heart Study (FHS).

2. MODELS AND METHODS

In the following, we are going to present a stochastic
functional linear model to analyze quantitative traits. The
variance-covariance structure is constructed to describe the
trait variation and to properly account for correlation be-
tween multiple measurements on the same subject. Spline
models are used to approximate temporal mean function
and regression coefficients.

2.1 Stochastic functional linear models

Consider a population sample with n individuals. Assume
that the n individuals are sequenced in a genomic region that
hasm variants. We assume that them variants are located in
a region with ordered physical positions 0 ≤ u1 < · · · < um,
and that each variant’s physical position u� is known, e.g., in
terms of base pair positions. To make the notation simple,
we normalize the region [u1, um] to be [0, 1]. For individ-
ual i, let yi(t) be his/her quantitative trait value at time
t and the time t can be age of the individual. In addition,
let Gi = (gi(u1), · · · , gi(um))′ denote the genotype of the m
variants, and Zi(t) = (zi1, · · · , zip, zi,p+1(t), · · · , zi,p+q(t))

′

denote a (p + q) × 1 vector of covariates such as gender
and age at the time t. Note that the covariates include time
invariant variables (zi1, · · · , zip)′ and time varying variables
(zi,p+1(t), · · · , zi,p+q(t))

′. For the genotypes, we assume that
gi(u�) (= 0, 1, 2) is the number of minor alleles of the indi-
vidual at the �-th variant located at the position u�.

We denote the i-th individual’s genetic variant function
(GVF) as Xi(u), u ∈ [0, 1]. Note that the data set includes n
discrete realizations or observations Gi of the genotypes, one
for each individual. Using the genetic variant information
Gi, we may estimate the related genetic variant function
Xi(u), which will be discussed below. A stochastic functional
linear model at the time t can be defined as

yi(t) = μ(t) + Zi(t)
′α(t) +

∫ 1

0

Xi(u)β(u)du+ Ui(t) + εi(t),

(1)

where μ(t) is an overall mean at time t, α(t) is a vector
of regression coefficient functions of the covariates Zi(t) at
time t, β(u) is a genetic effect function of the GVF Xi(u).
In model (1), Ui(t) is an unknown random function due to
both genetic and environmental factors of an individual, and
εi(t) is a random residual function. Assume that Ui(t) and
εi(t) are independent. Moreover, assume that εi(t) is normal
N(0, σ2

e).

The model (1) has three major features. First, the over-
all mean μ(t) is a function of time t and it is unlikely a
constant. In literature, it was found that mis-specification
of μ(t) can lead to biased and unstable results [19, 23].
In practice, it is almost impossible to correctly specify the
true mean function. In the previous study [19, 20], it was
found that the non-parametric linear penalized spline model
is a good choice to estimate μ(t). Second, the integration

term
∫ 1

0
Xi(u)β(u)du is used to model the genetic effect of

the variants as previous work [6, 7, 8, 9, 10]. Third, one
major difference of model (1) from functional linear mod-
els in literature is that we use random function Ui(t) to
model variation and correlation of stochastic process yi(t)
[11, 12, 13, 15, 16].

2.2 Estimation of genetic variant functions

To estimate genetic variant functions Xi(u) from the
genotypes Gi, we use an ordinary linear square smoother
[6, 14]. Let φk(u), k = 1, · · · ,K, be a series of K basis func-
tions, such as the B-spline basis and Fourier basis functions.
LetA denote them×K matrix containing the values φk(u�),
and we let φ(u) = (φ1(u), · · · , φK(u))′. Using the discrete
realizations Gi = (gi(u1), · · · , gi(um))′, we estimate the ge-
netic variant function Xi(u) using an ordinary linear square
smoother as follows

(2) X̂i(u) = (gi(u1), · · · , gi(um))A[A′A]−1φ(u).

We consider two types of basis functions: (1) the B-spline ba-
sis: φk(u) = Bk(u), k = 1, · · · ,K; and (1) the Fourier basis:
φ1(u) = 1, φ2r+1(u) = sin(2πru), and φ2r(u) = cos(2πru),
r = 1, · · · , (K − 1)/2. Here for Fourier basis, K is taken as
a positive odd integer [11, 12, 13].
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2.3 Estimation of genetic effect function
β(u)

The genetic effect function β(u) in the stochastic func-
tional linear model (1) is assumed to be smooth, i.e., β(u)
is a continuous function. One may expand it by B-spline
or Fourier basis functions. Formally, let us expand the ge-
netic effect function β(u) by a series basis functions Φ′(u) =
(φ1(u), · · · , φKβ

(u)) as

(3) β(u) =

Kβ∑
k=1

φk(u)βk = Φ′(u)β,

where the coefficients for the expansion are in a vector β =
(β1, · · · , βKβ

)′.

2.4 Estimation of mean function μ(t)

To estimate mean function μ(t) and genetic effect func-
tion β(u), one may treat them by either non-random ex-
pansion or random spline estimations. We discuss it by only
talking about the estimation of μ(t).

Penalized spline estimations We may approximate μ(t)
and β(u) by linear combinations of penalized spline func-
tions [20]. For instance, the q-order penalized spline model
for μ(t) is

(4) μ(t) = μ0 + tμ1 + · · ·+ tqμq +

Kμ∑
k=1

νk(t− κk)
q
+,

where μi, i = 0, 1, · · · , q, q ≥ 1, are fixed effects, and
νk, k = 1, 2, · · · ,Kμ, are identically and independently nor-
mal distributed random variables, κk, k = 1, 2, · · · ,Kμ, is a
pre-assigned sequence of knots, Kμ is the number of knots,
and q is the order of the spline. In addition, (t − κk)

q
+ ={

(t− κk)
q if t− κk > 0

0 else
. Let ν = (ν1, · · · , νKμ)

τ . Assume

that Cov(ν) = σ2
νIKμ , where IKμ is the identity matrix of

rank Kμ.

Non-random expansion by basis functions The mean func-
tion μ(t) is assumed to be continuous. One may expand it
by a series of Kμ basis functions ψ1(t), · · · , ψKμ(t) as

(5) μ(t) = (ψ1(t), · · · , ψKμ(t))(μ1, · · · , μKμ)
′ = ψ(t)′μ,

where μ = (μ1, · · · , μKμ)
′ is a Kμ × 1 vector of coefficients

and ψ(t) = (ψ1(t), · · · , ψKμ(t))
′.

2.5 Variance-covariance structure

The variance-covariance structure of stochastic processes
yi(t) depends on the time [24]. Let σ2

U (t) = Var(Ui(t)) be
the variance of Ui(t) at the time t. For a pair of time points
t and s, let us denote correlation between Ui(t) and Ui(s)
by ρU (s, t). Then, the covariance between Ui(t) and Ui(s) is

σU (t, s) = Cov(Ui(t), Ui(s)) = σU (t)σU (s)ρU (s, t).

The variance-covariance structure of stochastic process yi(t)
is characterized by

(6) Cov(yi(t), yi(s)) =

{
σ2
U (t) + σ2

e if t = s

σU (t, s) if t �= s
.

In the above formulation, the covariance Cov(yi(t), yi(s))
is assumed to be equal to the covariance of Ui(t) and
Ui(s), t �= s. In practice, the correlation between yi(t) and
yi(s) can be from the genetic and environmental factors or
their combinations. For the population data, it is impossible
to distinguish them. Hence, we simply put it as the correla-
tion effect.

Suppose that the correlation functions ρU (s, t) is a func-
tion of |t − s|, i.e., they are functions of the time range.
This is true if Ui(t) is stationary or second-order sta-
tionary [17]. For instance, assume that the correlation ef-
fect is an Ornstein-Uhlenbeck Gaussian process Ui(t) =
λ exp(−t/ρ)Wi(

2
ρe

2t/ρ), ρ > 0, where Wi(t) is a standard
Brownian motion, ρ is a range parameter, and λ is a scaling
parameter. Then clearly, Ui(t) has zero mean at all times t
and constant variance. Moreover, the correlation function is

ρU (t, s) = exp(− |s−t|
ρ ) = θ|t−s|, where θ = exp(−1/ρ) indi-

cates that the correlation decreases exponentially with the
time range [17]. In this case, the correlation effect Ui(t) is a
stationary Gaussian process. We are particularly interested
in the Ornstein-Uhlenbeck Gaussian process Ui(t) for three
reasons. First, it basically assume that the correlation of two
measurements of an individual declines exponentially with
the time range. This is a reasonable assumption in many
situations. Second, we can fit the models conveniently in
R using linear mixed model functions [25]. Third, we fit-
ted models by assuming linear correlation in data analysis
of single SNP analysis, but they lead to higher Akaike in-
formation criterion (AIC) and Bayesian information crite-
rion (BIC) values and so the models are not as good as the
Ornstein-Uhlenbeck process modeling [19].

In addition, one may use a linear correlation function

ρU (s, t) =
(
1− |s−t|

ρ

)
1(|s−t|<ρ) and a Gaussian correla-

tion function ρU (s, t) = exp

[
−

(
|s−t|
ρ

)2
]
, ρ > 0, to fit the

model. In practice, true correlation function is never known.
Robust statistical methods are needed for data analysis.

In certain cases, however, the covariance or correlation
functions may not be functions of the time range. In this
case, the correlation effect Ui(t) is a non-stationary process.
For instance, assume that the correlation effect is a Wiener
process Ui(t) = θ1Wi(t), where Wi(t) is a standard Brow-
nian motion. Then Ui(t) has zero mean at all times t. The
covariance function is σU (t, s) = θ21 min(t, s).

2.6 Beta-smooth only stochastic functional
linear model

To remove the assumption of the continuity of the GVF
Xi(u) in the stochastic functional linear model (1), a sim-

Stochastic functional linear models for gene-based association analysis 183



plified functional linear model is obtained by replacing the

integration term
∫ 1

0
Xi(u)β(u)du in model (1) by the sum-

mation term
∑m

�=1 gi(u�)β(u�). Then, the model (1) can be
revised as a beta-smooth only model

(7) yi(t) = μ(t)+Zi(t)
′α(t)+

m∑
�=1

gi(u�)β(u�)+Ui(t)+εi(t).

In models (1) and (7), the overall mean μ(t) and coefficient
functions α(t) and random function Ui(t) depend on time t
and they can capture temporal trends of the traits yi(t).

2.7 Dealing with missing genotype data

If some genotype data are missing, the stochastic mod-
els (1) and (7) can be modified to analyze the data. For
example, assume there is no genotype information at the
first variant for the i-th individual, i.e., gi(u1) is missing in
Gi. Let A1 denote the m − 1 by K matrix containing val-
ues φk(u�), where � ∈ 2, · · · ,m. Then, we may revise the
estimation (2) as

(8) X̂i(u) = (gi(u2), · · · , gi(um))
′
[A′

1A1]
−1A′

1φ(u).

Note that the estimation (8) only depends on the available
genotype data (gi(u2), · · · , gi(um))

′
. Hence, each individ-

ual’s GVF is estimated by his/her own data, a practical
advantage of functional data analysis approach. Using the
estimation (8), one may revise stochastic model (1) accord-
ingly. If gi(u1) is missing in Gi, we may revise the beta-
smooth only model (7) as

(9) yi(t) = μ(t)+Zi(t)
′α(t)+

m∑
�=2

gi(u�)β(u�)+Ui(t)+εi(t).

The revised model (9) only depends on the available geno-
type data (gi(u2), · · · , gi(um)))

′
.

2.8 Revised stochastic functional linear
models

Replacing Xi(u) in the stochastic model (1) with X̂i(u)
in (2), β(u) with the expansion (3), and μ(t) by penalized
spline (4) or non-random expansion (5), we have the follow-
ing revised model

yi(t) = μ(t) + Zi(t)
′α(t) + (gi(u1), · · · , gi(um)) ·

A[A′A]−1

∫ 1

0

φ(u)Φ′(u)duβ + Ui(t) + εi(t)

= μ(t) + Zi(t)
′α(t) +W ′

iβ + Ui(t) + εi(t),(10)

where W ′
i = (gi(u1), · · · , gi(um))A[A′A]−1

∫ 1

0
φ(u)Φ′(u)du.

In the statistical packages R fda or Matlab, codes to cal-

culate A[A′A]−1 and
∫ 1

0
φ(u)Φ′(u)du are readily available

[14].

For the beta-smooth only stochastic model (7), β(u�) is
introduced as the genetic effect at the position u�. Expand-
ing β(u�) by B-spline or Fourier basis functions as above,
the stochastic model (7) can be revised as

yi(t) = μ(t) + Zi(t)
′α(t) +

m∑
�=1

gi(u�)
(
φ1(u�), · · · , φKβ

(u�)
)
(β1, · · · , βKβ

)′

+Ui(t) + εi(t)

= μ(t) + Zi(t)
′α(t) +W ′

iβ + Ui(t) + εi(t),(11)

where W ′
i =

∑m
�=1 gi(u�)

(
φ1(u�), · · · , φKβ

(u�)
)
.

2.9 Likelihood ratio test (LRT) statistics
and test procedure

To test for association between the quantitative trait and
the m genetic variants, the null hypothesis is H0 : β =
(β1, · · · , βKβ

)′ = 0. Under the null, the stochastic models
(10) and (11) are simplified as

yi(t) = μ(t) + Zi(t)
′α(t) + Ui(t) + εi(t).(12)

The stochastic models (10) or (11) and the null model (12)
are nested. By fitting (10) or (11) and the null model (12), we
may test the null H0 : β = 0 by a χ2-distributed likelihood
ratio test (LRT) statistic with Kβ degrees of freedom using
the lme R package [25].

In lme R package, the exponential correlation function
can be fitted by correlation = corExp, the linear correla-
tion function can be fitted by correlation = corLin, and the
Gaussian correlation function can be fitted by correlation =
corGaus [25]. Since the lme R package can be readily used
to fit the data, we omitted the details and the readers can
refer to Pinheiro and Bates (2000) [25].

3. RESULTS

3.1 Simulation study

To evaluate the performance of the proposed models, sim-
ulation studies were carried out to calculate empirical type
I error rates and power. We simulated 600 individuals with
an age range from 20 to 65 years. For each individual, the
number of observations ranged from 4 to 8 and each individ-
ual was examined every 2 or 4 years. In all simulations, we
assumed that phenotype was affected by gender such that
male’s trait value was larger than that of females by 5, and
gender was a covariate.

For mean function, we used one logarithm function
μ(t) = −34.2 + 81.7 log(0.3(t + 21.7)) and an exponen-
tial function μ(t) = 110 exp(0.0002(t − 25)2) utilized in
Fan et al. (2012) [19]. The curves of the two functions
were plotted in Figure 1. The logarithm function μ(t) =
−34.2 + 81.7 log(0.3(t + 21.7)) was taken from Daw et al.
(2003) [26] and Wang et al. (2012) [22] whose estimates
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Figure 1. The mean curves of logarithm function
μ(t) = −34.2 + 81.7 log(0.3(t+ 21.7)) and an exponential

function μ(t) = 110 exp(0.0002 ∗ (t− 25)2)) utilized in Fan et
al. (2012).

were from the FHS cholesterol data, and the exponential
function μ(t) = 110 exp(0.0002(t− 25)2) was used to mimic
the FHS systolic blood pressure data. For the variance com-
ponents, the subject variance σ2

U was 25 and error variance
σ2
e was 10. To generate the correlation structure, we took

θ = exp(−1/ρ) = 0.2, 0.3, 0.4, and defined correlation func-

tion as ρU (t, s) = exp(− |s−t|
ρ ) = θ|t−s|.

Type I error simulations The quantitative traits were gen-
erated by

yi(t) = μ(t) + Ziα+ Ui(t) + εi(t),

where Zi was the indicator function if a person is male and
α = 5. The mean function μ(t) was assumed to be unknown.
We approximated it by the non-parametric linear penalized
spline model (4) and the non-random expansion (5) and we
set Kμ = 10.

We simulated European-like (EUR) sequence data [27].
The EUR sequence data included 10,000 chromosomes cov-
ering 1 Mb regions and about 10% of the variants were
common (MAF > 0.03) and the rest were rare. To calcu-
late empirical type I error rates and power levels, genotypes

were selected from variants in 6 kb subregions which were
randomly selected from the 1 Mb region. On average, 117
variants were located in the 6kb regions if all variants are
used in the analysis (i.e., some variants are common and the
rest are rare). We also considered an analysis of rare vari-
ants (i.e., common variants were removed) and the average
number of rare variants is 106 in the 6 kb regions. To fit
model (1), we expanded the genetic variant functions and
genetic effect function by relations (2) and (3), respectively.
To fit model (7), the genetic effect function is expanded by
relation (3). To create the basis functions, R package fda
was used [14]. The order of B-spline basis was 4 and the
number of B-spline basis functions was K = Kβ = 10, and
the number of Fourier basis functions was K = Kβ = 11.

Note that the trait values were not related to the geno-
types in the type I error simulations. For each simulation
scenario, 107 phenotype-genotype datasets were generated.
Models (1) and (7) were used to calculate test statistics and
p-values using exponential correlation function ρU (s, t) =

exp
(
− |s−t|

ρ

)
. We reported type I error rates of perturbation

tests proposed in He et al. (2017) [23], i.e., P-Dispersion, P-
Burden, P-Fisher, and P-MinP. Then, an empirical type I
error rate was calculated as the proportion of 107 p-values
which were smaller than a given α level. In Tables 1 and 2,
the empirical type I error rates were reported to test the
null hypothesis of no association H0 : β1 = · · · = βKβ

= 0,
for the non-parametric linear penalized spline model (4) and
the non-random expansion (5). Encouragingly, the empiri-
cal type I error rates of stochastic models (1) and (7) were
close to the nominal levels 0.05, 0.01, 0.001, and 0.0001,
suggesting that the type I errors are well-controlled in the
stochastic models (1) and (7).

The perturbation tests control type I error rates correctly
for logarithm function but inflate type one error rates for ex-
ponential function. Figure 1 shows that the logarithm func-
tion is relatively flat and so it is approximately close to a
linear line, but the exponential function is unlikely close to
a straight line. Hence, the perturbation tests may lead to
high false positives for curved mean functions.

Empirical power simulations To evaluate the power of the
LRT statistics of models (1) and (7), we simulated data
sets under the alternative hypothesis. First, we generated
genotypes of m variants in 6 kb subregions, similar to the
type I error simulations, where the average number of m is
117 if some variants are common and the rest are rare, and
the average number of m is 106 if all variants are rare. Then,
an M causal variant subset of the m variants was randomly
selected, yielding causal genotypes (gi(u1), · · · , gi(uM )). For
each dataset, the causal variants are the same for all the
individuals in the dataset, but we allowed the causal variants
to be different from dataset to dataset. Then, we generated
the quantitative traits by

yi(t)=μ(t)+Ziα+β1gi(u1)+· · ·+βMgi(uM )+Ui(t)+εi(t),
(13)
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Table 1. Empirical type I error rates of the LRT Statistics at nominal levels α = 0.05, 0.01, 0.001, and 0.0001, when region size is 6 kb,

some variants are common and the rest are rare, and the exponential correlation function ρU (s, t) = exp
(
− |s−t|

ρ

)
is exponential. The

number of knots Kμ = 10. The order of B-spline basis was 4, and the number of basis functions of B-spline was K = Kβ = 10; the number of Fourier basis
functions was K = Kβ = 11. Abbreviation: P-Disps: P-Dispersion; Exp: Exponential; Log: Logarithm.

μ(t) θ
Nominal Stochastic Model (1) Stochastic Model (7) Perturbation Tests
Level μ(t): Expansion (4) μ(t): Expansion (5) μ(t): Expansion(4) μ(t): Expansion (5)

P-Disps P-Burden P-Fisher P-MinP
α B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

Exp

0.2

0.05 0.053762 0.054213 0.054847 0.055359 0.053762 0.054213 0.054847 0.055359 0.051121 0.052520 0.051261 0.050637
0.01 0.011043 0.011199 0.011368 0.011551 0.011043 0.011199 0.011368 0.011551 0.010969 0.011494 0.011369 0.011103
0.001 0.001156 0.001150 0.001204 0.001200 0.001156 0.001150 0.001204 0.001200 0.001289 0.001327 0.001495 0.001336
0.0001 0.000115 0.000122 0.000119 0.000129 0.000115 0.000122 0.000119 0.000129 0.000165 0.000156 0.000209 0.000169

0.3

0.05 0.053834 0.054243 0.054920 0.055406 0.053834 0.054243 0.054920 0.055406 0.051154 0.052495 0.051275 0.050587
0.01 0.011054 0.011218 0.011385 0.011555 0.011054 0.011218 0.011385 0.011555 0.010951 0.011487 0.011401 0.011070
0.001 0.001143 0.001176 0.001192 0.001221 0.001143 0.001176 0.001192 0.001221 0.001300 0.001344 0.001484 0.001334
0.0001 0.000115 0.000121 0.000118 0.000127 0.000115 0.000121 0.000118 0.000127 0.000163 0.000161 0.000205 0.000168

0.4

0.05 0.053839 0.054137 0.054923 0.055273 0.053839 0.054137 0.054923 0.055273 0.051158 0.052484 0.051268 0.050621
0.01 0.011060 0.011223 0.011383 0.011556 0.011060 0.011223 0.011383 0.011556 0.010973 0.011491 0.011383 0.011089
0.001 0.001138 0.001163 0.001181 0.001212 0.001138 0.001163 0.001181 0.001212 0.001292 0.001337 0.001489 0.001338
0.0001 0.000112 0.000122 0.000120 0.000129 0.000112 0.000122 0.000120 0.000129 0.000165 0.000159 0.000203 0.000166

Log

0.2

0.05 0.053828 0.054218 0.054845 0.055347 0.053828 0.054218 0.054845 0.055347 0.050829 0.051430 0.050287 0.049762
0.01 0.011048 0.011207 0.011361 0.011548 0.011048 0.011207 0.011361 0.011548 0.010611 0.010665 0.010497 0.010349
0.001 0.001157 0.001148 0.001203 0.001196 0.001157 0.001148 0.001203 0.001196 0.001100 0.001092 0.001163 0.001068
0.0001 0.000115 0.000123 0.000120 0.000131 0.000115 0.000123 0.000120 0.000131 0.000106 0.000114 0.000125 0.000107

0.3

0.05 0.053841 0.054252 0.054896 0.055372 0.053841 0.054252 0.054896 0.055372 0.050815 0.051351 0.050301 0.049706
0.01 0.011134 0.011246 0.011444 0.011569 0.011134 0.011246 0.011444 0.011569 0.010574 0.010731 0.010532 0.010408
0.001 0.001172 0.001171 0.001213 0.001221 0.001172 0.001171 0.001213 0.001221 0.001089 0.001113 0.001142 0.001074
0.0001 0.000120 0.000123 0.000125 0.000129 0.000120 0.000123 0.000125 0.000129 0.000106 0.000112 0.000128 0.000110

0.4

0.05 0.053860 0.054290 0.054872 0.055366 0.053860 0.054290 0.054872 0.055366 0.050820 0.051361 0.050368 0.049757
0.01 0.011084 0.011224 0.011401 0.011550 0.011084 0.011224 0.011401 0.011550 0.010591 0.010755 0.010528 0.010430
0.001 0.001150 0.001174 0.001199 0.001219 0.001150 0.001174 0.001199 0.001219 0.001092 0.001108 0.001152 0.001073
0.0001 0.000124 0.000129 0.000130 0.000136 0.000124 0.000129 0.000130 0.000136 0.000105 0.000108 0.000128 0.000113
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Table 2. Empirical type I error rates of the LRT Statistics at nominal levels α = 0.05, 0.01, 0.001, and 0.0001, when region size is 6 kb,

all variants are rare, and the exponential correlation function ρU (s, t) = exp
(
− |s−t|

ρ

)
is exponential. The number of knots Kμ = 10. The

order of B-spline basis was 4, and the number of basis functions of B-spline was K = Kβ = 10; the number of Fourier basis functions was K = Kβ = 11.
Abbreviation: P-Disps: P-Dispersion; Exp: Exponential; Log: Logarithm.

μ(t) θ
Nominal Stochastic Model (1) Stochastic Model (7) Perturbation Tests
Level μ(t): Expansion (4) μ(t): Expansion (5) μ(t): Expansion (4) μ(t): Expansion (5)

P-Disps P-Burden P-Fisher P-MinP
α B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

Exp

0.2

0.05 0.053687 0.054091 0.054787 0.055265 0.053687 0.054091 0.054787 0.055265 0.052079 0.053019 0.052049 0.051591
0.01 0.011112 0.011219 0.011440 0.011565 0.011112 0.011219 0.011439 0.011565 0.011375 0.011843 0.011814 0.011504
0.001 0.001156 0.001168 0.001205 0.001217 0.001156 0.001168 0.001205 0.001217 0.001356 0.001439 0.001557 0.001406
0.0001 0.000117 0.000126 0.000123 0.000133 0.000117 0.000126 0.000123 0.000133 0.000166 0.000177 0.000223 0.000177

0.3

0.05 0.053719 0.054110 0.054831 0.055275 0.053719 0.054110 0.054832 0.055275 0.052040 0.053044 0.051990 0.051593
0.01 0.011047 0.011236 0.011380 0.011574 0.011047 0.011236 0.011380 0.011574 0.011364 0.011791 0.011785 0.011495
0.001 0.001152 0.001174 0.001193 0.001222 0.001152 0.001174 0.001193 0.001222 0.001333 0.001446 0.001557 0.001400
0.0001 0.000119 0.000121 0.000126 0.000127 0.000119 0.000121 0.000126 0.000127 0.000167 0.000176 0.000221 0.000177

0.4

0.05 0.053736 0.054098 0.054839 0.055226 0.053736 0.054098 0.054839 0.055226 0.052075 0.053043 0.052067 0.051632
0.01 0.011047 0.011197 0.011371 0.011528 0.011047 0.011197 0.011371 0.011528 0.011353 0.011816 0.011762 0.011497
0.001 0.001148 0.001151 0.001193 0.001200 0.001147 0.001151 0.001193 0.001200 0.001342 0.001436 0.001556 0.001404
0.0001 0.000123 0.000124 0.000130 0.000131 0.000123 0.000124 0.000130 0.000131 0.000162 0.000175 0.000221 0.000180

Log

0.2

0.05 0.053763 0.054218 0.054791 0.055322 0.053763 0.054218 0.054791 0.055322 0.051480 0.051622 0.050787 0.050266
0.01 0.011118 0.011282 0.011420 0.011607 0.011117 0.011282 0.011420 0.011607 0.010784 0.010796 0.010625 0.010505
0.001 0.001164 0.001181 0.001208 0.001229 0.001164 0.001181 0.001208 0.001229 0.001073 0.001101 0.001137 0.001059
0.0001 0.000118 0.000124 0.000126 0.000129 0.000118 0.000124 0.000126 0.000129 0.000098 0.000112 0.000118 0.000106

0.3

0.05 0.053869 0.054273 0.054894 0.055352 0.053870 0.054273 0.054894 0.055352 0.051467 0.051541 0.050674 0.050250
0.01 0.011088 0.011239 0.011395 0.011559 0.011087 0.011239 0.011395 0.011559 0.010778 0.010817 0.010648 0.010504
0.001 0.001150 0.001155 0.001190 0.001207 0.001150 0.001155 0.001190 0.001207 0.001078 0.001109 0.001130 0.001061
0.0001 0.000121 0.000124 0.000127 0.000129 0.000121 0.000124 0.000127 0.000129 0.000097 0.000116 0.000120 0.000104

0.4

0.05 0.053785 0.054111 0.054835 0.055212 0.053786 0.054111 0.054836 0.055212 0.051483 0.051553 0.050799 0.050320
0.01 0.011075 0.011244 0.011381 0.011560 0.011075 0.011244 0.011381 0.011560 0.010818 0.010854 0.010664 0.010518
0.001 0.001136 0.001151 0.001182 0.001199 0.001136 0.001151 0.001182 0.001199 0.001081 0.001113 0.001132 0.001057
0.0001 0.000119 0.000124 0.000126 0.000130 0.000119 0.000124 0.000126 0.000130 0.000097 0.000111 0.000121 0.000102
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Figure 2. Empirical power levels of LRT statistics of stochastic model (1) using exponential correlation function

ρU (s, t) = exp
(
− |s−t|

ρ

)
and perturbation tests proposed in He et al. (2017) (i.e., P-Dispersion, P-Burden, P-Fisher, and

P-MinP) at nominal level α = 10−3 when some variants are common and the rest are rare, the mean curve is an exponential
function μ(t) = 110 exp(0.0002 ∗ (t− 25)2)), θ = exp(−1/ρ) = 0.2, and n = 600 individuals. To fit model (1), we expanded
the genetic variant functions and genetic effect function by relations (2) and (3), respectively. The mean function μ(t) was

approximated by the non-parametric linear penalized spline model (4) and the non-random expansion (5) and we set Kμ = 10.
The legends from the top to the bottom in plot (a1) correspond to the bars from the left to the right columns in each of plots

(a1)–(c3). Abbreviation: Neg beta pct means percentage of causal variants which have negative effects.

where β1, · · · , βM are additive effects for the causal variants
defined as follows: |βj | = c| log10(MAFj)|, where MAFj

was the MAF of the j-th variant. Three different settings
were considered: 5%, 10%, and 15% of variants are chosen
as causal variants. When 5%, 10%, and 15% of the variants
were causal, the constant c is taken as c = 6, 5, and 4, if
some variants are common and the rest are rare. If all vari-
ants are rare, the constant c is taken as c = 12, 10, and 8,
when 5%, 10%, and 15% of the variants were causal.

We calculated the LRT and p-values using the original
genotypes of m variants by models (1) and (7). We com-
pared the power of models (1) and (7) with perturbation

tests proposed in He et al. (2017) [23]. The empirical power
results shown in Figures 2, 3, 4, and 5 were based on 103 sim-
ulated replicates with α = 10−3. In addition to varying the
percentage of causal variants in the subregion, we also var-
ied the direction of effect. We considered situations where (i)
all causal variants have positive effects; (ii) 20%/80% causal
variants have negative/positive effects; and (iii) 50%/50%
causal variants have negative/positive effects.

Figures 2, 3, 4, and 5 show that the LRT statistics of
non-parametric penalized spline model (4) and non-random
expansion (5) have similar power. The power levels are
almost identical regardless of the choice of basis functions
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Figure 3. Empirical power levels of LRT statistics of stochastic model (1) using exponential correlation function

ρU (s, t) = exp
(
− |s−t|

ρ

)
and perturbation tests proposed in He et al. (2017) (i.e., P-Dispersion, P-Burden, P-Fisher, and

P-MinP) at nominal level α = 10−3 when some variants are common and the rest are rare, the mean curve is a logarithm
function μ(t) = −34.2 + 81.7 log(0.3(t+ 21.7)), θ = exp(−1/ρ) = 0.2, and n = 600 individuals. Other parameters and

notation are the same as those of Figure 2. The legends from the top to the bottom in plot (a1) correspond to the bars from
the left to the right columns in each of plots (a1)–(c3).

to expand genetic effect function β(u). Hence, the LRT
statistics are very stable in terms of power performance
and they are robust whether the mean function μ(t) is
approximated by the spline model (4) or the non-random
expansion (5), or which basis functions are used to expand
the genetic effect function.

In Figures 2, 3, 4, and 5, the power levels of the LRT
statistics of stochastic model (1) are higher than those the
perturbation tests. Hence, the proposed stochastic models
work well in the circumstances that we consider herein. The
results of model (7) are similar to the model (1), but we did
not present them.

In Supplementary Materials, http://intlpress.com/site/
pub/files/ supp/sii/2022/0015/0002/SII-2022-0015-0002-
s001.pdf, we provide simulation results using linear and

Gaussian correlation functions. Note that the data were gen-
erated by exponential correlation structure. Thus, results of
linear and Gaussian correlation functions can evaluate ro-
bustness of the proposed models when correlation function
is mis-specified. To fit model (1), we expanded genetic vari-
ant functions and genetic effect function by relations (2) and
(3) as in the main text, respectively. The order of B-spline
basis was 4, and the number of basis functions of B-spline
was K = Kβ = 10; the number of Fourier basis functions
was K = Kβ = 11. The mean function μ(t) was approxi-
mated by the non-parametric linear penalized spline model
(4) and non-random expansion (5) and we set Kμ = 10.
For each simulation scenario, 106 datasets were generated
to calculate type I error rates and 103 datasets were gener-
ated to calculate power levels. The results of Supplementary
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Figure 4. Empirical power levels of LRT statistics of stochastic model (1) using exponential correlation function

ρU (s, t) = exp
(
− |s−t|

ρ

)
and perturbation tests proposed in He et al. (2017) (i.e., P-Dispersion, P-Burden, P-Fisher, and

P-MinP) at nominal level α = 10−3 when all variants are rare, the mean curve is an exponential function
μ(t) = 110 exp(0.0002 ∗ (t− 25)2)), θ = exp(−1/ρ) = 0.2, and n = 600 individuals. Other parameters and notation are the
same as those of Figure 2. The legends from the top to the bottom in plot (a1) correspond to the bars from the left to the

right columns in each of plots (a1)–(c3).

Materials show that the type I error rates and power levels
are similar to these in the main tex using exponential cor-
relation function to fit the model. Therefore, the proposed
models are robust.

To make sure that the results are stable, we examined a
wide range of parameters: 6 ≤ K = Kβ ≤ 15 for B-spline
and Fourier basis functions (data not shown). We found the
results do not strongly depend on the choices of the param-
eters.

3.2 Analysis of FHS BMI data

We applied the proposed methods to analyze FHS data.
We investigate association with body mass index (BMI).

The objective of the FHS was to identify the common fac-
tors that contribute to cardiovascular disease by following
its development over a long period of time. The first cohort
started in 1948 to recruit 5,209 subjects between the ages of
29 and 62 from the town of Framingham, MA. Since 1948,
the subjects have continued to return to the study every two
years. In 1971, the study enrolled a second-generation group
to participate in similar examinations, i.e., Cohort 2. The
original cohort has data from 28 examinations and the off-
spring cohort has data from 8 examinations. Between 2002
and 2005, the study enrolled the third generation of the FHS
- 4095 offspring of the second generation [3, 28, 29]. The FHS
sample consists of unrelated individuals as well as individ-
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Figure 5. Empirical power levels of LRT statistics of stochastic model (1) using exponential correlation function

ρU (s, t) = exp
(
− |s−t|

ρ

)
and perturbation tests proposed in He et al. (2017) (i.e., P-Dispersion, P-Burden, P-Fisher, and

P-MinP) at nominal level α = 10−3 when all variants are rare, the mean curve is a logarithm function
μ(t) = −34.2 + 81.7 log(0.3(t+ 21.7)), θ = exp(−1/ρ) = 0.2, and n = 600 individuals. Other parameters and notation are

the same as those of Figure 2. The legends from the top to the bottom in plot (a1) correspond to the bars from the left to the
right columns in each of plots (a1)–(c3).

uals from multi-generational pedigrees. In our analysis, we
only use the information of unrelated individuals since our
models are based on population data. For instance, the data
of the two unrelated parents are used for a nuclear family
but the data of the offspring are not. We analyze a subset
of 1,898 unrelated individuals from the first two generation
cohorts (original and offspring cohorts) with a total num-
ber of 13,171 measurements. In the dataset, 825 are males
and 1,073 are females. The number of measures on each
subject ranges from 1 to 8, and the intervals between mea-
surements are highly variable among subjects. The 1,898 un-
related individuals were genotyped on an Affymetrix 500K
array after quality checks of completeness (i.e., proportion

of variants for which genotype is called) > 95%, empirical
inbreeding coefficient < 0.05, and Hardy-Weinberg equilib-
rium.

We perform a genome-wide gene-based longitudinal as-
sociation analysis with BMI using exponential correlation
function to model correlation. For each gene region, we ex-
tract all variants that are on the Affymetrix 500K chip of
sample genotypes within 100 kb of the gene. All together we
test association of 42,223 genes with BMI, including sex, age
at each examination, and the top 5 principal components as
covariates in the analysis [30].

The results of LRT statistics of models (1) and (7) us-
ing exponential correlation function and perturbation tests
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Figure 6. Q-Q plots for the LRT statistics of stochastic model (1) and perturbation tests proposed in He et al. (2017) (i.e.,
P-Dispersion, P-Burden, P-Fisher, and P-MinP) for FHS BMI data.

proposed in He et al. (2017) for FHS BMI data are reported
in Table 3 and Figure 6. Quantile-quantile (QQ) plots in
Figure 6 shows that genomic control inflation factors for
the LRT statistics of stochastic model (1) and perturbation
tests are all around 1.0. Table 3 reports 10 top gene regions
when at least one of the tests provides a p-value < 10−4.
Interestingly, none of perturbation tests reaches a p-value
< 10−4 while the proposed LRT statistics provide associa-
tion signals. Thus, perturbation tests are not appropriate to
analyze the FHS data.

3.3 Computational time

In our type I error rate calculations, we divided 107

datasets into 1,000 independent jobs by different random
seeds, and each job simulated and analyzed 10,000 datasets.
Roughly, it takes 8–9 days to finish the calculations. Hence,

it took about 1 day to simulate and analyze 1,200 datasets.
In real data analysis, our software can be used to perform
genome-wide association analysis by dividing the analysis
into independent jobs.

4. DISCUSSION

In this paper, we develop stochastic functional linear
models to analyze longitudinally measured quantitative
traits and sequence data in longitudinal studies. To analyze
sequence data, high dimensional genetic data are treated as
realizations of a stochastic process and functional data anal-
ysis techniques are used to reduce the dimensionality. The
quantitative traits are modeled by a continuous stochas-
tic process. Based on the theory of stochastic processes,
the variance-covariance structure of the trait values is con-
structed to analyze multiple measurement variation and cor-
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Table 3. Application to FHS BMI data using exponential correlation function to model correlations. In all subjects, 1,898 unrelated
individuals were used for analysis. Genes with at least one p-value < 10−4 was reported. Abbreviation: P-Disps: P-Dispersion.

Chr
# Stochastic Model (1) Stochastic Model (7) Perturbation Tests

Gene of μ(t): Expansion (4) μ(t): Expansion (5) μ(t): Expansion (4) μ(t): Expansion (5)
P-Disps P-Burden P-Fisher P-MinP

SNPs B-spline Fourier B-spline Fourier B-spline Fourier B-spline Fourier

ERG 21 128 5.02E-05 0.000340 5.36E-05 0.000355 5.02E-05 0.000340 5.36E-05 0.000355 0.282306 0.153643 0.188188 0.265644

CTD-3064M3.7 8 23 6.94E-05 0.000599 6.63E-05 0.000571 0.000140 0.000599 0.000134 0.000571 0.661380 0.327643 0.486859 0.473628

AC092159.3 2 65 6.98E-05 0.034134 6.37E-05 0.032278 6.98E-05 0.034134 6.37E-05 0.032278 0.080844 0.068355 0.056938 0.119446

RP11-332H18.3 17 31 7.64E-05 0.000231 7.79E-05 0.000234 7.64E-05 0.000231 7.79E-05 0.000234 0.938222 0.562148 0.801520 0.741850

AC007115.3 12 30 8.07E-05 0.000193 8.33E-05 0.000203 8.07E-05 0.000193 8.33E-05 0.000203 0.526067 0.571080 0.554481 0.615958

RP11-685G9.4 15 27 8.09E-05 0.000948 7.96E-05 0.000929 8.09E-05 0.000948 7.96E-05 0.000929 0.427664 0.285943 0.341504 0.423652

RPL21P108 13 67 0.000204 7.28E-05 0.000215 7.65E-05 0.000204 7.28E-05 0.000215 7.65E-05 0.058683 0.011582 0.018673 0.021595

CARTPT 5 43 0.000226 6.72E-05 0.000212 6.50E-05 0.000226 6.72E-05 0.000212 6.50E-05 1.000000 0.856336 1.000000 0.963872

AC092159.2 2 71 0.000105 0.000406 9.91E-05 0.000375 0.000105 0.000406 9.91E-05 0.000375 0.089734 0.062822 0.054538 0.112101

MCCC2 5 58 0.000107 0.000517 9.64E-05 0.000494 0.000107 0.000517 9.64E-05 0.000493 1.000000 1.000000 1.000000 1.000000
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relations. Genetic effect functions are estimated by an ordi-
nary linear square smoother. Non-parametric penalized and
non-random spline models are used to approximate the time-
dependent mean functions. To evaluate the performance of
the stochastic models, simulation studies were carried out
to calculate and to compare empirical type I error rates and
power. The models are found to perform well in terms of
reasonable type I error rates and power. In addition, the
proposed methods are robust when the correlation function
is mis-specified.

In the power comparison, it was found that the LRT
statistics of proposed stochastic models are higher than
those the perturbation tests proposed in He et al. (2017)
[23]. In the power comparison, note the data was generated
by model (13), in which the mean function μ(t) is either ex-
ponential or logarithm. The models (1) and (7) treated the
mean as a function μ(t), but it was treated as a constant
intercept in He et al. (2017) [23]. Therefore, the models (1)
and (7) are the correct model to analyze the simulated data
while the models of He et al. (2017) [23] are not. In short,
the power comparison may not be interpreted as that the
performance of the LRT statistics of the proposed stochastic
models are always better. Nevertheless, the LRT statistics
of stochastic models (1) and (7) perform better in the cir-
cumstance considered hereby.

As the previous paper of Fan et al. (2012) [19] to ana-
lyze common variants, one merit of the proposed stochastic
models is that the number of parameters does not depend
on the number of multiple measurements and the number
of genetic variants. The number of parameters is fixed af-
ter carefully specifying the number of basis functions and
variance-covariance structure. The parameters are specified
through two components based on the theory of stochas-
tic processes: (i) stochastic regression models (1) and (7);
(ii) temporal variance-covariance functions given by equa-
tions (6). To estimate the mean function μ(t) and genetic
effect functions, the parameters are specified by spline mod-
els.

The proposed approaches can only analyze population
data. It will be very interesting and important to extend the
methods to analyze family data or combinations of family
data and population data. The stochastic regression models
(1) and (7) can be used to model the trait means, which take
care of the association information. The temporal variance-
covariance functions given by equation (6) can be used for
one individual’s measurements. For family members, the
temporal variance-covariance functions can be constructed
in the same way as variance component models presented
[31, 32]. Then, one may compare the method with kernel
machine test in literature [33]. In addition, it is interest-
ing in developing stochastic models to analyze qualitative
genetic traits. This paper builds a foundation for future re-
search to develop stochastic models for gene-based analysis
in longitudinal studies.

This paper focuses on quantitative traits. The proposed
models can be readily implemented by lme R package [25].

Similar idea can be applied to build stochastic models to
analyze discrete traits. However, the estimation procedure
for parameters is different from that of quantitative traits.
More in-depth research is needed to extend the models to
analyze the discrete traits.
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