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A sequential Monte Carlo Gibbs coupled with
stochastically approximated
expectation-maximization algorithm for functional
data

Ziyue Liu

We develop an algorithm to overcome the curse of di-
mensionality in sequential Monte Carlo (SMC) for func-
tional data. In the inner iterations of the algorithm for given
parameter values, the conditional SMC is extended to ob-
tain draws of the underlying state vectors. These draws in
turn are used in the outer iterations to update the parame-
ter values in the framework of stochastically approximated
expectation-maximization to obtain maximum likelihood es-
timates of the parameters. Standard errors of the parame-
ters are calculated using a stochastic approximation of Louis
formula. Three numeric examples are used for illustration.
They show that although the computational burden remains
high, the algorithm produces reasonable results without ex-
ponentially increasing the particle numbers.

Keywords and phrases: Functional data, Gibbs sampler,
Particle filter, Sequential Monte Carlo, State space model,
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1. INTRODUCTION

Nonlinear and non-Gaussian State space models (SSMs)
are an extremely flexible framework in studying complex
dynamics over time or other domains, and are widely used
in many fields such as physics, engineering, economics, geo-
science, and statistics. However, their applications to func-
tional data remain limited. One major barrier to such ap-
plications is the curse of dimensionality known as particle
collapse when approximating the analytically intractable in-
tegrals using sequential Monte Carlo (SMC, also known as
particle filter). Particle collapse happens when majority but
a few of the random draws have essentially zero weights,
which renders the numeric approximations to fail. In this
paper, we aim to develop an algorithm applicable to func-
tional data which does not suffer from particle collapse.

Linear Gaussian SSMs have been applied to functional
data. [1, 2] represented the functional mixed effects mod-
els (FMMs) in state space form and used it for fast com-
putations. In these models, both the population-level and
the subject-level functional effects were modeled by smooth-
ing splines, whose state space forms are readily available.

[3, 4] used state space models directly as the building blocks
for functional data which can incorporate more dynamic
structures beyond nonparametric curves. [5] proposed to use
stochastic processes as the building blocks, which in prin-
ciple can be casted as SSMs when they are Markovian. On
the other hand, nonlinearity or non-Gaussianity or both are
needed in many cases [6, 7]. For such situations, nonlin-
ear and non-Gaussian SSMs would provide a flexible and
unified framework for estimation, inference and prediction.
Since exact algorithms no longer exist, numeric approxima-
tions will be needed for implementations. SMC is the most
popular approach in recent decades, which has been applied
to single-subject problems [8, 9].

SMC is a set of sequential importance-sampling resam-
pling algorithms [10, 11]. At each time points, a number
of random draws (known as particles) are generated with
importance weights. Functions of the underlying states in-
cluding the likelihood are approximated by these particles.
The performance of the approximations is largely decided by
the numbers of particles and the uniformity of the weights,
which is summarized by the effective sample size (ESS)
[12, 13]. ESS is calculated as the inverse of the sum of the
squared normalized weights. Resampling is recommended
when ESS drops below a certain threshold, for example two-
thirds of the number of particles. This approach works when
the state dimension is low that ESS only decreases gradually
as systems move forward in time. However, when the state
dimension is high, it has been observed that the weights of
majority but a few particles are numerically zero even after
one step moving forward [14]. This curse of dimensionality
is known as particle collapse, which causes the numeric ap-
proximations to fail. Particle collapse cannot be overcome
by resampling because there are not enough valid particles
to resample from.

[15, 16] studied the theoretical properties of particle col-
lapse. They proved that in order to avoid particle collapse,
the number of particles must be exponential in the state di-
mensions. [17] further established that the number of parti-
cles needs to scale exponentially with the Kullback-Leibler
divergence between the target and the proposal densities.
This requirement of exponential increase is especially un-
friendly to functional data, because even for a fixed model
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structure, the state dimensions increase linearly with more
subjects.

In literature, several methods have been developed to
overcome particle collapse without exponentially increas-
ing the numbers of particles. [18, 19] used separate filters
for blocks of the whole state vectors by assuming work-
ing independence structures, which targeted the marginal
distributions of the blocks. [20] proved that in principle it
is possible to develop algorithms with dimension-free ap-
proximation errors when the dependency structure is local
at each time point. This approach is inapplicable to func-
tional data because the population-level effects will intro-
duce global dependency through observations. [21] proposed
a blocked conditional particle filter, where the state vectors
are divided into fully conditional blocks for filtering and
smoothing. Their algorithms still require the calculation of
the full state transition density and the system parameters
are modeled with priors in the Bayesian framework. [22] pro-
posed a state-time particle filter, where at each time point
a local filter is adopted along the space direction for each
particle island and the information in the data is brought in
gradually. They investigated both theoretical and numeric
properties for a linear Gaussian SSM and a finite-state SSM,
for both of which exact filtering and smoothing algorithms
exist.

In this paper, we propose a new algorithm applicable
to functional data with SMC Gibbs sampler nested in the
stochastically approximated expectation-maximization al-
gorithm [23, 24]. It is straightforward to observe that given
the subject-specific effects, the population-level components
have fixed low dimensions, while given the later, the former
ones are independently related to the data. Therefore, we
extend the conditional SMC to obtain draws of the state
vectors for given parameter values [25]. The working state
vector at each SMC Gibbs step has fixed low dimensions,
which precludes particle collapse. These draws are used to
approximate the conditional expectation of the logarithm
of the complete data likelihood (the Q function). The Q
function is then maximized to update the parameter values.
Maximum likelihood estimates (MLEs) of the parameters
are obtained after the algorithm converges. Their variances
can be estimated using Louis formula [26]. The state vectors
are estimated by their conditional means through averaging
the corresponding conditional draws. Functional effects are
then calculated from the state estimates.

The remaining of this paper is organized as follows. Sec-
tion 2 presents the nonlinear non-Gaussian SSMs for func-
tional data. Section 3 presents the proposed algorithm. Sec-
tion 4 illustrates the proposed algorithm using several nu-
meric examples. Some discussions are given in Section 5.

2. THE MODEL

Let yij denote the observation from the ith subject at
time tj with i = 1, · · · , n and j = 1, · · · , Ti. For the sim-
plicity of notations, assume that Ti = T and all subjects

are observed on the same time grid, although these assump-
tions are not necessary for the proposed algorithm. Let E{·}
denote the expectation with respect to an appropriate dis-
tribution, and gy(·) the link function. For example, gy(·)
can be the logit link for binary outcomes, logarithm link for
count outcomes, or the identity link for Gaussian outcomes.
Let β (tj) be the population-level effect vector, αi (tj) the
subject-specific effect vector, and Xij and Zij the corre-
sponding design matrices formulated by incorporating the
study designs and covariates. Let θ be the vector of the un-
known but fixed parameters. The data observation equation
is

(1) gy [E {yij | β (tj) ,αi (tj) ;θ}] = Xijβ (tj)+Zijαi (tj) .

The state observation equations define how β (tj) and
αi (tj) are transformed from their corresponding latent
states, φ(tj) and ψi(tj), through observational matrices Fβ

and Fα as follows

β (tj) = Fβφ (tj) ,(2)

αi (tj) = Fαψi (tj) .(3)

The state vectors φ (tj) and ψi (tj) for i = 1, · · · , n are mu-
tually independent. Their evolutions over time are defined
through the two conditional probability density functions
(PDFs), pφ{· | ·} and pψ{· | ·} where p{·} stand for a PDF
in general, as in the following state transition equations

φ (tj) ∼ pφ {φ (tj) | φ (tj−1) ;θ} ,(4)

ψi (tj) ∼ pψ {ψi (tj) | ψi (tj−1) ;θ} ,(5)

The system is initialized at time zero according to certain
distributions pφ0{φ(0)} and pψ0{ψi(0)}. Equations (4) and
(5) are not limited to first order Markov processes. Higher
order processes can be incorporated by expanding the state
vectors.

Equations (1) to (5) define how to model functional data
using state space models. It extends [4] to nonlinear and
non-Gaussian models. Besides nonparametric curves such
as smoothing splines [27, 1], many other dynamics over time
such as parametric fixed and random effects [28], multipro-
cess models [29, 30], and differential equation based models
[31, 7] can be incorporated. More examples of SSMs can
be found in [32, 33]. Consequently, the resultant models
are more flexible than the traditional nonparametric curve
based FMMs.

Estimation for these models is twofold: estimating the la-
tent state vectors for given parameter values, from which
β (tj) and αi (tj) will be calculated, and estimating the un-
known but fixed parameters. For the first task, SMC will be
adopted. The conditional SMC update will be extended to
overcome particle collapse. For the second task, EM algo-
rithm is an ideal framework because of two reasons. First,
given the state vectors, the likelihood is straightforward to
calculate and maximize, for which close-form solutions exist
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in many cases. Second, the SMC approximated likelihood
functions are not continuous with respect to parameters,
which causes serious problems for gradient based maximiza-
tion methods [34]. Although [34] developed an algorithm
for continuous SMC likelihood approximation for univari-
ate state situations, a general solution for multivariate state
vectors remains unavailable.

3. THE ALGORITHM

For the simplicity of notations, let ‘�’ denote matrix
transpose, and βj = β(tj), αij = αi(tj), φj = φ(tj),
ψij = ψi(tj),

yi,1:T =
(
yi1 · · · yiT

)�
,

yj =
(
y1j · · · ynj

)�
,

y =
(
y�
1 · · · y�

T

)�
,

φ =
(
φ�

1 · · · φ�
T

)�
,

ψi,1:T =
(
ψ�

i1 · · ·ψ�
iT

)�
ψj =

(
ψ�

1j · · · ψ�
nj

)�
,

ψ =
(
ψ�

1 · · · ψ�
T

)�
,

ξj =
(
φ�

j ψ�
j

)�
,

ξ =
(
ξ�1 · · · ξ�T

)�
.

We first briefly review SAEM and particle Gibbs, and then
introduce the proposed algorithm.

3.1 SAEM

The SAEM algorithm developed by [23] can be summa-
rized as follows. First define the Q function

(6) Q
(
θ|θ′) =

∫
log {p (y,φ,ψ|θ)} p

(
φ,ψ|y,θ′) dφ dψ.

In the regular EM algorithms, the E-step at iteration k is
to calculate Qk as a function of θ

(7) Q (θ|θk) =

∫
log {p (y,φ,ψ|θ)} p (φ,ψ|y,θk) dφ dψ.

The M-step maximizes Qk that updates the parameter esti-
mate to θk+1. When the E-step is analytically intractable,
the Q function is approximated by m (k) realizations of
{φ (l) ,ψ (l)} from p (φ,ψ|y,θk) as

(8) Q̂k = (1− γk) Q̂k−1+γk

m(k)∑
l=1

log {p (y,φ (l) ,ψ (l) |θ)} .

γk’s are step sizes that satisfy (i) 0 ≤ γk ≤ 1, (ii)
∑∞

k=1 γk =
∞, and (iii)

∑∞
k=1 γ

2
k < ∞.

For nonlinear and non-Gaussian SSMs, realizations of
{φ (l) ,ψ (l)} from p (φ,ψ|y,θk) have to be approximated
numerically, for example using SMC.

3.2 Particle Gibbs

A generic SMC algorithm [11] sequentially approximates
p(ξj |y1, · · · , yj ;θ) by N particles ξ1:Nj and their impor-

tance weight v1:Nj as follows

1: at time j = 1, for particle l = 1, · · · , N ,

(a) sample from proposal ξl1 ∼ q (·|y1;θ)

(b) calculate the weights

(9) wl
1 =

p
(
y1|ξl1;θ

)
p
(
ξl1;θ

)

q
(
ξl1|y1;θ

)

(c) normalize the weights vl1 = wl
1/

∑N
m=1 w

m
1 . The

collection of these normalized weight v1:Nj formu-
late a discrete probability distribution denoted as
R(·|v1:Nj ).

2: at time j = 2, · · · , T , for particles l = 1, · · · , N
(a) resample by selecting ancestor alj ∼ R

(
·|v1:Nj−1

)
(b) moving the system one step forward from proposal

ξj ∼ q(·|ξa
l
j

j−1,yj ;θ)

(c) calculate the weights

(10) wl
j =

p
(
yj |ξlj ;θ

)
p

(
ξlj |ξ

al
j

j−1;θ

)

q

(
ξlj |ξ

al
j

j−1,yj ;θ

)

(d) normalize the weights vlj = wl
j/

∑N
m=1 w

m
j to for-

mulate R(·|v1:Nj ).

3: approximate functions of ξj by ξ1:Nj and v1:Nj , for ex-
ample, the likelihood function.

The output are the collections of particles ξ1:N1:T =
(ξ1:N1 , · · · , ξ1:NT ), their corresponding weights v1:N1:T and their
ancestry a1:N2:T . In the original SMC [10], the state transition
equation was used to move the system forward, and boot-
strap was used for resampling. Some developments after [10]
were summarized in the review papers [35, 36, 37].

Resampling is not necessary at all steps, though it is rec-
ommended when ESS drops below a certain threshold such
as 2N/3. ESS is calculated as

(11) ESS =
1∑N

l=1

(
vlj
)2 .

For low dimension problems, ESS decreases gradually over
time. When the state dimensions are high, majority except
a few of v1:Nj could be be zero even after one step mov-
ing forward. Consequently, the particle approximation of
p(ξj |y1, · · · , yj ;θ) fails. To avoid this particle collapse,
N is required to scale exponentially with the state dimen-
sions [15, 16].
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The conditional SMC update proposed by [25] can be
outlined as follows.

1: let ξ∗1:T = (ξ∗1, · · · , ξ∗T ) be a prespecified sequence.
2: at time j = 1

(a) let ξ11 = ξ∗1
(b) for l = 2, · · · , N , sample from ξl1 ∼ q(·|y1;θ)

(c) for l = 1, · · · , N , calculate weights as in (9) and
normalize weights to obtain v1:N1 .

3: at time j = 2, · · · , T
(a) let ξ1j = ξ∗j
(b) for l = 2, · · · , N ,

(i) resample by selecting ancestor alj ∼ R(·|v1:Nj−1)

(ii) move the system one step forward from pro-

posal ξj ∼ q(·|ξa
l
j

j−1,yj ;θ)

(c) for l = 1, · · · , N , calculate weights as in (10) and
normalize weights to obtain v1:Nj .

This conditional SMC update is constructed on an extended
distribution including both the draws and their ancestry.
Consequently, the marginal of the output is the target dis-
tribution p(ξ|y;θ) by retaining relevant variables.

Particle Gibbs is a Markov chain Monte Carlo (MCMC)
method under the Bayesian framework outlined as follows.

1: set the prior distribution for θ ∼ p(θ).
2: initialize at k = 0 by setting θ(0) and ξ∗1:T (0) to arbi-

trary values.
3: for iterations k ≥ 1

(a) sample θ(k) ∼ p(·|y, ξ∗1:T (k − 1))

(b) run the conditional SMC update conditional on
ξ∗1:T (k − 1)

(c) sample ξ∗1:T (j) from the output of the conditional
SMC update.

3.3 The proposed algorithm

We adopt a frequentist approach in stead of Bayesian by
using SAEM for parameter estimation. We propose to obtain
draws of {φ (l) ,ψ (l)} from p (φ,ψ|y,θk) by extending the
conditional SMC update to avoid particle collapse without
exponentially increasing N .

It is straightforward to observe that given φ, we have n
independent models for yi,1:T ’s defined by

(12) yi,1:T ∼ p
(
yi,1:T |ψi;θ,φ

)
p (ψi;θ) ,

where φ should be viewed as a constant vector similar to
θ instead of a random vector. This suggests that separate
SMC can be performed for the n subjects to draw ψi,1:T .
For each subject, the working state vectors are of fixed and
low dimension. On the other hand, when ψi,1:T , i = 1, · · · , n
are given, we have n observations at each time point as

(13) yij ∼ p
(
yij |φj ;θ,ψij

)
p
(
φj ;θ

)
,

where ψij should be viewed as constant. In this situation,
φj , though observed n times, is of low dimension that does
not depend on n. Consequently, a Gibbs iteration can be
adopted to obtain joint draw of (φ,ψ). To ensure that
p(φ,ψ|y;θ) is the targeting distribution, the conditional
SMC is adopted.

We first modify the conditional SMC update to draw from
(12) and (13). For (φ|y;θ,ψ), the modified conditional SMC
update is as follows

1: let φ∗ = (φ∗
1, · · · ,φ∗

T ) be a prespecified sequence and
ψ∗ be known values.

2: at time j = 1

(a) let φ1
1 = φ∗

1

(b) for particles l = 2, · · · , N , sample from φ1 ∼
q(·|y1;θ,ψ

∗)

(c) for l = 1, · · · , N , calculate weights as

(14) wl
1 =

p
(
y1|φl

1;θ,ψ
∗
)
p
(
φl

1;θ
)

q
(
φl

1|y1;θ,ψ
∗
)

(d) normalize the weight vl1 = wl
1/

∑N
m=1 w

m
1 .

3: at time j = 2, · · · , T
(a) let φ1

j = φ∗
j

(b) for particles l = 2, · · · , N
(i) resample by selecting ancestor alj ∼ R

(
·|v1:Nj−1

)
(ii) move the system one step forward from pro-

posal φj ∼ q(·|yj ,φ
al
j

j−1;θ,ψ
∗)

(c) for l = 1, · · · , N , calculate weights as

(15) wl
j =

p
(
yj |φl

j ;θ,ψ
∗
)
p

(
φl

j |φ
al
j

j−1;θ

)

q

(
φl

j |φ
al
j

j−1,yj ;θ,ψ
∗
)

(d) normalize the weight vlj = wl
j/

∑N
m=1 w

m
j .

4: sample φ∗ from the output of the above conditional
SMC update.

The conditional SMC update for (ψi,1:T |y;θ,φ) follows sim-
ilarly, except that (i) the update is performed separately for
subject i = 1, · · · , n, and (ii) at each time, data yij instead
of yj is used. The product of the ith update is ψ∗

i,1:T . The
collection of ψ∗

i,1:T ’s are the updated ψ∗.
The proposed algorithm is outlined as follows.

1: initialize at k = 0

(a) set θ(0), φ∗(0), and ψ∗(0) to arbitrary values

(b) set Q̂0 = 0 (or an arbitrary value)

(c) set the step values γk’s, where γ1 = 1 so that the
artificial information in Q̂0 will not be incorpo-
rated for MLEs.
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2: for outer iterations k ≥ 1

(a) let φ∗(0, k) = φ∗(k−1), and ψ∗(0, k) = ψ∗(k−1)

(b) for inner iteration q ≥ 1

(i) run the modified conditional SMC update on
φ conditional on ψ∗(q− 1, k) and φ∗(q− 1, k)
to obtain φ∗(q, k)

(ii) for subject i = 1, · · · , n, run the modified con-
ditional SMC update on ψi,1:T conditional on
φ∗(q, k) and ψ∗(q−1, k) to obtain ψ∗

i,1:T (q, k),
the collection of which formulate ψ∗(q, k)

(c) assume that the inner iterations converge after nq

iterations, then let φ∗(k) = φ∗(nq, k) and ψ∗(k) =
ψ∗(nq, k)

(d) run m(k) chains to obtain m(k) copies of φ∗(k)
and ψ∗(k)

(e) calculate Q̂k according to (8)

(f) maximize Q̂k to update the parameter estimate to
θk.

[23] showed that convergence is guaranteed even m(k) = 1.
Since “particle Gibbs” is used for the Bayesian framework
[25] as reviewed in the previous subsection, we call the inner
iterations “SMC Gibbs” to avoid confusion.

MLEs of the parameters are obtained after convergence.
Convergence of the inner iterations can be assessed by meth-
ods used in MCMC monitoring such as trace plots [38]. Con-
vergence of the outer iterations can be assessed similarly
[39]. After convergence, the state vectors can be estimated
by generating a number of conditional draws, from which
the conditional means, variances, and confidence intervals
of βj and αij can be calculated.

3.4 Standard errors

Let Io (θ), Ic (θ), Im (θ) be the observed, the complete,
and the missing information matrices, respectively. Let lc
denote the logarithm of the complete data likelihood. The
asymptotic variances of the parameters can be obtained us-
ing Louis formula [26] as follow

Io (θ) = Ic (θ)− Im (θ) ,(16)

Ic (θ) = E

(
− ∂2lc

∂θ∂θ� |y
)
,(17)

Im (θ) = E

(
∂lc
∂θ

∂lc

∂θ� |y
)
− E

(
∂lc
∂θ

)
E

(
∂lc

∂θ� |y
)
.(18)

The second term in Equation (18) is zero at MLE. [23]
suggests to stochastically approximate the observed infor-
mation matrix from Louis formula by Hk as

Hk = Gk −ΔkΔ
�
k ,

Δk = (1− γk)Δk−1 + γk
1

mk

mk∑
j=1

∂θlc (θk) ,

Gk = (1− γk)Gk−1

+ γk
1

mk

mk∑
j=1

[
−∂2

θlc (θk) + ∂θlc (θk) ∂θ� lc (θk)
]
,

whereGk and Δk can be initialized at arbitrary values. They
showed that Hk converges to the observed information ma-
trix evaluated at θ∗, where θ∗ is a limiting point of SAEM.
Inverse of the observation matrix gives the asymptotic vari-
ance matrix var(θ) = I−1

o (θ). Square roots of the diagonal
elements of var(θ) give the standard errors (SEs).

3.5 Special cases of the proposed algorithm

Exact algorithms exist for linear Gaussian SSMs [32, 33],
hence SMC is not needed. However, the Gibbs sampling ap-
proach could be useful when the state dimensions become
extremely high. Since the exact algorithms involve multipli-
cation and inversion of matrices scaling with the state di-
mensions, numeric difficulties and inaccuracies may happen
for high dimension problems. We will illustrate how to ap-
ply a simplified version of the proposed algorithm to linear
Gaussian models by removing the SMC components.

When the population-level effects can be adequately char-
acterized by parametric fixed effects, these effects then be-
come part of the parameter vector θ. Consequently, the
models for the n subjects are independent. The proposed
algorithm can be simplified by removing the inner iterations
and directly applying n separate conditional SMC updates
to obtain conditional draws for ψi,1:T . Such coupling of par-
ticle MCMC with EM for nonlinear non-Gaussian SSMs
have been studied for the single time series situations in
literature [40, 41, 42].

4. NUMERIC EXAMPLES

In this section, numeric examples are used to illustrate
the proposed algorithm, with comparisons with the multi-
ple particle filter (MPF) [18] and the space-time particle
filter (STPF) [22]. Since neither smoothing algorithms nor
parameter estimation procedures are given for MPF and
STPF, the filtered means are used for comparisons based
on the estimate parameters from the proposed algorithm.

A linear Gaussian model and a Poisson outcome model
using cubic smoothing spline based FMMs [1] are used. The
identity link is used for the linear Gaussian model and the
logarithm link is used for the Poisson outcome. Both models
have the same state observation equations (2) and (3) with
Fβ = Fα = ( 1 0 ). Let Δt = tj − tj−1, H the state
transition matrix, ηφj ∼ N(0, λ1Σ) and ηψij ∼ N(0, λ2Σ)
the state innovation vectors with

H =

(
1 Δt
0 1

)
, Σ =

(
1
3 (Δt)

3 1
2 (Δt)

2

1
2 (Δt)

2
Δt

)
.

The state transition equations are

(19) φj = Hφj−1 + ηφj , ψij = Hψi,j−1 + ηψij ,
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At time zero, φ0 ∼ N(0, κI2) with κ → ∞ and I2 is the 2×2
identity matrix, and ψi0 ∼ N(0, diagonal{σ2

1 , σ
2
2}).

For these numeric examples, we let m(k) = 1 for all k’s
and the number of particles N = 1000. The classical boot-
strap filter is used for filtering [10], which uses the state
transition equations as the proposal densities and multino-
mial resampling with replacement to select ancestors. The
algorithm proposed by [44] is used to sample φ∗(q, k) and
ψ∗(q, k) from the conditional SMC update outputs. In the
follows we illustrate how to use [44] to draw one series for
φ(k) from the bootstrap filter output.

1: at outer iteration k and inner iteration q, let φ1:N
1:T and

v1:n1:T be the output from the modified conditional SMC
update.

2: at time T , sample φ∗
T from φ1:N

T with weights v1:NT .
3: for j = T − 1, · · · , 1

(a) for l = 1, · · · , N , calculate weights

(20) ζlj = p
(
φ∗

j+1|φl
j ;θ (k)

)

(b) normalize weights as ωl
j = ζlj/

∑N
m=1 ζ

m
j

(c) sample φ∗
j from φ1:N

j according to weights ω1:N
j .

4: φ∗(q, k) = (φ∗
1, · · · ,φ∗

T ) is updated.

For both models, the M-step is straightforward. A brief sum-
mary of the M-step is given in Appendix.

4.1 Linear Gaussian model

The data were generated from a linear Gaussian model
as follows

(21) yij = β (tj) + αi (tj) + εij ,

for i = 1, · · · , 30 subjects and j = 1, · · · , 50 equally spaced
time points on [0, 1]. Errors εij ’s were independent and iden-
tically distributed as the standard normal N(0, σ2

e = 1).
The parameter vector is θ = ( λ1 σ2

1 σ2
2 λ2 σ2

e )�.
Let t = ( t1 · · · tT )�, β(t) and αi(t) were generated by
first generating curves from N(0, κΩ(t)) where κ > 0 and
Ω(t) = R1(t, t) defined recursively using the Bernoulli poly-
nomial as [43]

k1 (t) = t− 0.5,(22)

k2 (t) =
1

2

{
k21 (t)−

1

12

}
.(23)

k4 (t) =
1

24

{
k41 (t)−

1

2
k21 (t) +

7

240

}
,(24)

R1 (t1, t2) = k2 (t1) k2 (t2)− k4 (t1 − t2) .(25)

The curves were then rescaled and centered to obtain β(t)
and αi(t) as displayed in Figure 1.

Figure 1. True functional effects: the thick black line is β(t)
and the thin gray lines are αi(t)’s.

Figure 2. Case 1: Trace plots of parameters and the estimate
of β(t). For β(t), the dotted black line is the true function
and the solid red lines are the estimate and point-wise 95%

confidence interval.

4.1.1 Case 1: SAEM with exact Gibbs

For linear Gaussian SSMs, exact algorithms are available
to directly draw state vectors conditional on data when
the state dimensions are low to moderate [45, 46]. When
the state dimensions become very high, for example for
functional data, the proposed algorithm can be modified
by replacing the conditional SMC updates with the exact
draws in the inner iterations [45, 46]. For the data example,
nk = 5000 outer iterations and nq = 100 inner iterations
were carried out. The trace plots of the parameters are dis-
played in Figure 2. It suggests that the algorithm has con-
verged. β̂(t) is calculated by averaging the last 100 draws,
which adequately captures the true β(t). Its 95% confidence
interval (CI) covers the true function well, though it is much
narrower at the beginning than it is at the end. This well
known path degeneracy in the smoothing steps of SMC is
still an open problem to be solved. The subject-specific pre-
dictions also agree well with their true values, which are not
shown here.

The MLEs of the parameters and their SEs are displayed
in Table 1 for both this model and the Poisson model. If of
interest, the confidence intervals of the parameters can be
constructed based on the asymptotic normal distributions.
Though for the numeric examples in this paper, it is the
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Table 1. MLEs and SEs

Case 1 Case 2 Case 3
Parameter MLE SE MLE SE MLE SE

log(λ1) 6.34 0.14 6.34 0.10 4.50 0.11
σ2
1 2.03 0.52 2.57 0.63 0.12 0.028

σ2
2 1.05× 10−6 0.27× 10−6 3.44× 10−5 0.59× 10−5 3.80× 10−4 0.72× 10−4

log(λ2) 6.21 0.026 7.44 0.016 3.69 0.020
σ2
e 1.02 0.037 0.89 0.032

Figure 3. Case 2: Trace plots of parameters and the estimate
of β(t). For β(t), the dotted black line is the true function,
the solid red lines are the estimate and 95% CI, and the gray

lines are the last 100 draws.

Figure 4. Case 2: Subject-specific fittings of three subjects.
Gray dots connected by dotted lines are observations, black
dotted lines are the true mean functions, and the red solid
lines are estimated subject-specific means and 95% CIs.

function values not the parameter values that are of primary
interest.

4.1.2 Case 2: SMC Gibbs SAEM

The number of inner iterations stayed the same as nq =
100, while the outer iterations were reduced to nk = 500
due to the long running-time particle algorithms. As shown
in Table 2, each outer iteration took about 30 minutes for
SMC Gibbs SAEM, while it only took less than 8 seconds
for SAEM with exact Gibbs.

The trace plots in Figure 3 suggests that the algorithm
has converged. For β(t), the average values from the last 100
draws are shown as the red line, which is close to the true
curve. The last 100 draw are also shown in the figure, which
also show certain path degeneracy. Subject-specific fitting

Figure 5. MPF and STPF for Gaussian FMM. The left
column is for MPF; the right column is for STPF; the upper
row is for β(t); and the lower row is for Subject 22. The

dotted black line is the true function, and the solid red line is
the estimate.

is shown for three subjects in Figure 4. Though the overall
trends are well captured, there are certain under-smoothing
in some regions.

For MPF and STPF, the filtered means of β(t) and Sub-
ject 22 are shown in Figure 5. Both MPF and STPF generate
biased β(t) estimates, which are more severe as t increases.
The subject-specific fittings of Subject 22 show apparent
undersmoothing.

4.2 Case 3: Poisson outcome

Let μij = E(yij), a model for Poisson outcome with log-
arithm link function is used as follows

yij |μij ∼ Poisson (μij) ,(26)

log {μij |β (tj) , αi (tj)} = β (tj) + αi (tj) ,(27)

with n = 30 and T = 50. To avoid extremely large Poisson
outcome, we rescaled the curves in Figure 1 as shown in Fig-
ure 6. Similar to Case 2, we let nq = 100 for inner iterations
and nk = 500 for outer iterations.

The results are displayed in Figure 7. The convergence
situation shown by the trace plots is similar to Case 2. The
estimate of β(t) is obtained by averaging the last 100 draws,
which shows some underestimate toward the end. A subject-
specific fitting is displayed. Though the overall trend is cap-
tured, there is also some underestimate toward the end.
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Figure 6. True functional effects for Poisson outcome: the
thick black line is β(t) and the thin gray lines are αi(t)’s.

Figure 7. Case 3: Trace plots of parameter estimates, β(t)
and its estimate, and fitting for Subject 14. For β(t), the

dotted black line is the true function, the solid red line is the
estimate, and the gray lines are the last 100 draws. For
Subject 14, gray dots connected by dotted lines are

observations, black dotted lines are the true mean functions,
and the red solid lines are estimated subject-specific mean

and CI.

Figure 8. MPF and STPF for Poisson FMM. The left column
is for MPF; the right column is for STPF; the upper row is for
β(t); and the lower row is for Subject 22. The dotted black

line is the true function, and the solid red line is the estimate.

For MPF and STPF, the filtered means of β(t) and Sub-
ject 22 are shown in Figure 8. Similar to Gaussian FMM re-
sults, both MPF and STPF generate biased β(t) estimates,
which are more severe as t increases. The subject-specific

Figure 9. Effective sample sizes with N = 1000 particles: the
circles with solid line are for the vector-wise approach, and
the dots with dotted lines are for φj ’s from the proposed

algorithm.

Table 2. Computational time (h as hours)

Case 1 Case 2 Case 3

Outer iteration 5000 500 500
Inner iteration 100 100 100
CPU time 10.4h 258.6h 277.7h
Wall time 10.4h 88.3h 92.0h

fittings of Subject 14 also show undersmoothing and some
bias.

4.3 ESS and computational time

For these examples, the dimensions of ξj ’s are d = 62,
which is not large enough to cause severe particle collapse
even if the SMC algorithms are directly applied to ξj ’s. Fig-
ure 9 shows that for the Poisson FMM example, the pro-
posed algorithm has majority ESSs above 750 while the
vector-wise approach has majority ESSs below 250. We
further consider ESS < 10 an ad hoc definition of parti-
cle collapse for N = 1000 fixed number of particles. For
n = 30, 300, 1000, 3000 subjects, there were 2, 12, 19, 25
particle collapses for the vector-wise approach respectively,
and 0, 2, 3, 1 particle collapses for the proposed algorithm
respectively, out of 50 time points.

Indiana University large-memory computer cluster, Car-
bonate, was used for computation. Each node of Carbonate
is a Lenovo NeXtScale nx360 M5 server equipped with 256
GB of RAM, two 12-core Intel Xeon E5-2680 v3 CPUs and
four 480 GB solid-state drives. With 2 nodes and 5 proces-
sors, the computational time for the three cases is summa-
rized in Table 2.

5. A DATA EXAMPLE

In this section, we demonstrate the proposed algo-
rithm in the nonlinear and non-Gaussian setting using
an influenza example. The U.S. Outpatient Influenza-
like Illness Surveillance Network (ILINet) data are down-
loaded from the website of Centers for Disease Con-
trol and Prevention at https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html. ILINet collects weekly state-level
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outpatient influenza-like-illness (ILI) data, which is an im-
portant component of the U.S. Influenza Surveillance Sys-
tem. For this example, we focus on the ILI percentages from
year 2011–2019 and 49 states after excluding Florida due to
missing data. We further average every four-weeks to create
pseudo months so that every year has 13 ‘month’s. Overall,
there are n = 49 subjects and T = 117 time points. In gen-
eral, the flu season is considered as October through May,
which does not cover the whole year. Instead, we use the
calendar year as an ad hoc but simpler approach.

It is known that influenza infection rates exhibit an ap-
proximately seasonal pattern annually, while the overall lev-
els may vary from year-to-year. To analyze the influenza
data, we extend the method in [47] to the multiple-subject
setting. [47] proposed that for a multiplicative model as
yt = ωtαt+ εt, iterations between ωt and αt can be adopted
for computations. For the influenza data, we propose an mul-
tiplicative model of the overall trend μt and subject-specific
seasonal effect bit as follows

(28) yit = μtbit + εit, εit ∼ N
(
0, σ2

e

)
,

where εit is the error term. The multiplication of μt and
bit introduces both nonlinearity and non-Gaussianity. The
trend μt shared by all the states is modeled by a random
walk as μt = μt−1 + εμt, where εμt ∼ N

(
0, σ2

μ

)
for the first

month of a year, and εμt = 0 for other months. We further
force μt = 1 for the first year. Consequently, μt is a step
function with jumps at the beginning of each year, and its
magnitudes represent the relative levels compared to the
first year. The subject-specific seasonal effect bit is modeled
by a frequency model with s = 13 as bit =

∑6
j=1 γijt,

γij,t+1 = γijtcos (λj) + γ∗
ijtsin (λj) + ωijt,

γ∗
ij,t+1 = −γijtsin (λj) + γ∗

ijtcos (λj) + ω∗
ijt,

λj = 2πj/s, for j = 1, · · · , 6. The state vector αit is the
collection of the six pairs of {γijt, γ∗

ijt}. The state transition
matrix is a block diagonal matrix with six nonzero blocks
as (

cos λj sin λj

−sin λj cos λj

)
.

The state innovation ωit is the collection of the six pairs of
{ωijt, ω∗

ijt} distributed as N(0, σ2
ωI12), which allows devia-

tions from exact season patterns. The state is initialized at
time zero as αi0 ∼ N

(
0, σ2

0I12
)
.

The proposed algorithm not only reduces the dimensions
of the working state vectors from 589 to 1 for μt4 and 12 for
bit, but also the working state-space models become linear
and Gaussian. Consequently, the exact draws in the inner
iterations by [45, 46] are adopted instead of the conditional
SMC updates. Figure 10 displays some results. The μt es-
timates suggest that compared year 2011, year 2012 had a
slightly lower overall level and year 2016 had a much lower
overall level, followed by higher levels for year 2017, 2018,

Figure 10. Influenza example: The upper panel displays 100
draws of μt (gray lines) and their averages (red line). The
lower panel displays the Indiana state data (black dots), the
100 draws of the underlying mean values (gray lines) and

their averages (red line).

and 2019. The state-level estimates adequately captured the
individual states’ rates, where the Indiana state is displayed
as an example.

6. DISCUSSION

The proposed algorithm provides a unified framework for
state vector estimation, hence functional effects estimation,
parameter estimation and inference. The numeric examples
show that the algorithm produces reasonable results. How-
ever, the computational burden as shown in Table 2 is still
intense, which imposes a challenge to application to real
functional data with many subjects. It is straightforward to
see that the computational cost for a single inner iteration is
linear in the sample sizes. For example for the Poisson FMM
for n = 30, 300, 1000, 3000 subjects, a single inner iteration
took 6, 54, 179, and 536 seconds, respectively. [48] showed
that for convergence, the number of Gibbs iterations needed
is in the order of logarithms of location parameters in vari-
ance component models. If similar results apply to FMM, a
computational cost of O(n log(n)) would be needed for the
proposed algorithm.

Potentially there are several ways to improve the compu-
tational efficiency. The numeric examples were programmed
in Matlab (The Mathworks, Inc., Natick, MA, USA). Using
other programming languages, such as C++, may improve
the computational efficiency. Parallel computing, which is
an active research area in SMC [49], may also be able to im-
prove the computational efficiency. Also, we rely on [23, 25]
for theoretical justification. A detailed theoretical analysis
of the proposed algorithm may be helpful to improve the
computational efficiency.
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APPENDIX A. M-STEPS

The M-step for the linear Gaussian model is summarized
in this appendix. The M-step for the Poisson model is simi-
lar, except that the Poisson model does not have σ2

e . Conse-
quently, one fewer item is needed for both updating s∗k and
θ(k) for the Poisson model.

By ignoring the constant part with respect to θ, the log-
arithm of the complete data likelihood is as follows

lc = −T log (λ1)− nT log (λ2)

− 1

2
λ−1
1

T∑
j=1

(
φj −Hφj−1

)�
Σ−1 (φj −Hφj−1

)

− 1

2
n log

(
σ2
1

)
− 1

2
n log

(
σ2
2

)

− 1

2σ2
1

n∑
i=1

ψ2
i0(1) −

1

2σ2
2

n∑
i=1

ψ2
i0(2)

− 1

2
λ−1
2

n∑
i=1

T∑
j=1

(
ψij −Hψi,j−1

)�
Σ−1 (ψj −Hψi,j−1

)

− 1

2
nT log

(
σ2
e

)
− 1

2σ2
e

n∑
i=1

T∑
j=1

{yij − β (tj)− αi (tj)}2 ,

where ψi0(1) and ψi0(2) are the first and second elements of

ψi0, respectively. Let s = ( s1 s2 s3 s4 s5 )� with

s1 =
T∑

j=1

(
φj −Hφj−1

)�
Σ−1 (φj −Hφj−1

)

s2 =

n∑
i=1

ψ2
i0(1), s3 =

n∑
i=1

ψ2
i0(2),

s4 =
n∑

i=1

T∑
j=1

(
ψij −Hψi,j−1

)�
Σ−1 (ψij −Hψi,j−1

)
,

s5 =

n∑
i=1

T∑
j=1

{yij − β (tj)− αi (tj)}2 .

Stochastic approximation of the Q function is essentially
stochastically approximating s. Let sk be the s vector eval-
uated using the k step draws, we have

ŝ∗k = (1− γk) ŝ
∗
k−1 + γksk,

with s∗k = ( s∗k1 s∗k2 s∗k3 s∗k4 s∗k5 )�. Take the first

derivative of Q̂k with respect to θ, set them to zero, and
solve for the update of θ leads to

λ1 (k) =
s∗k1
2T

, λ2 (k) =
s∗k4
2nT

,

σ2
1 (k) =

s∗k2
n

, σ2
2 (k) =

s∗k3
n

, σ2
e (k) =

s∗k5
nT

.

APPENDIX B. STANDARD ERRORS

We use the linear Gaussian model for illustration. The
items for the Poisson model are similar by removing items

related to σ2
e . For numeric stability considerations, SEs of

θ1 = log(λ1) and θ4 = log(λ2) are calculated instead of the
original scale. Let s = ( s1 s2 s3 s4 s5 )� as in the
previous section. The logarithm of the complete data is

lc = −Tθ1 −
1

2
exp (−θ1) s1

− 1

2
n log

(
σ2
1

)
− 1

2σ2
1

s2 −
1

2
n log

(
σ2
2

)
− 1

2σ2
2

s3

− nTθ4 −
1

2
exp (−θ4) s4 −

1

2
nT log

(
σ2
e

)
− 1

2σ2
e

s5.

The first and second derivatives, which are needed in the
stochatic approximation of the observed information matrix,
are as follows

∂lc
∂θ1

= −T +
1

2
exp (−θ1) s1,

∂2lc
∂θ21

= −1

2
exp (−θ1) s1,
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